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PREFACE

| took a Ph.D. level course in linear models from Justus Seely in 1974.
At the time Justus was writing a set of notes that he eventually hoped to
turn into a textbook on linear models. Unfortunately, Justus died in 2002
before he was able to finalize his notes into a textbook. In addition, the
notes that Justus was developing changed over time as the clientele in his
class changed. This text is based on a set of notes that Justus used to teach
his 1989 class on linear models. While a good deal of what Justus wrote
has been modified to include my own views and prejudices on linear
models, the current text relies on ideas Justus developed in his notes. With
the kind permission of the Seely family, most of what appears in this text
is based on or taken directly from the notes that Justus wrote. The
examples and problems that are due to Justus are referenced as
Seely(1989).

There are two aspects of the current text that the author believes make
it significantly different from most texts on linear models. The first and
perhaps most meaningful difference is that whereas most textbooks on
linear models initially introduce least squares estimation and then use that
as the basis for the development of the theory of best linear unbiased
estimation, that is not the approach taken here. Rather, the theory of
linear estimation developed here is based on a well-known theorem in
mathematical statistics which basically says that if an unbiased estimator
for a parameter has zero covariance with all unbiased estimators of zero,
then the estimator is a minimum variance unbiased estimator. The reasons
for this approach are several. First, it is more statistical in nature. Second,
this approach easily allows estimation theory to be developed under the
more general assumption of a oV covariance structure where o? is an
unknown positive constant and V is a known positive definite matrix rather
than a ¢?l, covariance structure which is typically assumed in most linear
models texts. Lastly, in the author’s view, the approach used here
simplifies the proofs of many of the main results given thus making the text
easier to read. Thus the approach towards linear estimation used here has
the dual benefits of initially allowing for the consideration of a much wider
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variety of models and at the same time makes the text simpler to read. The
second major difference between this and most other texts on linear
models is found in chapter 3 of the current text. In this chapter a systematic
approach is given for studying relationships between different
parameterizations for a given expectation space. While such relationships
have been alluded to in other texts, this is the only formal approach to
studying such relationships known to the author and is primarily due to
Justus Seely (1989).

Usage of the book

The material presented in this book provides a unifying framework for
using many types of models arising in applications such as regression,
analysis variance, analysis of covariance and variance component models
to analyze data generated from experiments. The author has used the
material in the current text to teach a semester long course in linear
models at Washington State University to both undergraduate and
graduate students majoring in mathematics and statistics. The minimal
background required by students to read the text includes three semesters
of calculus, an introductory course in mathematical statistics, an
undergraduate course in linear algebra and preferably a course on
regression or analysis of variance. By having this background, the reader
should have gained familiarity with basic concepts in probability and
mathematical statistics such as multi-dimensional random variables,
expectation, covariance, point estimation, confidence interval estimation
and hypothesis testing. However, before the reader embarks on studying
this text, it is strongly recommended that the linear algebra material that
is provided in the appendices (Appendix Al through A13) be studied in
detail because the material presented in the main text is highly dependent
and freely uses the results presented there. These appendices contain a
great deal of material on linear algebra not usually contained in an
undergraduate course on linear algebra, particularly in appendices A5
through A13. In fact, the author typically spends the first three weeks
covering topics in the Appendices such as direct sums of subspaces,
projection matrices, generalized inverses, affine sets, etc. With this
knowledge in hand, the student can then proceed linearly through the
book from section to section. The first four chapters of the book comprise
what | consider to be a basic course in linear models and can be covered
easily in a semester. Chapter 5 presents some additional topics of interest
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on estimation theory that might be covered if time allows. There are a
number of problems at the end of each chapter that an instructor can
choose from to make assignments that will enhance the students’
understanding of the material in that chapter. The level of difficulty of
these problems ranges from easy to challenging. There are also a number
of numerical applied type problems in each chapter that can be assigned
to give the students a feel for dealing with data. It is my hope that by
studying this text the reader will gain an appreciation of linear models and
all its applications.



CHAPTER 1

PROBABILITY AND STATISTICAL PRELIMINARIES

1.1 Random Vectors and Matrices

In this chapter, we introduce some of the basic mathematical and
statistical fundamentals required to study linear models. We begin by
introducing the ideas of a random vector and a random matrix. To this end,
let Yi,...,Yn be a set of n random variables. In this text we only consider
continuous random variables, hence we associate with Yj,...,Yn the joint
probability density function f(ys,...,yn).

Definition 1.1.1. An n-dimensional vector Y is called a continuous random
vector if the n components of Y are all continuous random variables, i.e.,
Y= (Yy,...,Yn)" is @ continuous random vector if Ys,...,Yn are all continuous
random variables.

Because in this text we only consider continuous random variables,
whenever we refer to a random variable or a random vector it will be
assumed to be continuous, thus we shall no longer use the term
continuous to describe it. If Y is a random vector, we can use more concise
notation to describe the joint density function of Y such as f(y) or fy(y)
where the subscript on fy(y) may be omitted if the random vector Y being
considered is clear from the context.

More generally, we can extend the idea of a random vector to that of a
random matrix.

Definition 1.1.2. An mxn matrix W = (Wij)mxn is called a continuous random
matrix if its mxn components are all continuous random variables, i.e., W=
(Wjij)mxn is @ continuous random matrix if Wi, i = 1,...,m, j = 1,...,n are all
continuous random variables.
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As with random variables and vectors, we shall no longer use the term
continuous when referring to a random matrix.

1.2 Expectation Vectors and Matrices

In this section we define what we mean by the expectation of a random
vector or matrix. So let Y = (Y3,...,Yn)’ be an n-dimensional random vector
with joint density function fy(y). Then the expectation of Y, denoted by
E(Yi) or wi, is computed as

E(Yi) = wi= fjowffow yifv(y) dyi...dyn
provided the above integral exists.

Definition 1.2.1. Let Y =(Y41,...,Yn) be a random vector. Then the expectation
vector of Y, denoted by E(Y) = py =, is defined as

E(Y) = (E(Y1),...,E(Yn)) = (M1,...,1n)’
provided all expectations exist.

We extend the definition of an expectation vector to the expectation
of a random matrix.

Definition 1.2.2. Let W = (Wi)mxn be a random matrix. The expectation
matrix of W, denoted by E(W), is defined to be

E(W) = [E(Wij)]mxn
provided all expectations exist.

The expectation operator associated with random vectors and matrices
has some properties that are useful in connection with studying linear
models. Some of these properties are given in the following theorems and
corollaries.

Theorem 1.2.3. Let A = (ai))ixm, B = (bij)nxp, and C = (cij)ixo be matrices of real
numbers and let Z=(Zjj)mxn be a random matrix. Then E(AZB+C) = AE(Z)B+C.

Proof. Let W = AZB + C = (Wij))ip. Then Wy= YT Y7 aiZisbgt cij. Thus
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E(W) = (E(Wi))wp = (E[X7L1 X§=1  @irZisbsi + Cil)np
= ([XFe1 Xe=1  airE(Zrs)bsj + cif] )
= [(AE(Z)B)ij]ixp + [(cii)Ixo = AE(Z)B + C.

Corollary 1.2.4. If X = (Xa,...,Xn)" is an n-dimensional random vector and A =
(aij)mxnand C= (ci)ma are matrices of real numbers, then E(AX + C) = AE(X)+C.

Proof. Let B = Inin theorem 1.2.3 above.

Example 1.2.5. Let Y = (Y3,...,Yn)’ be an n-dimensional random vector where
the Y{s are independent random variables. Let E(Y) = 1nu where W is an
unknown parameter. Then we can write E(Y) in the form E(Y) = Xu where
X=1n Letfi=(XX)IX'Y=Y1"; Yi/n.Then E({)=E[(X’X) X' Y]=(X’X) XE(Y)=
(XX)HX X = .

Proposition 1.2.6. Let A = (aij)mxnand B = (bij)mxn be matrices of real numbers
and let X and Y be n-dimensional random vectors. Then E(AX + BY) =
AE(X)+BE(Y).

Proof. Let W = (Wi)ma = AX + BY where Wi=}"_; aiXj+X7_; bjYj. Then
E(W) = [E(Wi)lma = [E(Xj=;  aiXj+ X7y biYj)lma
=[X7=1 @E(X) + X7 biE(Y))lma

=[ X021 @iE(G)Ima+ [Xj=;  biE(Yi)ma = AE(X) + BE(Y).

1.3 Covariance Matrices

Let Y = (Y1,...,Yn) be a random vector with joint density fy(y). Assume
E(Y) = (E(Y1),...,E(Yn))" = (M1,...,kn)" exists. Then the covariance between Yi;
and Yj, denoted by cov(Yi, Yj) = oj, is computed as

Cov(¥;Yy) = o= E[(Yi- w)(Yi-w)l = [ f (yi- )y -4) ely) dya...dyn

provided the above integral exists. Also, the variance of Y;, denoted by
var(Yi) = 62, is defined as

var(Yi) = 6 = cov(Yi,Yi) = E[(Yi — wi)?].
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Definition 1.3.1. Let X = (X1,...,Xm)" and Y = (Yy,...,Yn)’ be random vectors.
Then the covariance matrix between X and Y, denoted by cov(X, Y), is
defined as

COV(X,Y) = (COV(Xi,Yj))mxn= (Gij)mxn
provided all covariances exist.
Several properties associated with covariance matrices are given below.

Proposition 1.3.2. Let X and Y be mx1 and nx1 random vectors such that
E(X) = uxand E(Y) = pv. Then

cov(X,Y) = E[(X — px)(Y — pv)’]
Proof. Observe that

COV(X,Y) = (COV(Xi,Yj))mxn = (E[(XI - HXi)(Yj - HYj)])mxn
= E[(Xi = 1) (Y= b)) Jmxn = E[(X = px) (¥ = pv)'].

Definition 1.3.3. Let Y be an nx1 random vector. Then cov(Y,Y), denoted by
cov(Y)=V = Vy, is called the dispersion or covariance matrix of Y.

Thus if Y = (Y3,...,Yn)" is an nx1 random vector, cov(Y) is an nxn matrix having
cov(Yi,Yj) as its off-diagonal elements for all i # j and var(Yi) as it diagonal
elements for i=1,...,n.

Proposition 1.3.4. Let Y be an nx1 random vector such that E(Y) = yv. Then
cov(Y) = E[(Y — pv)(Y — pv)’]
Proof. This follows directly from Proposition 1.3.2.

Suppose Y=(Y1,..,Yn)" is a random vector. IfaeR", thena’Y =Y, ai
is called a linear combination of Yi,...,Yn. Random variables of the form a’Y
are fundamental in linear model theory and it is convenient to have matrix
expressions for the mean and variance of such random variables.

Suppose Y is an n-dimensional random vector. If E(Y)= exists and a €R",
then
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E@Y)=EQL; aY)=Xl; aE(Y)=XL, am=apn

An expression for the variance can also be obtained whenever cov(Y;,Yj)
exists for all i,j by observing that

var(@’¥) =var(XiL; aVYi)=Xi.; Xj=; aajcov(Y.Yj) =a’cov(Y)a.

Proposition 1.3.5. Suppose Y is an n-dimensional random vector such that
E(Y) = n and cov(Y)=V exists. Then:

(a) cov(a’¥,b’Y) = a’Vb for all a,b € R™.
(b) V is a positive semi-definite matrix.
(c) V is the only matrix satisfying statement (a).
Proof. (a) To prove (a), observe that
cov(a’¥,b’Y) = E[(a’Y — E(a'Y))(b’Y — E(b’Y))]
=E[(a’Y - a’E(Y))(b"Y — b’E(Y))]
= E[(a’Y-a’p)(b"Y- b'p)] = E[(@"(Y — p)b’(Y — p)]
=E[(ZL:  alYrm)(Xi=  bilYrw))]
=E[(Xey  X7=q aibi(Yi- pi)(Yi- w)l
=Xie1 2= abE[(Yi- pw)(Yi- )]
=¥, S, abcov(Yi,Y)=a'Vb.

(b) For (b), note that cov(Y;,Y;) = cov(Y;,Yi) implies V =V’ and for any a € R",
a’Va=var(a’yY) implies a’vVa = 0.

(c) For (c), suppose G also satisfies the condition. Then a’Vvb = a’Gb for all
a,b eR", hence a’(V — G)b =0 for all a,b € R" which implies V = G.

The covariance matrix is a very useful tool for expressing variances and
covariances of linear combinations of random vectors.
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Example 1.3.6. Let Y and X = 1,, be as in Example 1.2.5 and suppose Yy,...,Yn
have a common variance o2. Clearly cov(Y) exists and is equal to o2l,.. Thus,
Proposition 1.3.2 (a) implies cov(a’Y,b’Y) = o?a’b for all a,b € R". In
particular, let {i be as in Example 1.2.5. Then we have that {i =t’Y where t=
X(X’X) 1= nt1, and

var(fl) = var(n'1,’Y) = n''1,'6%l,1,n "= o?/n.

Lemma 1.3.7. Suppose X and Y are mx1 and nx1 random vectors, A and B
are Ixm and pxn matrices of real numbers and a and b are Ix1 and px1
vectors of real constants. Then

cov(AX + a,BY + b) = Acov(X,Y)B'.

Proof. Let U = AX + a and let V = BY + b. Then by corollary 1.2.4, E(U) =
AE(X)+ a and E(V) = BE(Y) + b and by proposition 1.3.2 and theorem 1.2.3,

cov[AX + a, BY + b] = cov[U,V] = E[(U - E(U))(V — E(V))']
= E[(AX + a — AE(X) — a)(BY + b — BE(Y) - b))’]

= E[A(X - E(X))(B(Y — E(Y)))'] = E[A(X — E(X))(Y — E(Y))'B’]
= AE[(X — E(X))(Y — E(Y))']B’ = Acov(X, Y)B".

Corollary 1.3.8. Let Y be an nx1 random vector, A be an Ixn matrix of real
numbers and let a be an Ix1 vector of real constants. If cov(Y) =V, then

cov(AY + a) = cov(AY) = AVA'.

Proof. By lemma 1.3.7, cov(AY + a) = cov(AY + a,AY + a) = Acov(Y,Y)A’ =
Acov(Y)A’ = AVA’ = cov(AY).

The covariance matrix of a random vector has many similarities with
the variance of a random variable. For example, it is nonnegative in the
sense of Proposition 1.3.5. As another example, if Y and Z are independent
nx1 vectors, then cov (Y) = <COV(Y) Onn

Z Onn  cov(Z)
and c € R", using corollary 1.3.8, we have

). Now, if ais a real number

cov(aY +Z + c) = cov(aY + Z) = cov [(aln,ln) (‘Z{)] = (aly, In) cov (‘Z() (an, 1n)
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=a2cov(Y) + cov(Z) (1.3.9)

as long as cov(Y) and cov(Z) both exist. Additional properties of cov(.) are
discussed in the problems at the end of this chapter.

Example 1.3.10. (Two variance component model) Suppose Yj; = i + bi + ejj,
i,j=1,2, where p is an unknown parameter and bi,b,eis,...e2 are
independent random variables having zero means. Also assume the bi have
variance on? and the ejj have variance % Set Y = (Y11,Y12,Y21,Y22), X =
(1,1,1,1), e = (e11,e12,€21,€22)’,

#=(0 0 1 1)

and b = (b1,b2)’. Then Y can be expressed in matrix form as Y = X +Bb + e.
Notice that b and e are independent random vectors, that X is a constant
vector, that cov(b) = ov? Iand cov(e) = 62 la. From (1.3.9) we conclude that

cov(Y) = cov(Xp + Bb + e) = cov(Bb + e) = cov(Bb) + cov(e)
= Bcov(b)B’ + 62 la= 6°ls + 0,°BB’.

Also notice that E(Y) = Xu since b and e both have expectation zero. In this
example, o and ob? are called variance components.

The expression given for cov(Y) in proposition 1.3.4 in terms of a
random matrix also leads to a convenient form for the expectation of a
guadratic form.

Definition 1.3.11. Suppose Y = (Y3,..,Yn) is a random vector and
A=A’=(aij)nxn. Then

YAY =iy X aiYiy
Is called a quadratic formin Y.

Proposition 1.3.12. Let Y = (Y1,...,,Yn)’ be a random vector with E(Y) = p and
Cov(Y)=V. Let A = A’= (ajj)nxn. Then

E(Y'AY) = W/ApL + trAV.
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Proof. To begin, observe that Y'AY = (Y-u)’A(Y-p) + W' AY + YA - W’ Au. Now
observe that since A=A’ Y'Ap= (Y'Au) = WA’Y = @AY and E(Y'Ap) =
E(W'AY)=W AE(Y)= WA, we have that

E(Y’AY) = E[(Y-)’A(Y-p) + WAY + Y Ap - WAU]

= E[(Y-p)’ A(Y-p)] + E(WAY) + E(Y’Ap) - E(WAW)

=E[(Y-p) A(Y-p)] + WAL + WA - WAl

=ERin Xji=1 ai(Yi- p)(Yi- )l + WAp

=Xim1 Xyer @iE(Yi- w)(Yi- ) + pAU

=Xim1 2j=1 i cov(Y,Y)) + WAL =trAV + WAL

Corollary 1.3.13. Let W =Y - b where E(Y) =, cov(Y) =V and b e R". If A =A’
is a matrix of real numbers, then cov(W)= Cov(Y) and

E(WAW) = trAV + (1 - b)’A(u - b).

The problems at the end of this chapter related to this section explore
other aspects of the covariance operator. We strongly suggest that the
reader go through these problems and at the very least become familiar
with the properties discussed.

1.4 The Multivariate Normal Distribution

In this section, we introduce the multivariate normal distribution and
investigate some of its properties. For a brief review of some of the

distribution theory used in this section, the reader should consult Appendix
Al4.

Let Z be a standard normal random variable and recall the following
properties associated with Z:

(1) The probability density function for Z is, for all z € R,

f(z) = (1/2m)Y2exp[(-1/2)22].
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(2) E(z) = 0.

(3) var(z) = 1.

(4) The moment generating function (m.g.f.) for Z is, for all t e RY,
M.(t) = exp[(1/2)t2].

Now let Zj,...,Zn be mutually independent standard normal random
variables and let Z = (Zi,...,Zn)’. Then some easily established facts
concerning Z are the following:

(1) The joint density function for Z is, for all z € R",
fa(z) = [T, fz(z) =TTk, (1/2m)*?exp((-1/2)z?)
= (1/2m)exp((-1/2)(Xi=,  z7)
= (1/2m)"Pexp((-1/2)(2'1 n2)).
(2) E(Z) = On.
(3) cov (Z) = In.
(4) The m.g.f. for Zis, for all t € R",
Mz(t) =TI, Mz(t) =TT,  expl(1/2)t?]
= exp[(1/2)(t:2 +..+ t?)] = exp[(1/2)t'Int].
Definition 1.4.1. We say the random vector X = (Xy,...,Xn)’ follows an n-
dimensional multivariate normal distribution of rank p if X has the same
distribution as
AZ+b
where A is some nxn real matrix with r(A) = p, b e R"and Z = (Zy,...,Z»)’ is an

n-dimensional random vector whose components Zi are independent
standard normal random variables.
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Proposition 1.4.2. Suppose X satisfies definition 1.4.1. Then
(a) E(X) = b.
(b) cov(X) =V where V = AA” and r(V) = r(A) = p.

Proof. Since X has the same distribution as AZ + b, it follows that E(X) =
E(AZ+ b) and that cov(X) = cov(AZ + b). These results now follow after
applying corollary 1.2.4 and corollary 1.3.8 to AZ + b.

If X satisfies definition 1.4.1, we denote it by “X~N,(b,V) of rank p”
where V = AA” and p = r(A) = r(V). If V > 0, we will generally omit the rank
portion of the preceding statement. We note that if Z is as in definition

1.4.1, then Z~N(0O,, |n). We now investigate some of the properties
associated with multivariate normal distributions.

Proposition 1.4.3. An nx1 random vector X~N,(b,V) of rank p if and only if
its m.g.f. has the form

Mx(t) = exp(t’b + (1/2)t'Vt)
wherebeR", V>0andr(V)=p
Proof. Suppose X~Ny(b, V). Then X satisfies definition 1.4.1 and has the
same distribution as AZ +b where A is an nxn real matrix of rank p, b € R"
and Z is an n-dimensional random vector whose components are
independent standard normal random variables. Since Z has a m.g.f, so
does AZ + b and since X and AZ + b have the same distributions, they have
the same m.g.f. Butthe m.g.f. of Ziis
Mz(t) = E(exp(t’Z)) = exp((1/2)t'I t).
Thus,
Mx(t) = E[exp(t'X)] = Maz+b(t) = E[exp(t’(AZ+b))] = E[exp(t'AZ + t'b)]

= exp(t’b)E[exp((A’t)’'Z)] = exp(t’b)Mz(A’t)

= exp(t’b)exp[(1/2)t’AA’t] = exp[t’b+(1/2)t'Vt]
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where V=AA’.
Conversely, suppose X has m.g.f. Mx(t) = exp[t'b + (1/2)t'Vt] where r(V)=
p. Since V 20, we can find an nxn real matrix A of rank p such that V = AA’.
Now, as in the proof above, it follows that the mgf of AZ + b is
exp[t’b + (1/2)t'Vt]
where V = AA’, the same as X. Because the m.g.f. uniquely determines the
distribution (when the m.gf. exists in an open n-dimensional

neighborhood containing On), X has the same distribution as AZ + b.

Proposition 1.4.4. Let X~Nn(W,V), let C be a gxn real matrix and let a € R%.
Then

Y = CX + a~Nqg(Cpt + 3, CVC') of r(CVC’).
Proof. Observe that
My(t) = E[exp(t'Y)] = E[exp(t'(CX + a))] = E[exp(t'CX + t'a)]
=exp(t'a)E[exp((C't)’X)]
= exp(t'a)Mx(C't) = exp(t'a)exp[(C't) u + (1/2)(C't)'V(C't)]
= exp[(C'typ + t'a + (1/2)'CVC't]
= exp[t’(C + a) + (1/2)CVC't].

Now observe that this last expression for My(t) is the same as that of a
random vector Y~Ngq(Cp+a, CVC’) of r(CVC’).

Y
Corollary 1.4.5. LetY = (Y1> ~ Nn(W,V) where Y1 and Y, are nix1 and
2

n,x1 random vectors, respectively. Correspondingly, let

V. V.
= (M andV=( 1 12)
" (“z) Vor Vo
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where E(Y1) = p1, E(Y2) = W2, cov(Y1) = Vi1, cov(Yz) = Vi and
COV(Y1,Y2)= V12 = Vz1’. Then Y1 ~ Nn1(|J.1, V11).

Proof. In Proposition 1.4.4, take C=(ln,, On,n,).

Proposition 1.4.6. Suppose Y~Nn(l,V) where Y, lLand V are partitioned as
in corollary 1.4.5. Then Y1 and Yz are independent if and only if cov(Y1,Y2)=
V12=0nn,.

Proof. By Corollary 1.4.5, Y1~ Nn, (11,V11) and Y2~ Nn,(12,V22) and Y1 and Y2
are mutually independent if and only if My(t) = My, (t1) My, (t2). Now, observe

that by Proposition 1.4.3,

My, (t1) = exp[t’p1 + (1/2)t’Viita] and My, (tz2) = exp[t2’p2 + (1/2)t2'Vaatz]

and
_ tl _ ’ ’ 5 ’ ’ Vll VIZ) tl
) = (i) = explies, ) (1)) + /2t (2 (1)
= expty’y1 + t2'p2 + (1/2)(t1' Viats + t1'Vaota +t2’Vaats + t2'Vasta)].
Therefore, Y1 and Y2 are independent if and only if t1'Viaot2 + t2’Vait1 = 0 for

all possible values of t1 and t2. But since t2'Vait: = (t2'Vait1) = t1'Viota =
(t2’V12t2)’, the condition is that t1'Vi2t2 = 0 for all t1 and t, i.e., that V12 =

Onlnz.
Proposition 1.4.7. Suppose Y~Nn(W,V) where V>0. Then

fly) = (2r) 2| V|2 exp[-(1/2)(y - W'V Hy - p)]
for all y e R" and where |V| denotes the determinant of V.
Proof. Since Y~Nn(W,V), it has the same distribution as AZ + pu where
2=(Z3,...,Zn)" and the Z are all independent standard normal random
variables, pLe R", Aiis an nxn real matrix with r(A) =nand V= AA’. Now recall

that, for allzeR",

fo(z) =[Tfey  fz(z) =TI, (2n)™2exp[-(1/2)z?)]
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=(2r) " Jexp[(1/2)2’Inz].
As indicated in Appendix A14
fuly) = (1/1A]  )fz(A™(y-p)
= 2n)™2(1/]A] exp [(1/2)(y - w) AT 1AMy - W]
= (2m) ™2 [V expl-(1/2)(y - W'V Hy - w)l.

Note. When n =1, the expression given above for the density function of Y
reduces to the density function of a 1-dimensional normal random
variable.

1.5 The Chi-Squared Distribution

In this section we consider properties of central and non-central chi-
squared distributions which play fundamental roles in tests of hypotheses
in linear models.

Definition 1.5.1. Let Y~Ny(l, Iv). Then the random variable Y'Y =Y7_; Y
is said to follow a non-central chi-squared distribution with v degrees of
freedom (d.f.) and non-centrality parameter A = p’p.

The reader should observe that when A = p’u = 0, we get the well -
known central chi-squared distribution with v d.f which can be expressed
as the sum of v squared independent standard normal random variables.
We shall use notation such as X~x%(v,A) to indicate that the random
variable X follows a chi-squared distribution with v d.f. and non-centrality
parameter A and use the notation X~x?(v) to denote a random variable X
which follows a central chi-squared distribution with v d.f..

Proposition 1.5.2. If Y~X?(v,A), then the moment generating function for Y
is My(t) = (1/(1 - 2t))™? exp[At/(1 - 2t)] for all t<1/2.

Proof. Let Z~ N(0,1) and let p € R%. Then by definition 1.5.1, (Z + u)>*~x3(1,\)
where A = p%. The m.g.f. of (Z+p)%is

Mg w?(t) = Elexp(t(z + w)2)] =[7  explt(z + )] f(2) dz
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= (2n) " [ exp [t(z + W)’] exp[-z*/2] dz
= (2n) M2 exp [-((1/2) — t)z% + 2utz + p’t]dz

= (2n) 2 [ exp [-((1/2) = t)(z - Q)? + p’t + (2p2t%/(1 — 2t))]dz
(with Q = 2ut/(1 - 2t))

= exp[p2t + (2p2t%/(1 - 2t))] (2r) /2 [exp [-(z — Q)%/2(1 — 2t)*] dz

= exp[p’t + (2p°t%/(1 - 2t))](1 - 2t) /2
X (2,-[)-(1/2)(1 - zt)(l/Z)f exp [-(z— Q)2/2(1 _ 2t)'1] dz

= exp[p2t + (2p2t/(1 - 2t))1(1 - 2t)*2 x 1 = exp[u2t/(1 - 2t)](1 — 2t)*/2).
Thus again by definition 1.5.1, if Xi= (Zi+ w)?, i = 1,...,v and the Z/s are all

independent standard normal random variables, then a ¥?(v,A) random
v

variable havingA=Y7_; u2isgiven by x*(vA)=XY_, Xi=XY, (ZHw)?
Because all terms are mutually independent and using the expression for
Mz +w2(t) obtained above, we have that

Mawn(t) = [Tfz1 Mi+w(t) =TTz (1-2t)"2 explut/(1 - 2t)]

= (1- 2072 exp[(t/(1-2t) Ty W] = (1 - 261%2 exp [tM/(1 - 21)]

where A=Y7_; u?. Since My (t) has the form of a r.v. W ~x3(v,A), we
have the desired result.

Note: (1) If Y~¥?(v,A), one can use the m.g.f. given in Proposition 1.5.2 to
show that E(Y) = v + A and that var(Y) = 2v + 4A.

(2) When A = 0, the m.g.f. of the non-central chi-squared distribution
reduces to that of Y~X?(v) which is My(t) = (1/(1 - 2t))™2,

Proposition 1.5.3. Suppose Qq,..,Qr are mutually independent and
Q~x(vih) fori=1,..,r.IfQ=Y_; Q,then Q~x*v,A\) wherev=Y7_, v
andA=Yi_; A\

Proof. Since Q = Qu+...+Qr and the Q; are all independent,

Ma(t)=ITey  Maft) =Ty (1/(1-26)*exp[th/(1 - 2¢)]



Probability and Statistical Preliminaries 15

= (1/(1 - 2t))™? exp[th/(1 - 2t)]

wherev=Y7_, wviandA=Y7_; A. Since Mq(t) has the form of a *(v,A)
r.v., we have the desired result.

1.6 Quadratic Forms in Normal Random Vectors

Suppose X = (Xy,...,Xn)" is @ random vector and A =A’ = (aj))nxn is @ matrix
of real constants. Then, as defined in  Section 1.3,
X'AX=Yi_1 Xj-1 aiXX;is called a quadratic form. In this section, we
consider quadratic forms in which X~Nn(l,V) as well as the properties of
such quadratic forms.

Proposition 1.6.1. Suppose U~Np(l,>) and let A = A’ satisfy ASA = mA where
nt > 0is a scalar. Then

(1/m) UAU~X*(r(A),A)
where A = (1/m)W’Au

Proof. Let s = r(A) and observe that A>0. So by theorem A10.12, we can find
a pxs matrix H such that A = HH’ and r(H) = s. Then

U'AU = UHH'U = (H'U)'(H'U) = Y'Y
where Y = H'U~Ns(H’y, H’SH). Let L = (H’H)*H’ and observe that
H'SH = (H'H)TH’HH’SH(H’H)(H’H) = LASAL’ = LrAL’
= U (H’H) *H HH H(H’H) ™ = muls

which implies Y=H'U~Ns(H’p,mtls) and (1/m)2Y~Ns((1/m)Y2H’w,1s). Hence,
by definition 1.5.1,

(1/m)V2y’ (1/m)V2Y = (1/m)Y’Y = (1/m)U'HH'U = (1/m)UW AU~X2(s,\)
where s = r(A) and A = (1/m)Y2WHH p(1/n) 2 = (1/m) WA
Corollary 1.6.2. Let Y~Nn(u,tln) where m > 0. If A= A’ = A?, then

(1/m)Y’ AY~x*(k,\)
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where k = trA = r(A) and A = (1/m)’Ap.

Proof. This follows from proposition 1.6.1 since AmlnA = A2 = 1tA and from
proposition A11.11 since A2 = A implies k = trA = r(A).

Proposition 1.6.3. Let A=A’ and V = BB’ where B is an nxn matrix. Set T =
B’AB. Then the following statements hold:

(@) trT = tr(VA).
(b) IFT2=T, then tr T = r(T).
(c) r(T) = r(VAV).
(d) T2=T if and only if V(AVA-A)V = Onn.
Proof. (a) By proposition A10.14 trT = tr(B’AB) = tr(ABB’) = tr(AV) = tr(VA).
(b) This is part of proposition A11.11.
(c) Using proposition A8.2 and proposition A6.2, we have that

r(VAV) = r(BB’AV) = r(B’AV) - dim(R(B’AV) N N(B))

= r(B’AV) - dim(R(B’AV) N R(B’)) = r(B’AV) - 0

= r(VAB) = r(BB’AB) = r(B’AB) - dim[R(B’AB)NN(B)]

=r(B’AB) - dim[R(B’AB) N R(B’)!] = r(B’AB)-0 = r(T).
(d) Assume T2 = T. Then (B’AB)(B’AB) = B’AB and BB’ABB’ABB’ = BB’ABB’
which implies that VAVAV = VAV which yields the desired result.

Conversely, assume VAVAV = VAV. Then BB’AVAV-BB’AV = Onn which
implies that B[B’AVAV-B’AV]= On and

R(B’AVAV-B’AV) c N(B)NR(B’) = R(B’)*NR(B’) = On.
Hence B’AVAV - B’AV = Onn. But this implies that
VAVAB - VAB = BB’AVAB — BB’AB = B(B’AVAB-B’AB) = Onn.

Hence, as above, that
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R(B’AVAB — B’AB) C N(B) N R(B’) = R(B’)* N R(B’) = On
and that B’AVAB —B’AB = B'ABB’AB — B'AB = T2— T = Opn.

Proposition 1.6.4. Suppose Y~Ny(u,1tV) where t >0,V =0 and u € R(V). If
A=A’ and V(AVA-A)V = 0w, then (1/m)Y’ AY~x?(k,A) where k = tr(VA) and A=
(1/m)wAp.

Proof. Since V= 0, by theorem A10.10, we can find a vxv matrix B such that
V =BB’. Set T = B’AB. Then T = T’ and by proposition 1.6.3, it follows that
T2=T. Also, since u € R(V) = R(BB’) = R(B), we can find & such p = BS. Let
X~Ny(6,mln). Then BX~Ny(BS, mBB’) = Ny(u,mtV). Now let Y = BX. Then,
(1/m)Y’AY = (1/T)X’B’ABX = (1/m)X’TX where T = T'= T2 Thus, by corollary
1.6.2,

(1/M)Y’AY = (1/m)X'TX~ x%(k,\)
where k = tr(T) = tr(VA) and A = (1/m)8°T6 = (1/m1)8’B’ABS = (1/m) W ApL.

Corollary 1.6.5. The preceding proposition remains true if A = A’#* Ow and
(VA)?2= VA,

Proof. Since (VA)? = VA, we have that VAVAV = VAV and the result follows
by proposition 1.6.4.

Proposition 1.6.6. Suppose Y~Np(l,V) where V > 0. Let Qi = Y'A)Y for i =
1,..,t where A= A/’ and let Uo= B’Y where B is a pxs matrix. If AiVA;= 0pp and
AVB = 0ps for all i#j, i,j = 1,..,t, then Uo,.Qa,...,.Qt are all mutually
independent.

Proof. For k = 1,...,t observe that Qi= Y'AiY = YAA'AY = U’AUiwhere Ui=
AY, thus each Q; is a function of Ui for i=1,...,t. So to show that the Q; are
all independent, it is enough to show that the U; are all independent. To
this end, let Uo be as defined above and let Uk = AkY for k=1,...,t. Now
consider the matrix M=(B,A7,...,,A/)" and let W = MY = (Y’B,Y’AY,...,.Y’'A/)".
By proposition1.4.4, W = (Uo’,U?’,...,Ut’)’ ~Nn(Mp, MVM’) where n = tp +s.
But also from proposition 1.4.6, we know that the Ui, i = 0,...,t are
independent if and only if cov(U,U;) = Opp for all i #j, i,j = 1,..,t and
cov(Uo,Ui) = 0sp fori=1,...,t. But by corollary 1.3.7, cov(U;,U;) = cov(AiY,AjY)=
AVA, i #j,i,j=1,..,tand cov(Uo,Ui) = cov(B’Y,AiY) = B’'VAifori = 1,...t. Thus
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by proposition 1.4.6, the U;, i = 0,...,t are all independent if and only if the
conditions of the proposition hold.

We now momentarily diverge and give two lemmas concerning linear
algebra which are needed to prove the main result of this section.

Lemma 1.6.7. Suppose H and G are nxn symmetric matrices such that
r(H+G)=r(H)+ r(G) and (H + G)2=H + G. Then H>=H, G?= G and HG = GH =
Onn.
Proof. Note that
r(H) + r(G) = r(H + G) = dim R(H + G) < dim[R(H) + R(G)]
= dim[R(H)] + dim[R(G)] - dim[R(H)NR(G)] < r(H) + r(G)

which implies that dim[R(H)NR(G)] = 0, hence that R(H)NR(G) = On. Now
consider (H + G)?= H>+HG+GH+G? = H+G which we can rewrite as

H>+HG-H=G-GH- G

This latter expression implies that R(H*+HG-H) < R(H)NR(G) = On which
implies that H2— H = HG and that, since H and G are symmetric, H2- H = GH.
Thus R(H2-H) < R(H)NR(G) = 0n and H%-H = Onn. But we also have R(GH) c
R(H)NR(G) = 0, hence GH =0na. Similarly, it can be shown that G2= G and
HG= Onn.

Lemma 1.6.8. Suppose Aj,..., At are nxn symmetric matrices with ranks
ry,...,r, respectively. If In= A1+...+A, then the following are equivalent:

(a) AiAj= Onn for all i # j.

(b) AZ=Aifori=1,..t.

(© X, ri=n.

Proof. (a) = (b) Note that Ail.= Ai(A1+...+A¢) = A, hence A = A.
(b) = (c) By lemma A11.11, A*= Aiimplies that trA i= ri.So

n=tr(ln) =tr(Xfe; A)=Xi, tr(A)=XL, n.



