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INTRODUCTION 
 
 
The basis of the research in the first part of the book (Chapters 
I-IV) is the response theory, which studies the reaction of a 
charged or neutral medium with strong interparticle interaction 
(non-ideal continuous medium) to electric and electromagnetic 
fields, gradients of mass velocity, temperature, chemical 
potentials of chemical elements (concentrations of chemical 
elements or components) forming the medium, etc. This part of 
the book is mainly devoted to the quadratic version of nonlinear 
response theory. The need to develop a theory of nonlinear 
response for non-ideal media arose due to the obviously 
insufficient amount of research in this area. For the first time, 
the book systematically discusses approaches to the study of 
the nonlinear response of non-ideal media to various 
perturbations 

For non-ideal media in which the potential energy of the 
interaction of particles is comparable to their kinetic energy, 
the application of the response theory (RT) is correct (in 
comparison with traditional kinetic equations, for example, the 
Boltzmann equation, etc., which are not applicable for 
describing non-ideal media) [1-3]. Limitations of RT are 
related to the intensity of disturbing influences, which should 
not significantly change the state of the medium. The RT theory 
can be formulated with respect to both mechanical and thermal 
disturbances. For a medium under the action of mechanical 
disturbances, for example, external electric or electromagnetic 
fields, the Hamiltonian of the system is the sum of the 
undisturbed Hamiltonian of the medium and the Hamiltonian 
of the interaction of the medium with the external fields. 
Thermal perturbations of the medium (gradients of mass 
velocity, temperature, etc.) do not allow such a description, and 
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in this case, an approach using generalized Langevin equations 
is proposed to determine the reaction of a non-ideal medium [3, 
4]. 

The linear RT is quite well developed (see, for example, 
[1- 3a]). On its basis, theoretical and computational studies of 
linear thermophysical properties (in particular, by computer 
modeling methods) have been carried out of non-ideal charged 
and neutral systems, and characteristics of linear interaction of 
electromagnetic waves with non-ideal charged media (see, for 
example, [3a, 5, 6]). In addition, there is a significant array of 
experimental results on the linear characteristics of non-ideal 
media, including non-ideal plasma (see, for example, [3a, 6]).  

At the same time, the theory of nonlinear response 
(NRT) for charged and neutral non-ideal media is not 
sufficiently developed. There are a number of results on NRT 
for mechanical disturbances: the nonlinear fluctuation-
dissipation theorem for response functions and corresponding 
correlation functions, as well as on the frequency moments of 
these functions for charged media [7-9]. Theoretical 
approaches to the description of nonlinear phenomena and 
thermophysical characteristics of non-ideal charged media 
based on NRT have been discussed in recent papers [3b,c, 10]. 
NRT is applied there to describe the nonlinear interaction of 
longitudinal waves of an electric field in dense charge media, 
i.e. phenomena such as plasma echo and wave transformation 
[10abc]. To verify the theoretical results, it is of interest to 
conduct studies of the corresponding nonlinear characteristics 
of non-ideal Coulomb systems by computer modeling methods, 
since the necessary experimental data are not available. In this 
regard, there is a problem of studying the conditions of 
experimental realization of nonlinear phenomena in non-ideal 
charged media and methods of measuring nonlinear 
characteristics.  
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Let us explain the role of the response theory in the 
study of thermophysical properties (including linear) of non-
ideal media (i.e. thermodynamic, transport and rheological, and 
optical characteristics). Traditionally, there is an inconsistency 
of approaches in the computational and theoretical study of the 
thermophysical characteristics of non-ideal media, especially 
when using various model approximations (see, for example, 
[6, 10c]). Therefore, there is a need for a unifying theory that 
can be the basis for studying of the thermophysical 
characteristics of non-ideal media. Such a theory is the 
response theory. With the help of RT, it is possible to analyze 
correctly the general relations between the thermophysical 
characteristics. The formulation of general relations is possible 
because this theory does not operate directly with the 
thermophysical characteristics of the medium, but with 
response functions or with space-time correlation functions. In 
turn, the response functions determine the thermophysical 
characteristics of the medium in various ways (for more 
information, see Chapters I-III). In connection with transport 
(and thermodynamic) properties, the study of (linear and 
nonlinear) response functions of non-ideal media to thermal 
disturbances is of particular interest. We also note that it is 
advisable to use phenomenological methods of nonequilibrium 
thermodynamics to analyze and verify the results on the 
thermophysical properties of non-ideal media (Chapter IV), 
which are used in problems of nonlinear hydrodynamics of 
dense media with sources (Chapter V, Appendix II). 
           The book offers approaches to the study of the problems 
formulated above. At the same time, we emphasize that these 
problems obviously still have no final solution, so the 
development of the response theory in relation to the study of 
linear and nonlinear characteristics of non-ideal media and 
nonlinear phenomena in these media is relevant. As in the linear 
case, we investigate phenomena and properties corresponding to 
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non-ideal media, and compare them (if possible) with 
analogues previously studied for a rarefied medium (plasma). 
           The book includes five Chapters and three Appendixes. 
Chapter I discusses, the theory of nonlinear response formulated 
to mechanical disturbances (electric and electromagnetic fields). 
Various variants of the fluctuation-dissipation theorem and 
dispersion relations are considered. Frequency moments are 
discussed of nonlinear response functions to longitudinal 
electric, and electromagnetic fields.    
           Nonlinear phenomena in non-ideal charged media are 
investigated in Chapter II based on the NRT for mechanical 
disturbances [7-10]. Phenomena related to the quadratic 
reaction of a non-ideal charged medium to longitudinal electric 
and electromagnetic fields are considered. These include 
plasma echo, wave transformation, second harmonic generation 
and parametric generation of radiation [10, 11]. Note that these 
phenomena have been studied in numerous theoretical and 
experimental works for plasma and electron gas with weak 
interparticle interaction (see, for example, [12, 13]). In these 
cases, theoretical approaches were based on the kinetic 
equations of Vlasov, Landau, etc. or the corresponding 
quantum mechanical approximations, which are not applicable 
for non-ideal media (see, for example, [1, 2]). The generation 
of the second harmonic of radiation and parametric generation 
of radiation were earlier studied in detail for various crystalline 
media. 
             The theory of reaction to thermal disturbances, which 
determines the transport properties of non-ideal media, is 
presented in Chapter III. This theoretical variant is based on a 
comparison of the conservation equations for a continuous 
(charged or neutral) medium and the generalized Langevin 
equations [3, 4] for the corresponding dynamic variables. In 
this approach to determining the second-order transport 
coefficients (linearized and nonlinear Burnett coefficients), 
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expressions for heat, mass, momentum and charge fluxes are 
used in the most general form [14, 15]. 
           Chapter IV analyzes the phenomenological relations of 
nonequilibrium thermodynamics, useful for hydrodynamic 
applications, which differ from the traditional linear-gradient 
approach [3a]. These sets of relations between the data on the 
thermophysical characteristics of non-ideal media determine 
the properties of an array of parameters in systems of 
conservation equations corresponding to problems of high-
temperature nonlinear hydrodynamics (properties of matrices 
with higher derivatives, etc.). The properties of a matrix with 
higher derivatives in a system of conservation equations are 
discussed outside the framework of Euler's theorem on 
homogeneous functions. 
            Chapter V discusses a typical problem of nonlinear 
hydrodynamics of a dense medium with a volumetric heat 
source, in which consideration of nonlinear transport processes 
determines the main effects. Various thermal regimes and their 
dependence on parameters are investigated for conditions, 
which are actual for gas-phase nuclear reactors. 
           In Appendix I, a fluctuation-dissipation theorem, 
frequency moments of dense plasma quadratic response 
functions to electromagnetic field and a model for determination 
of the quadratic response functions are discussed (compare 
with [10e]). In Appendix II, methodically related to Chapter V, 
the actual problem of the multiplicity of heat and mass transfer 
modes in the shock layer of a spacecraft in the atmosphere of 
Mars is considered. The search is carried out to determine the 
most unfavorable modes in a wide range of parameter changes. 
In Appendix III (compare with the previous section), a structure 
and processes of heat and mass transfer are simulated in the 
system of exhaust jets of space vehicle brake motors during 
descent in the atmosphere of Mars. It is taken into account that 
the jet system is a chemically reacting gas medium formed by 



Non-Linear Response Theory and Hydrodynamics of Charged  
and Neutral Media 

xiii 

exhaust gases and atmosphere of the planet at sufficiently high 
temperatures and is characterized by developed turbulence. 
The calculated fields of the complete set of parameters of the 
medium, formed by the system of interacting supersonic 
exhaust jets of brake motors of the descent vehicle in the 
atmosphere of the planet, are obtained for realistic conditions. 
The parameters of the flow field in the most characteristic areas 
of the system of interacting jets are presented.   
 
 
Gratitude. The author considers it his pleasure duty to thank 
Yu.V. Troshchiev, with whom extensive research was carried 
out and the results described in Chapter V and Appendix II 
were obtained. The author is sincerely grateful to Yu.N. 
Deryugin, D.K. Zelensky and Ya.V. Emelyanova for their joint 
work (see Appendix III). 



 



Chapter I 
The theory of nonlinear response to electric and 
electromagnetic field 
 
The nonlinear response theory, the formulation of which is 
devoted to the first Chapter, allows us to determine the functions 
of the nonlinear reaction of a non-ideal charged medium to 
electric and electromagnetic fields (§1). The fluctuation-
dissipation theorem, the symmetry relations, and the Kramers-
Kronig relations are formulated for nonlinear response functions 
(§2). In the following paragraphs, the asymptotics (§3) and 
frequency moments (§§ 4, 5) of quadratic response functions, 
defining nonlinear phenomena (see Chapter II) are discussed. The 
frequency moments of both longitudinal (scalar) response 
functions (§4) and response functions to a transverse 
electromagnetic field (§5) are considered. At the same time, it 
should be borne in mind the difference between “screened” and 
“external” (describing the reaction to external disturbances) 
response functions (see Chapters II, III for more details). When 
presenting the material (conducting the study), the results of [7-
10, 16] were used. 

 
§ 1. Nonlinear reaction of a system to mechanical disturbances 
 
We formulate the theory of nonlinear response to external 
disturbances based on the quantum Liouville equation (see, for 
example, [2, 3]) 

 

(1.1) et
extHH

t
i 




 ];,[ . 

 
Here ρ is the density matrix of the system; ħ, kB are the Planck and 
the Boltzmann constants; e  is the density matrix of a medium in 
the absence of perturbation; H is the Hamiltonian of the medium;
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TBk/1 ; and T is the temperature. The sign extH  is a small 
addition to the Hamiltonian H due to the interaction of the medium 
with an external perturbation included in an infinitely remote time 
in the past. The symbol [.,.] means the commutator. The formal 
solution of (1.1) is in the following form [2, 3] 
 

(1.2) 



t

tdttiHeextH
i

ttiHeet 



 /)(],[
1/)()(  . 

 
Or in iterations  
              𝜌ሺ𝑡ሻ = 𝜌௘ + ∑ ଵ(௜ħ)೙ ׬ 𝑑𝑡ଵ௧ିஶ ׬… 𝑑𝑡௡௧೙షభିஶஶ௡ୀଵ 𝑒ି௜ு௧/ħ[𝐻௘௫௧(𝑡ଵ) ⨯ 
 
(1.3) ⨯ [  /]]),([)2( iHteent

extHtextH  ,  
 
                //)( iHteextHiHtetextH   

 
In these expressions, if the reaction of a medium consisting of 
spin-less charged particles to an external electromagnetic field is 
considered, extH  is in the form [1-3] 
 
 (1.4)      

i
tetd

c
tetext

idextH  ),()(1),()( rArrjrrr  

  tetAd
mc

e  ),(2)(2

2
rrr .  

Here i ,,, jА  are, respectively, the potential, the vector 
potential (external), the current density operators (in the absence 
of a field), and the densities of particles of different charge in the 
medium. The letter  means a small positive value that ensures 
the adiabatic inclusion of the disturbance (and causality [1, 2]). 

Consider the case when extH  is linear in the external 
disturbance. Let us write down the interaction Hamiltonian for 
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generality in the form (cf. with (1.4)) 
 
(1.5)   

Here B(r) is some observable property of the system (for example, 
the volume charge density), ),( textb r  is a generalized external 
force (for example, the potential created by third-party charges). 

We write an expression for the response of some 
observable property of the medium B to an external disturbance 

 
   〈𝐵〉 = 〈𝐵〉଴ + ∑ ଵ(௜ħ)೙ ׬ 𝑑𝑡ଵ௧ିஶ ׬… 𝑑𝑡௡௧೙షభିஶஶ௡ୀଵ 𝑆𝑝{𝐵(𝑟, 𝑡)[𝐻௘௫௧(𝑡ଵ) ⨯ 
 
(1.6)       ⨯ [𝐻௘௫௧(𝑡ଶ)… [𝐻௘௫௧(𝑡௡),𝜌௘] … ]} 

 
Here 0,   mean averaging over   and e , respectively, and  

B(r,t) is an operator in the Heisenberg representation [2]. In this 
case, the quadratic response has the form 

 

          






t t

dtdtetextHtextHtBSp
i

B
1

;21]]}),2()[1()[,({2)(
1)2( r


 

(1.7)  






t t

text
j

bttttijkkjiB
1

)1,1()2,1;2,1()2(ˆ
,

)2( rrrrr  

   2rrr dddtdttext
kb 121)2,2( ; 

 
 

            


 )21({22

)2()1(
)2,2;1,1()2(ˆ tt

V

tttt
ttttijk 





rrrr  

(1.8)   0)]2,2()],1,1(),,([[  tkBtjBtiB rrr + 

   + }0)]1,1()],2,2(),,([[)12(  tjBtkBtiBtt rrr . 

 
Such a definition of the response function allows in (1.7) to 
extend the limits of integration over time to infinity. Substitute 

 
j

ext
jj

ext tbBdH ),()( rrr
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(1.8) into (1.7) and proceed to the Fourier representation 
 

(1.9)  
);()();(ˆ

212)2(
1)2(),(

22112211
)2(

2,1








kkkk

k
kk

ext
k

ext
jijk bb

dd
V

iB



   

                .21;21   kkk  
 
Let consider the properties of the second - order response function 

)2(ˆijk . The symmetry of this response function with respect to the 

last two indices is evident from definition (1.8). For the Fourier 
image of the response function )2,2;1,1()2(ˆ  kkijk  we have 
 

(1.10) )2,2;1,1(
*)2(ˆ)2,2;1,1()2(ˆ   kkkk ijkijk .  

 
Because, )2,2;1,1()2(ˆ  rrijk  is a real function, which follows from 

its phenomenological definition. Let us show formally the validity 
of the last statement. From the hermiticity of operators B(r,t) [17] 
it follows that )]2,(),1,1([ tjBtiВ 2rr  is the "anti-Hermite" operator, 

in addition e  is the Hermite operator [17], therefore we will have 
 
(1.11) )2,2;1,1()2(ˆ*)]2,2;1,1()2(ˆ[ ttijkttijk rrrr   . 

 
It is of interest to determine the properties of correlators of 

some operators through which quadratic response functions can be 
expressed (see (1.8), §2), with respect to time reversal and 
coordinate inversion. We investigate the properties of correlators. 
The time reversal operator T is given as follows (see, for example, 
[3,18]) 
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 ),(),(  TT  

(1.12) ),(1),( tiBiTtiTB  rr  ; 
 

)1(1 i , if the corresponding operator is even (odd) with respect 
to the time reversal. Considering (1.12), as well as the possibility 
of permutation of operators under the sign of the Sp, we obtain for 
the correlator of operators 
 
(1.13) 0)2,2();1,1();0,0()2,2;1,1()2(

 tkBtjBiBttijkf rrrr ; 

 TtkBtjBiBeTSpttijkf )2,2()1,1()0,0(,)2,2;1,1()2( rrrr  = 

 TTtkTBTtjTBTiTBeTSpkji
1)2,2(1)1,1(1)0,0(, rr = 

=  )2,2()1,1()0,0(, tkBtjBiBeTTSpkji rr = kji   

)2,2;1,1()2( ttijkf rr
  

 
 

Consider the properties of correlators with respect to the 
inversion of coordinates; the inversion operator I looks like as 
follows [18] 
  
 
 ),(),(  II  

(1.14) ),(),( 1 tBItIB i
I
ii rr   ; 

 
)1(1 I

i , if the corresponding operator is even (odd) with respect 
to the inversion of coordinates. Considering (1.14), as well as the 
possibility of permutation of operators under the sign of the Sp, 
we obtain for the correlator 
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          ItkBtjBiBeISpttijkf )2,2()1,1()0,0(,)2,2;1,1()2( rrrr  = 

(1.15) =  IItkIBItjIBIiIBeISpI
k

I
j

I
i

1)2,2(1)1,1(1)0,0(, rr  

            = I
k

I
j

I
i  )2,2;1,1()2( ttijkf rr . 

 
The relations between the Fourier images of correlators have the 
form (see (1.10), (1.11)) 
 
  0)2,2()1,1(),(  kkk kBjBiB  

 =  0)2,2()1,1(),(  kkk kBjBiB  

(1.16)  0)2,2()1,1(),(  kkk kBjBiB  

 = kji  I
k

I
j

I
i   0)2,2()1,1(),(  kkk kBjBiB  

 
We define the properties of correlators with respect to cyclic 
permutations of operators  
 
 0)2,2();1,1();0,0()2,2;1,1()2(  tkBtjBiBttijkf rrrr = 

 0)1,1();0,0();2,2(  tjBiBitkB rr  . 

 
Hence, for Fourier images of correlators, we get (N is the number 
of particles in the system) 
 
  0)2,2()1,1(),(  kkk kBjBiB  

(1.17) = )012()21()21(2 SN   kkk ; 

 


)201(2 Se


S (012), etc.   
 
The first of the relations (1.17) is the definition of correlators S. 

It is easy to find the properties of )2,2;1,1()2(ˆ ttijk rr  (1.8) 

with respect to time reversal and coordinate inversion, using 
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(1.13) and (1.15). The properties of correlators are used to 
determine and study nonlinear kinetic (transport) coefficients (see 
Chapter III). 
 
§ 2. Nonlinear fluctuation-dissipation theorem. Dispersion 
relations and frequency moments of response functions  
 
As is known, the linear fluctuation-dissipation theorem connects 
linear response functions and correlation functions of physical 
quantities at two different spatiotemporal points (see, for example, 
[3a, 18]), while the correlation function is connected with the 
imaginary (dissipative) part of the response function. Nonlinear 
FDT has a more complex structure, which includes response 
functions and correlators of higher orders. Let us consider an 
approach that allows us to find the relationship between the 
response functions and the corresponding correlators, using the 
example of a quadratic FDT. Let write out the quadratic response 
function (1.8) 
   

 (2.1)    








0)]2,2()],1,1(),,([[

)21({22

)2()1(
)2,2;1,1()2(ˆ

tkBtjBtiB

tt
V

tttt
tttt

ijk

rrr

rrrr 



  

 + }0)]1,1()],2,2(),,([[)12(  tjBtkBtiBtt rrr . 

In this expression, we will describe the commutators in terms of 
correlators, the properties of which discussed in the previous 
paragraph, and perform the space-time Fourier transform 
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






)2,2(),()1,1()2,2()1,1(),(

)21({22

)2()1(
)2,2;1,1()2(ˆ

tkBtiBtjBtkBtjBtiB

tt
V

tttt
ttttijk

rrrrrr

rrrr 



  

         0),()1,1()2,2()1,1(),()2,2( tiBtjBtkBtjBtiBtkB rrrrrr  

         + 0)1,1(),()2,2()1,1()2,2(),()12(  tjBtiBtkBtjBtkBtiBtt rrrrrr  

        }0),()2,2()1,1()2,2(),()1,1()12(  tiBtkBtjBtkBtiBtjBtt rrrrrr  

 
          )2,2;1,1()2(ˆ  kkijk  

             





 )2121(/)]11(/1[
2

2
2

1{22








ii
dd

V
N


 

    )]201()102()210()012([ SSSS  + 

(2.2)    +  





)]2121(/1)][22(/1[
2

2
2

1 






ii
dd  

    )]}201()102()120()021([ SSSS  . 
 
The ratio, used here, is ((1.17) re-assigns to (2.3) for convenience) 
 

 )21()21(20)2,2()1,1(),( kkkkkk  NkBjBiB  

(2.3)      ⨯S (012) 
  
Relation (2.2) is one of the forms of the fluctuation-dissipation 
theorem. Applying the Sokhotsky formulas [19], we obtain the 
relations between the real parts of { )2,2;1,1()2(ˆ  kkijk } ({…} 

means a set of 𝜒̂௜௝௞(ଶ) with a different order of arguments) and the 
correlator (see Appendix I for details). Note that in this form of 
NFDT, the real part of the quadratic response function is directly 
related to the correlators [7], in contrast to the linear FDT (see [1-
3]), where the imaginary part of the linear response function is 
determined by the correlator.  
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Let us consider the consequences of the causality of 
response functions )2,2;1,1()2(ˆ ttijk rr . From (1.8) follows the 

analyticity of Fourier image of this function in the upper half-
plane of complex variables 21, , since given function is equal to 
zero at negative times (it is a causal function). We obtain the 
Kramers-Kronig relations with respect to 1 , and write out the 
integral 
 

(2.4) 






1

11

2211
)2( ),;,(ˆ





dijk kk

   

 
We calculate the integral along the contour Г, passing along the 
real axis from -∞ to +∞, wrapping around a special point 11    
from above, and closing along a semicircle in the upper half-plane 
of the complex variable 1 . The integral (2.4) is zero due to the 
analyticity of the response function in the upper half-plane 1 . It 
is possible, therefore, to distinguish contributions from three 
sections of the contour of Г. The integral over the large semicircle 
turns to zero, because at infinity the response function tends to 
zero. What remains is an integral over two segments of the real 
axis (which is the main value of the integral) and an integral over 
a semicircle around a point 1 . We get  
 

(2.5) 0),;,(ˆ
),;,(ˆ

2211
)2(

1
11

2211
)2(





 




kk

kk
ijk

ijk idP . 

 
We write out the real and imaginary parts of this expression 
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 )22;11()2(ˆRe  kkijk  



 1

11

)2,2;1,1()2(ˆIm1







dijkP

kk
 

(2.6) 

 )22;11()2(ˆIm  kkijk   




1
11

)2,2;1,1()2(ˆRe1







dijkP

kk
 

Similarly, it is possible to obtain dispersion relations with respect 
to 2  and 21,   

 (2.7) )22;11()2(ˆ  kkijk  



 21)22)(11(

)2,2;1,1()2(ˆ

2
1







ddijkPP

kk
 

 
Let consider the decomposition of (2.6) (similarly for (2.7)), when 

)2(1   
 

  )2,2;1,1()2(ˆRe  kkijk  

 )2,2;1,1()2(ˆIm]2)
1
1(

1
11[1

1

1 










kk 








 ijk

d
 ; 

(2.8)  ),;,(ˆIm 2211
)2(  kkijk  

 ),;,(ˆRe])(1[1
2211

)2(2

1

1

1

11

1












kk 








  ijk

d
 . 

 
The numerators in these expansions are determined by the 
frequency moments of the imaginary and real parts of the 
quadratic response function )2,2;1,1()2(ˆ  kkijk . It is also possible 

to obtain decompositions in 2  and 2,1  , which are determined 
by the corresponding frequency moments. 

High-frequency decompositions of response functions in 
the time representation determine their behavior at short times 
(see the next paragraph). Indeed, by integration in parts, we will 
have 
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 )22;11()2(ˆ  kkijk 


1
11)2,2;1,1()2(ˆ

0
dt

ti
etijk


 kk  

 01
)22;1,1()2(ˆ

1

1
 ttijki




kk  + 

 + 


01

)22;1,1()2(ˆ
1

2)1(

1
ttijkti




kk  

 


 01

)22;1,1()2(ˆ2
1

2
3)1(

1
ttijkti




kk    

 
We obtain a chain of frequency moments for the real and 
imaginary parts of the quadratic response function by comparing 
the above relation with expressions of type (2.8). Note that the 
zero frequency moments are equal to zero. 
 

(2.9)  )2,2;1,1()2(ˆ1
1 




kkijk

d
 01

)22;1,1()2(ˆ
1




ttijkt

i  kk ; 

              )2,2;1,1()2(ˆ2
1

1 



kkijk

d
- ;01

)22;1,1()2(ˆ2
1

2




ttijkt

 kk etc. 

 
It should be noted that these relations are convenient for 

practical calculation of the frequency moments of response 
functions (§4, compare with [3a, 7]). Similar relations for the two 
frequencies can be obtained by comparing high-frequency 
decompositions (2.7) and two-time integration in parts of the 
response function. 
 
§ 3. The asymptotics of response functions 
 
We will discuss the properties of specific quadratic response 
functions in this and the following paragraphs of this Chapter. Let 
consider the asymptotics of the quadratic longitudinal charge-
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charge response function )2(ˆ at 2,1  . Such a limit, as is 
known [16], corresponds to t1, t2→0, when the system is 
considered as a system of non-interacting particles. For a classical 
system of non-interacting charged particles, the quadratic charge-
charge response function asymptotics are found (see, for example, 
[7, 16]). Let define this function (see (1.8), (1.9) and compare 
with (8.1)). 
 

  
2,1

)11()22;11()2(ˆ212)2(

1)2(),(
kk

kkkk 


 extdd
V

 

)9.1(    );2,2(  kext  

 .21;21   kkk  
 
We have in the high frequency limit  
 

 )21(
2

[
214

2

2
)2,2;1,1()2(ˆ kkkk






kp

em

e
  

(3.1) )]1(
2

2
2)(

1

2
1 kk2kk 



kk
 

 
In (3.1) е, me, ωp are the charge of the electron, mass of the 
electron, and plasma frequency. This expression makes it possible 
to analyze frequency moments )2(ˆ , taking into account the 
symmetry properties of a given response function (see, for 
example, (4.3)). The real part dominates in the high-frequency 
limit of )2(ˆ . Therefore, from (3.1) should 



The theory of nonlinear response to electric and electromagnetic field 
 

13 

)2,1(2
2

2
14

2

2
)2,2;1,1()2(ˆRe kkkk R

p

em

e




   

(3.2)   
















2

1),1(2
2

1

2),2(2
1

)2,1(








kk

kk

kk
k

k

R . 

 
This is the main, electronic, contribution to these ratios.   

Let us write out the consequences of (3.2). We have at 
1  (because, there are relations (4.1)) 

 

  




 1
11

)2,2;1,1()2(ˆIm

1
lim 






d

ijk
P

kk
 

 = 






)2,2;1,1()2(ˆIm112

1

1

1
lim kk 

 ijkd  . 

 
We will have (3.3) [7], using the above relation and (2.6), (3.1)  
 

 



 2

2
12

2

2

8
)2,2;1,1()2(ˆIm11 kkkk k

p

em

e
d




  

(3.3) 

 



 1

2
22

1

2

8
)2,2;1,1()2(ˆIm22 kkkk k

p

em

e
d




  

 
The relations (3.3) are considered as the simplest exact frequency 
moments of the quadratic charge-charge response function (not 
only for the classical system). Analogous asymptotics can be 
found for moments of tensor quadratic response functions (see 
§5), using the analogues of (3.1) [16] for the corresponding 
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response functions. 
We obtain, following the relation (2.7), a high-frequency 

decomposition for )2(ˆ  (see notation (4.4)) 
 
(3.4)  )22;11()2(ˆ  kk  

           =  














 ]
2

21][
1

11[
21

)2,2;1,1()2(ˆ12 


















 kkdd
= 

           = 












 3

2
3
1

2,2
4
2

2
1

3,.1
3
21

2,0

2
3
1

0,2
2
2

2
1

1,14


XXXXX
  

 
A concretization of expressions of the form (3.4) 

(calculation of Хa,b (4.4)) makes it possible to better clarify the 
structure of high-frequency asymptotics of response functions, 
which are determined by their frequency moments. In addition, we 
can obtain the corresponding decomposition of Re𝜒̂ఘఘఘ(ଶ)   in the 
form (3.4), if we take into account the dominant contribution of 
the real part to the quadratic response function )2(ˆ  in the high-
frequency limit. In this case, the consequences of quadratic FDT 
(see (2.2), (2.3) allow us to find the frequency moments of triple 
correlators of charge densities. A more detailed analysis of the 
frequency moments of the nonlinear response function )2(ˆ  is 
carried out below (see also Appendix I). 

 
§ 4. Frequency moments of quadratic response functions. 
Longitudinal charge-charge response function  

 
The frequency moments of the quadratic response functions are 
frequency integrals of these functions multiplied by various 
degrees of frequency. Such integrals are essentially thermodynamic 
characteristics of the medium and, therefore, can be studied more 
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fully than the actual response functions. In this paragraph, the 
known response function )2(ˆ  to the longitudinal field is mainly 
analyzed [7-9]. The frequency moments of the response functions 
to the electromagnetic field (see (1.4)) discussed in the next 
paragraph.  

A distinction should be made between the "screened” and 
"external" response functions [1-3], when analyzing the quadratic 
response functions to the longitudinal field. The relations linking 
these response functions are obtained in Chapter II.  

Let us start with the zero moment of the quadratic response 
functions. Since the "external" response functions describe the 
reaction of the medium to external disturbances and are causal 
functions, they do not have features in the upper half-plane of 
complex variables ω1, ω2. Therefore, assuming that these functions 
decrease fast enough at infinity ω1, ω2, we can show 

 

 (4.1) 



)2,2;1,1()2(ˆ1 kk  ijkd 0)2,2;1,1()2(ˆ2




kk  ijkd . 

 
It is convenient to use relations of the form (2.9) and similar two-
frequency expressions, to calculate the frequency moments of the 
response functions. 

It is possible to define the longitudinal response functions 
through arbitrary tensor response functions, bearing in mind the 
fact that “densities” and “generalized external forces” in (1.4) can 
be vectors (or quantities of another tensor dimension). Let us 
assume, based on the definitions of the quadratic response 
function (see (1.8), (1.9); cf. with §5) 

 
(4.2) 𝜒̂஻ഀ஻ഁ஻ം(ଶ) (𝜔ଵ,𝒌ଵ;𝜔ଶ,𝒌ଶ)= 𝑘௜𝑘௝ଵ𝑘௞ଶ𝜒̂௜௝௞(ଶ)(𝜔ଵ,𝒌ଵ;𝜔ଶ,𝒌ଶ). 
 
Here 𝐵ఈ = 𝑘௝𝐵௝ఈ and so on. We present the known frequency 
moments for the most studied longitudinal quadratic response 
function of the density-density (charge-charge, cf. with §§6-8, 
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Appendix I) )2,2;1,1()2(ˆ kk   [7] 
 

(4.3) 
em

eid
4

12)2,2;1,1()2(ˆ11
kk

kk 



 )2,2(ˆ k  

 
The relation (4.3) is obtained, using (2.9) for the case of a 
quantum system and relate three-particle response functions to 
two-particle (linear) ones. This relation is also valid for classical 
systems. Moments for higher degrees of ω1 (and moments 
relatively ω2) can be considered similarly. 

Let us move on to the definition of two-frequency 
moments of the form 

 

 (4.4) 







 ),;,()2(ˆ24

1
],[, bbaa

n
b

m
abdadbanmX kk 


. 

 
Let's start with Х-1,-1, using the Kramers-Kronig relations (2.7) 
  

(4.5)  



 21

21

)2,2;1,1()2(ˆ
24

1
]2,1[1,1 






ddX

kk
 

  4/)0,2;0,1()2(ˆ kk . 

 
The moment Х0,0 [1,2], obviously (see (4.1)), is equal to 

zero; for the same reason, X0,-1[1,2] and X-1,0[1,2] are equal to 
zero (taking into account the Kramers-Kronig relations). The 
moments X0,1[1,2] and X1,0[1,2] are also equal to zero due to the 
analyticity of the linear response function (it’s causality) in the 
upper half-plane of the complex variable ω. The moment X-

1,1[1,2] (which is equal to the moment X1,-1[2,1]) is easy to find 
using the equality (4.3) and the Kramers-Kronig relations for 
linear response functions (in (4.6) – (4.8) we put e =1) 

 


