The Principles and Practice of Heat Transfer
The Principles and Practice of Heat Transfer

By

Ali H. Tarrad
This book is dedicated to my wife Layla, who was always there for me, even on the tough days. Her steadfast commitment, kindness, devotion, and endless support will not be forgotten.
TABLE OF CONTENTS

Useful Information ... xii
 Unit Conversion Factors ... xii
 Mathematical Multiple Symbols .. xiii

List of Symbols ... xiv

Abbreviations ... xix

List of Tables .. xx

List of Figures ... xxiv

Acknowledgments ... xxxiii

Preface .. xxxiv

Chapter 1 .. 1
HEAT TRANSFER MODES .. 1
 1.1 Introduction.. 1
 1.2 Conduction Heat Transfer Mode .. 2
 1.2.1 A Plane Wall .. 2
 1.2.2 A Cylindrical Conduit ... 8
 1.2.3 A Spherical Object ... 10
 1.3 Convection Heat Transfer .. 13
 1.3.1 Forced Convection .. 13
 1.3.2 Natural Convection ... 15
 1.3.3 Convective Heat Transfer Rate ... 15
 1.4 Radiation Heat Transfer ... 19
 1.5 Conduction-Convection Combination ... 21
 1.6 Overall Heat Transfer Coefficient .. 23
 1.7 Conclusion ... 27
References .. 27
Table of Contents

7.6 Flow Boiling Heat Transfer Coefficient ... 251
7.6.1 Single Phase .. 252
7.6.2 Two-Phase Flow Boiling ... 253
7.6.3 Typical Experimental Data .. 272
7.7 Critical Heat Flux ... 280
7.7.1 Critical Heat Flux Mechanism .. 280
7.7.2 Critical Heat Flux Correlations .. 282
7.7.3 Typical Experimental Work .. 285
7.8 Conclusion .. 293
References ... 294

Chapter 8 ... 303
CONDENSATION HEAT TRANSFER .. 303
8.1 Definition .. 303
8.2 Heat Transfer Rate .. 305
8.3 Measures Influence Condensation Process .. 311
8.4 Condensation Flow Mechanism .. 313
8.4.1 Internal Condensation .. 314
8.4.2 External Condensation ... 323
8.5 Condensation Heat Transfer Correlations .. 329
8.5.1 Condensation Inside Tubes .. 329
8.5.2 Condensation Outside Tubes .. 337
8.6 Typical Experimental and Theoretical Research .. 340
8.7 Correlations Application .. 351
8.8 Conclusion .. 367
References ... 368

Chapter 9 ... 377
HEAT EXCHANGER TECHNOLOGY .. 377
9.1 Definition .. 377
9.2 Introduction ... 377
9.3 Types of Heat Exchangers ... 381
9.3.1 Double-pipe Heat exchanger ... 382
9.3.2 Immersion Coil Heat exchanger ... 385
9.3.3 Shell and Tube Bundle ... 388
9.3.4 Air-Cooled Heat Exchangers .. 393
9.3.5 Plate Heat Exchanger .. 396
9.3.6 Miscellaneous Architectures .. 397
9.4 Economic Issues ... 397
9.5 Thermal Design of Heat Exchangers ... 398
9.5.1 Mean Temperature Difference ... 400
USEFUL INFORMATION

Unit Conversion Factors

Useful conversion factors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>SI to English conversion</th>
<th>English to SI conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>$1 , m = 3.2808 , ft$</td>
<td>$1 , ft = 0.3048 , m$</td>
</tr>
<tr>
<td>Area</td>
<td>$1 , m^2 = 10.7639 , ft^2$</td>
<td>$1 , ft^2 = 0.092903 , m^2$</td>
</tr>
<tr>
<td>Volume</td>
<td>$1 , m^3 = 35.3147 , ft^3$</td>
<td>$1 , ft^3 = 0.028317 , m^3$</td>
</tr>
<tr>
<td>Velocity</td>
<td>$1 , m/s = 3.2808 , ft/s$</td>
<td>$1 , ft/s = 0.3048 , m/s$</td>
</tr>
<tr>
<td>Mass</td>
<td>$1 , kg = 2.2046 , lbm$</td>
<td>$1 , lbm = 0.45359237 , kg$</td>
</tr>
<tr>
<td>Density</td>
<td>$1 , \frac{kg}{m^3} = 0.06243 , \frac{lbm}{ft^3}$</td>
<td>$1 , \frac{lbm}{ft^3} = 16.018 , \frac{kg}{m^3}$</td>
</tr>
<tr>
<td>Force</td>
<td>$1 , N = 0.2248 , lb_f$</td>
<td>$1 , lb_f = 4.4482 , N$</td>
</tr>
<tr>
<td>Pressure</td>
<td>$1 , \frac{N}{m^2} = 1.45038 \times 10^{-4} , \frac{lb_f}{in^2}$</td>
<td>$1 , \frac{lb_f}{in^2} = 6894.76 , \frac{N}{m^2}$</td>
</tr>
<tr>
<td>Heat, Energy, work</td>
<td>$1 , kJ = 0.94783 , Btu$</td>
<td>$1 , Btu = 1.05504 , kJ$</td>
</tr>
<tr>
<td>Heat transfer rate, Power</td>
<td>$1 , W = 3.4121 , \frac{Btu}{h}$</td>
<td>$1 , \frac{Btu}{h} = 0.29307 , W$</td>
</tr>
<tr>
<td>Heat flux</td>
<td>$1 , \frac{W}{m^2} = 0.317 , \frac{Btu}{h., ft^2}$</td>
<td>$1 , \frac{Btu}{h., ft^2} = 3.154 , \frac{W}{m^2}$</td>
</tr>
<tr>
<td>Specific energy, Specific enthalpy</td>
<td>$1 , \frac{kJ}{kg} = 0.4299 , \frac{Btu}{lbm}$</td>
<td>$1 , \frac{Btu}{lbm} = 2.326 , \frac{kJ}{kg}$</td>
</tr>
<tr>
<td>Specific heat capacity</td>
<td>$1 , \frac{kJ}{kg., K} = 0.2384 , \frac{Btu}{lbm., ^\circ F}$</td>
<td>$1 , \frac{Btu}{lbm., ^\circ F} = 4.1869 , \frac{kJ}{kg., K}$</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>$1 , \frac{W}{m., K} = 0.5778 , \frac{Btu}{h., ft., ^\circ F}$</td>
<td>$1 , \frac{Btu}{h., ft., ^\circ F} = 1.7307 , \frac{W}{m., K}$</td>
</tr>
<tr>
<td>Heat transfer coefficient</td>
<td>$1 , \frac{W}{m^2., K} = 0.1761 , \frac{Btu}{h., ft^2., ^\circ F}$</td>
<td>$1 , \frac{Btu}{h., ft^2., ^\circ F} = 5.6782 , \frac{W}{m^2., K}$</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>$1 , \frac{kg}{m., s} = 0.672 , \frac{lbm}{ft., s}$</td>
<td>$1 , \frac{lbm}{ft., s} = 1.4881 , \frac{kg}{m., s}$</td>
</tr>
<tr>
<td>Kinematic viscosity, thermal diffusivity</td>
<td>$1 , \frac{m^2}{s} = 10.7639 , \frac{ft^2}{s}$</td>
<td>$1 , \frac{ft^2}{s} = 0.092903 , \frac{m^2}{s}$</td>
</tr>
</tbody>
</table>
Temperature

\[T \, (^\circ C) = (^\circ F - 32) \times \frac{5}{9} \]
\[T \, (^\circ F) = \left(^\circ C \times \frac{9}{5} \right) + 32 \]

Temperature difference

\[\Delta T \, (^\circ C) = \Delta T \, (^\circ F) \times \frac{5}{9} \]
\[\Delta T \, (^\circ F) = \Delta T \, (^\circ C) \times \frac{9}{5} \]

Mathematical Multiple Symbols

Decimal multiples and sub-multiples of SI units

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Equivalent</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>zetta</td>
<td>Z</td>
<td>10^{21}</td>
<td>deci</td>
<td>d</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>exa</td>
<td>E</td>
<td>10^{18}</td>
<td>centi</td>
<td>c</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>10^{15}</td>
<td>milli</td>
<td>m</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>tetra</td>
<td>T</td>
<td>10^{12}</td>
<td>micro</td>
<td>µ</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10^{9}</td>
<td>nano</td>
<td>n</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10^{6}</td>
<td>pico</td>
<td>p</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10^{3}</td>
<td>femto</td>
<td>f</td>
<td>10^{-15}</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10^{2}</td>
<td>atto</td>
<td>a</td>
<td>10^{-18}</td>
</tr>
<tr>
<td>deca</td>
<td>da</td>
<td>10^{1}</td>
<td>zepto</td>
<td>z</td>
<td>10^{-21}</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Design parameter</td>
</tr>
<tr>
<td>a_1, a_2, a_3</td>
<td>Coefficients in Eq. 3.39</td>
</tr>
<tr>
<td>A</td>
<td>Area, (m2)</td>
</tr>
<tr>
<td>b</td>
<td>Design parameter</td>
</tr>
<tr>
<td>$B.C.$</td>
<td>Boundary condition</td>
</tr>
<tr>
<td>C, C_1, C_2</td>
<td>Constants in equations</td>
</tr>
<tr>
<td>C_{C-N}</td>
<td>Crank–Nicolson coefficient defined in Eq. A.21.b</td>
</tr>
<tr>
<td>C_{FZ}</td>
<td>Forster-Zuber coefficient defined in Eq. 7.27</td>
</tr>
<tr>
<td>CS</td>
<td>Control system</td>
</tr>
<tr>
<td>CV</td>
<td>Control volume</td>
</tr>
<tr>
<td>cp</td>
<td>Specific heat, (kJ/kg.$^\circ$C)</td>
</tr>
<tr>
<td>d</td>
<td>Diameter, (m)</td>
</tr>
<tr>
<td>D</td>
<td>Diffusion coefficient, (m2/s)</td>
</tr>
<tr>
<td>e</td>
<td>Total energy per unit mass, (kJ/kg)</td>
</tr>
<tr>
<td>E</td>
<td>Parameter defined in Eq. 8.32.b</td>
</tr>
<tr>
<td>f</td>
<td>Friction factor</td>
</tr>
<tr>
<td>fp</td>
<td>Fin pitch, (m)</td>
</tr>
<tr>
<td>F</td>
<td>Convective factor multiplier in Eq. 7.39.a or parameter defined elsewhere</td>
</tr>
<tr>
<td>F_c</td>
<td>Mixture correction factor (F_c) is equal to (1.0) for pure fluids and azeotropes; it is less than (1.0) for mixtures, Eq. 6.16</td>
</tr>
<tr>
<td>F_e</td>
<td>Fin efficiency equals (1.0) for the plain tube and is close to unity for the finned tube structure, Eq. 6.16</td>
</tr>
<tr>
<td>F_t</td>
<td>Temperature difference correction factor</td>
</tr>
<tr>
<td>Fr</td>
<td>Froud number</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational converging factor</td>
</tr>
<tr>
<td>G</td>
<td>Mass velocity, (kg/m2 s)</td>
</tr>
<tr>
<td>Ga</td>
<td>Galileo number</td>
</tr>
<tr>
<td>h</td>
<td>Heat transfer coefficient, (W/m2 K)</td>
</tr>
<tr>
<td>h_{fo}</td>
<td>Fouling coefficient, (W/m2 K)</td>
</tr>
<tr>
<td>H</td>
<td>Heat exchanger height or vertical tube length, (m)</td>
</tr>
<tr>
<td>$H.F$</td>
<td>High flow velocity</td>
</tr>
<tr>
<td>$H.T$</td>
<td>High-temperature</td>
</tr>
<tr>
<td>i</td>
<td>Fluid specific enthalpy, (kJ/kg)</td>
</tr>
<tr>
<td>i_{fg}</td>
<td>Latent heat of vaporization, (kJ/kg)</td>
</tr>
</tbody>
</table>
\(j \) Colburn j-factor defined by Eq. 5.65, or y-axis node coordinate
\(J_{TP} \) The mixture volumetric flux
\(k \) Thermal conductivity, (W/m K)
\(K_1 \) Constant defined in Eq. 5.34.c
\(K_2 \) Constant defined in Eq. 5.34.d
\(l \) Length, (m)
\(\ell \) Height of circular fin or plate fin length in the flow direction, (m)
\(L \) Front length of heat exchanger or tube length, (m)
\(L.T \) Low-temperature
\(m \) Index in equations or fluid mass
\(\dot{m} \) Mass flow rate, (kg/s)
\(n \) Index in Eq. 5.33 or a constant defined elsewhere
\(N \) Number of tube rows or tubes
\(N_r \) Number of tubes in a vertical column
\(N_{Sn} \) Scriven number defined in Eq. 6.32
\(N_t \) Total number of tubes
\(NTU \) Number of transfer units, Dimensionless.
\(Nu \) Nusselt number, Dimensionless
\(p \) Fluid pressure, (kpa, bar)
\(P \) Power, (kW)
\(p_t \) Tube pitch in heat exchanger
\(Pe \) Peclet number
\(Pr \) Prandtl number (Dimensionless)
\(p + 1 \) Iteration number in the time domain
\(q, \dot{Q} \) Heat transfer rate, (kW)
\(\dot{q} \) Heat transfer rate per unit length, (kW/m)
\(\dot{q} \) Heat generation per unit volume, (kW/m³)
\(\dot{q} \) Heat flux, (kW/m²)
\(r \) Radius, (m)
\(\Delta r, \Delta \theta, \Delta z \) Discretization in cylindrical coordinates
\(\Delta r, \Delta \theta, \Delta \phi \) Discretization in spherical coordinates
\(R \) Resistance, (m °C/W)
\(\mathcal{R} \) Circulation ratio, Eq. 7.7
\(Ra \) Roughness scale
\(Re \) Reynolds number (Dimensionless)
\(St \) Stanton number
\(S_p \) Center to center tube spacing
\(t \) Fin thickness (m) or time (s)
\(T \) Temperature, (°C)
List of Symbols

- $T(x, y, z, t)$: Temperature transient function in cartesian coordinates
- $T(x, \theta, z, t)$: Temperature transient function in cylindrical coordinates
- $T(x, \theta, \phi, t)$: Temperature transient function in spherical coordinates
- ΔT: Temperature difference, (deg C)
- v: Fluid velocity, (m/s)
- V: Volume
- \dot{V}: Fluid volumetric flow rate, (m3/s)
- U: Overall heat transfer coefficient, (W/m2 K)
- \dot{U}: Superficial velocity, (m/s)
- W: Heat exchanger width, (m)
- \dot{W}: Work rate, (kW)
- We: Weber number; $We = \frac{m^2 d}{\sigma \rho_l}$
- x: x-axis or position along a plat length, (m) or liquid mass fraction in mixtures, or flow quality
- Δx: The difference between the mass fractions of vapor and liquid of the more volatile component
- X: Liquid mole fraction of a component in a mixture
- X_L: Longitudinal tube spacing in the flow direction, (m)
- X_T: Transverse tube spacing perpendicular to the flow direction, (m)
- $\Delta x, \Delta y, \Delta z$: Discretization in cartesian coordinates
- y: y-coordinate, (m), or vapor mass fraction
- Y: Vapor mole fraction of a component in a mixture
- z: z-axis coordinate or elevation, (m)

Subscript

- a: Air
- act: Actual value
- ap: Apparent value
- ass: Assumed value
- aug: Augmentation or enhancement
- b: Boiling
- $bore$: Borehole
- B: Bulk fluid, tube bundle
- c: Cold side, cross-sectional, or characteristic
- cal: Calculated value
- co: Corrected
- $cond$: Condenser
- cr: Critical
d Value calculated at the tube diameter
des Desuperheating process
e Exit port
enh Enhanced or enhancement
eq Equivalent or Equilibrium
$est.$ Estimated value
$evap$ Evaporator
f Film value or defined elsewhere
fo Fouling
g Gas state
$G-T$ Gewa-TX or Gewa-T
h Hot side or homogeneous
ho Horizontal
H Hydraulic or heater
$H.E$ Heat Exchanger
$H-F$ HighFlux
i Interior, inside, or inlet
id Ideal
iso Isothermal
l Liquid state
$L-F$ Low Finned
lo Liquid phase only
in Inlet
m Mean value
m_1, m_2, m_3 Constants in Eq. 6.17
max Maximum
min Minimum
m,n Node number in the x-y plane in a finite difference scheme
mix Mixture
net Net value
o Outside, outlet, or defined elsewhere
out Outlet port value
p Plate or particle in a porous surface
pla Plain surface
po Pore
r Reduced
Ref Refrigerant
s Surface value or measured at surface condition
S Nucleate boiling suppression factor
sat Saturated at operating pressure
sp Single-phase
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Str</td>
<td>Stratified flow</td>
</tr>
<tr>
<td>sub</td>
<td>Subcooled process</td>
</tr>
<tr>
<td>sur</td>
<td>Surrounding environment</td>
</tr>
<tr>
<td>t</td>
<td>Total, bare tube value or thermal</td>
</tr>
<tr>
<td>T-B</td>
<td>Turbo-B</td>
</tr>
<tr>
<td>th</td>
<td>Thermal value</td>
</tr>
<tr>
<td>TP</td>
<td>Two-phase flow</td>
</tr>
<tr>
<td>tur</td>
<td>Turbulent</td>
</tr>
<tr>
<td>vr</td>
<td>Vertical</td>
</tr>
<tr>
<td>w</td>
<td>Water-side or wall</td>
</tr>
</tbody>
</table>

Greek Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Thermal diffusivity, (m²/s) or void fraction (%)</td>
</tr>
<tr>
<td>β</td>
<td>Ration percentage Parameter</td>
</tr>
<tr>
<td>γ</td>
<td>Number of fins per meter (m⁻¹)</td>
</tr>
<tr>
<td>Γ</td>
<td>Friction factor defined in Eq. 5.34.b or condensation loading (kg/m s)</td>
</tr>
<tr>
<td>δ_ε</td>
<td>Thickness of porous layer, (m)</td>
</tr>
<tr>
<td>ε</td>
<td>Emissivity in radiation concept defined in Eq. 1.25 or roughness (m)</td>
</tr>
<tr>
<td>ε</td>
<td>Heat exchanger effectiveness</td>
</tr>
<tr>
<td>ξ</td>
<td>Accuracy or discrepancy, (%) or surface factor in Eq. 6.17</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency or improvement factor</td>
</tr>
<tr>
<td>θ</td>
<td>Inclination heating element angle</td>
</tr>
<tr>
<td>μ</td>
<td>Fluid viscosity, (Pa.s)</td>
</tr>
<tr>
<td>ρ</td>
<td>Fluid density, (kg/m³)</td>
</tr>
<tr>
<td>σ</td>
<td>Surface tension, (N/m)</td>
</tr>
<tr>
<td>τ_p</td>
<td>Number of tubes per row</td>
</tr>
<tr>
<td>ϑ</td>
<td>Froud rate defined in Eq. 7.20.b</td>
</tr>
<tr>
<td>φ</td>
<td>Porosity of matrix, (%)</td>
</tr>
<tr>
<td>ψ</td>
<td>Deviation value, (%)</td>
</tr>
<tr>
<td>ω</td>
<td>Constant in Eq. 7.43.c and Eq. 7.43.d</td>
</tr>
<tr>
<td>ω_{vent}</td>
<td>Air vent capacity in surface condensers, (kg/s)</td>
</tr>
<tr>
<td>ω_m</td>
<td>Mass transfer coefficient, (m/s)</td>
</tr>
<tr>
<td>∞</td>
<td>Free stream value</td>
</tr>
<tr>
<td>ζ_0</td>
<td>Nondimensional Laplace constant is defined in Eq. 7.21.b</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>Air-Cooled Condenser</td>
</tr>
<tr>
<td>BTCS</td>
<td>Backward Time, Centered Space</td>
</tr>
<tr>
<td>CHF</td>
<td>Critical Heat Flux</td>
</tr>
<tr>
<td>CHP</td>
<td>Combined Heat and Power</td>
</tr>
<tr>
<td>C.M</td>
<td>Cooling Medium</td>
</tr>
<tr>
<td>CTCS</td>
<td>Central Time, Centered Space</td>
</tr>
<tr>
<td>DNB</td>
<td>Departure from Nucleate Boiling</td>
</tr>
<tr>
<td>DWC</td>
<td>Dropwise Condensation</td>
</tr>
<tr>
<td>E.S</td>
<td>Energy Source</td>
</tr>
<tr>
<td>FPD</td>
<td>Frictional Pressure Drop</td>
</tr>
<tr>
<td>FD</td>
<td>Finite Difference</td>
</tr>
<tr>
<td>FTCS</td>
<td>Forward Time, Centered Space</td>
</tr>
<tr>
<td>FWC</td>
<td>Filmwise Condensation</td>
</tr>
<tr>
<td>GSHE</td>
<td>Ground Source heat Exchanger</td>
</tr>
<tr>
<td>H.F</td>
<td>Heat Flux</td>
</tr>
<tr>
<td>HTC</td>
<td>Heat Transfer Coefficient</td>
</tr>
<tr>
<td>IOC</td>
<td>Inverse Opal Condensation</td>
</tr>
<tr>
<td>ONB</td>
<td>Onset of Nucleate Boiling</td>
</tr>
<tr>
<td>ORC</td>
<td>Organic Rankine Cycle</td>
</tr>
<tr>
<td>PFD</td>
<td>Process Flow Diagram</td>
</tr>
<tr>
<td>PFPD</td>
<td>Parallel Flow-Parallel Orientation</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
<tr>
<td>RORC</td>
<td>Regenerative Organic Rankine Cycle</td>
</tr>
<tr>
<td>SLIPS</td>
<td>Slippery Liquid-Infused Porous Surfaces</td>
</tr>
<tr>
<td>SORC</td>
<td>Simple Organic Rankine Cycle</td>
</tr>
<tr>
<td>SRC</td>
<td>Simple Rankine Cycle</td>
</tr>
<tr>
<td>WCC</td>
<td>Water-Cooled Condenser</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1.1: Thermal conductivity of various materials at (0) °C, Holman (2010 [1]), reproduced with courtesy of McGraw-Hill Companies, Inc. .. 3

Table 1.2: Typical values of convection heat transfer coefficient for different fluids. ... 16

Table 1.3: Values of ϵ for many materials. .. 20

Table 2.1: Three-dimensional energy equations for different geometrical coordinates. ... 28

Table 2.2: One- and two-dimensional energy equations for different geometrical coordinates under steady-state conditions. .. 29

Table 2.3: The predicted temperatures at the surface and center of the electrical resistance heater. .. 41

Table 3.1: Finite difference representations of a node exposed to several boundary conditions at a steady-state condition. ... 51

Table 3.2: Thermo--physical properties of the wall and ground materials. .. 65

Table 4.1: Calculated working fluid conditions, cycle layout of (Fig. 4.1). ... 79

Table 5.1: The distinguished flow regimes for forced convection on a flat plate. .. 91

Table 5.2: Typical correlations for forced convection laminar flow regime inside tubes. .. 97

Table 5.3: Some heat transfer coefficient correlations for the fluid flow inside a tube in the turbulent region. ... 106

Table 5.4: The equivalent hydraulic diameter for some geometry shapes. ... 115

Table 5.5: Some published correlation of heat transfer coefficient for cross-flow over a single tube. .. 123

Table 5.6: Constants for use with Eq. 5.48 by Hilpert (1933 [35]). ... 125

Table 5.7: Constants for use with Eq. 5.53 by Zukauskas (1972 [38]). . 125

Table 5.8: Constants for use with Eq. 5.54 by Fand and Keswani (1972-1973 [39-40]) .. 125

Table 5.9: Constants for use with Eq. 5.58 by Morgan (1987 [43]). ... 125

Table 5.10: Constants for use with Eq. 5.59 by Tarrad (2000 [44]). ... 126
Table 5.11: Grimison’s correlation [50] for heat transfer coefficient in tube banks of 10 rows or more. Use these coefficients in Eq. 5.48... 135

Table 5.12: The ratio of h for N rows deep to that of 10 rows as obtained from Eq. 5.48 and Table 5.10 as presented by Kays and Lo (1952 [51]). ... 135

Table 5.13: The Zukauskas correlation (1972 [38]) for heat transfer coefficient in tube banks of 20 rows or more. Use these coefficients in Eq. 5.64... 138

Table 5.14: The ratio of h for N rows deep to that of 20 rows as obtained from Eq. 5.64 and Table 5.11 proposed by Zukauskas (1972 [38]). ... 138

Table 5.15: Typical cross-flow correlations over finned tube banks. 141

Table 6.1: The nucleate boiling heat transfer coefficient enhancement factor for various liquids, Tarrad (1991 [10]). 178

Table 6.2: Summary of some available correlations for boiling heat transfer coefficient on the plain surface... 181

Table 6.3: The exponent n of Eq. 6.11 for several liquid/surface combinations for $5 \leq q \leq 60$ kWm2, Tarrad (1991 [10]). 183

Table 6.4: The boiling data and thermal properties of fluids in Example 6.2. .. 184

Table 6.5: Accuracy of the correlations as calculated by Eq. 6.12. 188

Table 6.6: The boiling data and physical properties of R-113........ 189

Table 6.7: The predicted liquid/surface combination factor C_{sf} is used in Eqs. 6.21 and 6.20, Tarrad (2007 [58])................................. 194

Table 6.8: The predicted liquid/surface combination factor C_{sf} is to be used in Eqs. 6.22 and 6.23, Tarrad (2011 [16]). 196

Table 6.9: The boiling heat transfer coefficient and wall superheat of the n-pentane-tetradecene mixture on the plain tube. 203

Table 6.10: Some available correlations predicting the critical heat flux in the pool boiling phenomenon. 214

Table 6.11: Experimental data of boiling the pure liquids and the equimolar n-pentane-tetradecene mixture 216

Table 7.1: Typical available correlations for the void fraction prediction ... 247

Table 7.2: Thermal properties of air-water mixture......................... 249

Table 7.3: The physical properties of R-134a at 3 bar..................... 260
Table 7.4: Comparison of two-phase flow of R-134a at various mass flows. .. 263
Table 7.5: Comparison of two-phase flow of R-134a at a different flow velocity. .. 271
Table 8.1: Calculated working fluids operating conditions of Example 8.1. .. 308
Table 8.2: Summary of Example 8.1 results for comparison of condenser load in the ORC. ... 311
Table 8.3: Some of the available correlations for predicting the flow pattern maps inside tubes. .. 322
Table 8.4: Some of the available inside tube condensation correlations ... 330
Table 8.5: Ranges of physical parameters, Charef et al. (2018 [95]). .. 342
Table 8.6: Geometrical parameters of the test tubes, Alzymehr et al. (2021 [96]). .. 345
Table 8.7: The physical properties of water at 0.1 bar. .. 351
Table 8.8: A summary of the results for condensation outside a single tube for Example 8.2. ... 354
Table 8.9: The physical properties of water at 3 bar. ... 354
Table 8.10: A summary of the results for steam condensation inside a single vertical tube for Example 8.3. .. 357
Table 8.11: The physical properties of R-134a at 3 bar ... 357
Table 8.12: A summary of the results for R-134a condensation inside a single vertical tube for Example 8.4. .. 360
Table 8.13: A summary of the results for R-134a condensation inside a single horizontal tube for Example 8.5. ... 364
Table 8.14: Thermal properties of R-123 at 1.31 bar saturation conditions. .. 365
Table 8.15: A summary of the results for R-123 condensation outside the horizontal tube bundle for Example 8.6. ... 367
Table 9.1: Typical design dimensions for a shell and tube heat exchanger, Franco and Vaccaro (2017 [40]). ... 392
Table 9.2: A summary of heat exchanger design work by Tarrad and coworkers (2004-2016). .. 399
Table 9.3: Selected fouling resistance of some fluids, Reference 2021 [68]). ... 409
Table 9.4: Geometrical dimensions for the examined condenser, Tarrad and Majeed (2010 [39]). ... 413
Table 9.5: The tested case studies' Shell-side and tube-side operating conditions, Tarrad and Majeed (2010 [39]). 414
Table 9.6: The physical properties of water and oil engine. 425
Table 9.7: The physical properties of steam at 3 bar. 436
Table 9.8: The physical properties of water and steam......................... 438
Table 9.9: The physical properties of the process and service fluids..... 446
Table 9.10: The physical properties of water and oil for Example 9.8. 449
LIST OF FIGURES

Figure 1.1: Heat transfer methods. ... 2
Figure 1.2: A plane wall constructed of multi-layer solid materials. 5
Figure 1.3: A thermal resistance circuit of a composite wall structure. 5
Figure 1.4: A thermal circuit of two layers composite wall in Example 1.2. ... 7
Figure 1.5: Thermal presentation of heat conduction in tabular conduit. .. 8
Figure 1.6: A composite cylindrical geometry thermal presentation........... 9
Figure 1.7: Thermal presentation of heat conduction in a spherical object .. 11
Figure 1.8: A composite spherical geometry thermal presentation........... 11
Figure 1.9: Development of boundary layer (velocity and temperature) in convection heat transfer mode. ... 13
Figure 1.10: A schematic representation of the (RORC)-assisted (CHP) engine system, Koç et al. (2019 [4])... 14
Figure 1.11: The process flow diagram of an organic Rankine cycle, Blonde et al. (2019 [5]).. 15
Figure 1.12: Thermal resistance circuit for heat convection at a wall. 16
Figure 1.13: Convection heat transfer process in a cylindrical geometry. 17
Figure 1.14: Thermal resistance circuit of cylindrical geometry with convection on both sides... 22
Figure 1.15: A single tube heat exchanger thermal system presentation. 24
Figure 2.1: A plane wall with a heat generation and adiabatic boundary condition. ... 32
Figure 2.2: A uniform heat flux boundary condition for a plane surface. 34
Figure 2.3: Geometrical Illustration of Example 2.1. 35
Figure 2.4: A graphical presentation of the results of Example 2.1........... 37
Figure 2.5: Illustration of an electrical resistance heater of Example 2.2 ... 38
Figure 2.6: The temperature distribution in the electrical resistance heater at different heat generation rates.. 42
Figure 3.1: A schematic diagram of the test section (Tarrad, 1991 [2]). ... 47
Figure 3.2: A schematic diagram for a 2-dimensional discretization for a plane wall. ... 47
Figure 3.3: A thermal resistance presentation of the interior node (m,n). 48
Figure 3.4: Finite difference discretization of various nodes conditions... 50
Figure 3.5: A one-dimensional discretization of the fin of Example 3.2 ... 56
Figure 3.6: The discretization of the domain for Example 3.3 57
Figure 3.7: The geometry of Example 3.4 .. 59
Figure 3.8: The numerical analysis predicted temperature distribution along the tube at a fixed heat flux of 50 kW/m², Tarrad (1991 [2]). 62
Figure 3.9: Non-uniform heat flux profile along the heater surface for Example 3.4 ... 63
Figure 3.10: The temperature profile along the tube section for a non-uniform heat flux source, C=0.1 and \(q = 50 \text{ kW/m}^2 \) 64
Figure 3.11: The wall structure of air-conditioned space for Example 3.5 ... 65
Figure 4.1: The principal components of a power plant unit 70
Figure 4.2: The (T-s) diagram of the processes in a power plant 71
Figure 4.3: Heat exchangers utilized in industry 72
Figure 4.4: Control volume of an individual tube 73
Figure 4.5: The temperature distribution for a sensible heat transfer in a heat exchanger ... 76
Figure 4.6: The temperature distribution for the evaporator of (ORC)... 78
Figure 4.7: The temperature distribution for the condenser in a chemical process unit ... 81
Figure 4.8: A schematic diagram for a jacketed vessel with an agitator 85
Figure 4.9: A schematic diagram showing different boundary-layer flow regimes on a flat plate ... 91
Figure 5.1: Surface condenser tube layout for Al-Daura thermal power station (unit 3) presented by Tarrad and Kamal (2004 [17]) 98
Figure 5.2: A schematic diagram for a heated flat plate for Example 5.1 ... 100
Figure 5.3: The air Nusselt number variation with position over the flat plate for Example 5.1 ... 102
Figure 5.4: The tube dimensions and operating condition for Example 5.2 ... 103
Figure 5.5: The tube dimensions and operating condition for Example 5.3 ... 109
Figure 5.6: The condenser tube dimensions and operating condition for Example 5.4 ... 111
Figure 5.7: The single non-circular tube dimensions and operating condition for Example 5.5 ... 117
Figure 5.9: A duct used for the air conditioning of space for Example 5.6 ... 119
Figure 5.10: A schematic diagram of the boundary formation for a fluid in a cross-flow over a tube ... 122
Figure 5.11: The tubular heater dimensions and operating condition for Example 5.7 ... 127
Figure 5.12: A schematic diagram for a cooling system of a gas turbine lubrication oil, hot fluid lines (red) and cold fluid lines (blue) 133
Figure 5.13: Tube layout for a plain tube bank ... 134
Figure 5.14: The minimum flow area for the in-line tube rows layout .. 136
Figure 5.15: The minimum flow area for the staggered tube rows layout ... 137
Figure 5.16: Tube layout for a finned tube bank .. 139
Figure 5.17: An in-line plain tube bank in a cross-flow for Example 5.9 ... 143
Figure 5.18: A schematic diagram for free convection heat transfer at a flat plate .. 149
Figure 5.19: The fluid circulation and stable condition in a free convection heat transfer mechanism for (a) The hot plate at the lower side of the enclosure and (b) The hot plate at the upper side of the enclosure .. 151
Figure 5.20: The free convection mechanism and regimes in a heating process ... 152
Figure 5.21: A schematic diagram presentation of Example 5.10 155
Figure 5.22: The boundary layer variation with the position along the plate for Example 5.10 ... 156
Figure 6.1: A schematic diagram of a simple Rankine cycle (SRC) 163
Figure 6.2: The (T-s) diagram of a simple Rankine cycle (SRC) 164
Figure 6.3: A schematic diagram for a typical kettle reboilers 167
Figure 6.4: A schematic diagram for the water pool boiling curve at atmospheric pressure ... 169
Figure 6.5: A schematic diagram shows the structure of enhanced surfaces, (a) Low Fin, (b) Gewa-TX, (c) Turbo-B, and (d) HIGHFLUX .. 173
Figure 6.6: Typical enhanced low finned tube structure 174
Figure 6.7: Typical enhanced tube structures, (a) Gewa-K, (b) Gewa-TX, (c) Gewa-YX, and (d) Metal matrix of HighFlux surface, Tarrad (1991 [10]) ... 174
Figure 6.8: Comparison of boiling heat transfer performance of pure fluids on plain and enhanced surfaces, Tarrad (1991 [10])........... 175
Figure 6.9: Comparison of boiling heat transfer performance of pure fluids on the plain tube at atmospheric pressure, Tarrad (1991 [10]). .. 176
Figure 6.10: A comparison of pool boiling heat transfer performance of pure fluids and 60% mole fraction ethanol-water mixture on the plain tube at atmospheric pressure, Tarrad (1991 [10]). 177
Figure 6.11: The effect of liquid-surface structure on pool boiling performance of various fluids on the HighFlux porous tube 179
Figure 6.12: Comparison of correlations with experimental data, (a) Water, (b) Ethanol, and (c) n-pentane................................. 186
Figure 6.13: Comparison of correlations with experimental data of R-113 boiling at atmospheric pressure. 190
Figure 6.14: Comparison of the enhancement factor predicted by the present correlation with experimental data of the Low Finned tube, Tarrad (2007 [58]). ... 195
Figure 6.15: Gewa-T and low finned tubes, Tarrad (2011 [16])......... 197
Figure 6.16: Low finned tubes, Tarrad and Khudor (2014 [17]) 198
Figure 6.17: A schematic presentation for the phase diagrams of binary mixtures... 201
Figure 6.18: Comparison of the experimental data with correlations’ predictions of the equimolar n-pentane-tetradecene mixture at atmospheric pressure ... 217
Figure 7.1: The pressure effect on the steam-water mixture void fraction for a constant value of S=1.0. 234
Figure 7.2: The slip ratio effect on the steam-water mixture void fraction at a constant pressure of 100 bar. 235
Figure 7.3: The boiling curve for external flow boiling 236
Figure 7.4: A horizontal thermosyphon reboiler arrangement.......... 237
Figure 7.5: A vertical thermosyphon reboiler arrangement 238
Figure 7.6: Internal flow boiling regimes in a vertical tube 239
Figure 7.7: Internal flow boiling regimes in a horizontal tube......... 241
Figure 7.8: The slip ratio variation with the flow quality at different pressure levels... 245
Figure 7.9: The two-phase flow heat transfer coefficient comparison between various correlations. 272
Figure 7.10: Typical experimental heat transfer coefficient of R-134a at 8.5 bar variation with: (a) heat flux and (b) Exit vapor quality, Abdulrasool et al. (2017 [62]). ... 273

Figure 7.11: Typical experimental pressure drop variation at 10.5 bar with: (a) heat flux and (b) Exit vapor quality, Abdulrasool et al. (2017 [62]). .. 274

Figure 7.12: The effect of mass flux, heat flux, inner tube diameter, and saturation temperature on the pressure drop, Oh et al. (2015 [24]). .. 275

Figure 7.13: The effect of mass flux velocity on heat transfer coefficient, Oh et al. (2015 [24]). .. 276

Figure 7.14: The effect of heat flux on heat transfer coefficient, Oh et al. (2015 [24]). .. 277

Figure 7.15: Typical experimental heat transfer coefficient of R1234zeI variation with quality, Xu et al. (2021 [64]). 278

Figure 7.16: Flow boiling (FPD) of R1234zeI versus vapor quality, Xu et al. (2021 [64]) .. 280

Figure 7.17: Effect of subcooled degree on heat flux at fixed mass flux, Galicia et al. (2021 [101]). ... 287

Figure 7.18: Effect of mass flux on heat flux at fixed subcooled degree, Galicia et al. (2021 [101]) ... 289

Figure 7.19: Flow boiling of R-134a in a horizontal tube flow patterns for boiling conditions of (G = 300 kg/m² s, q = 4.6 kW/m², p = 460 kPa); (a) Slug flow (x < 0.1); (b) Intermittent flow (0.1<x <0.4); (c) Intermittent-annular flow (x ≈ 0.42); (d) Annular flow (x > 0.4); and (e) Dry-out–mist flow (x > 0.9); reproduced with courtesy of Bediako et al. (2022 [102]). ... 290

Figure 7.20: Heat transfer coefficient in flow boiling of R-134a inside a horizontal tube for the two-phase and superheated vapor flow regions, reproduced with courtesy of Bediako et al. (2022 [102]). 291

Figure 7.21: Pressure drop in flow boiling of R-134a inside a horizontal tube for the two-phase and superheated vapor flow regions, reproduced with courtesy of Bediako et al. (2022 [102]). 292

Figure 8.1: A schematic diagram of a biogas-fuelled micro-gas turbine with a bottoming organic Rankine cycle power system, Kim et al. (2017 [1]). .. 304

Figure 8.2: The working fluid temperature variation in the condenser. .. 306
Figure 8.3: A schematic diagram for a regenerative organic Rankine cycle (RORC).. 307

Figure 8.4: The T-s diagram for a regenerative organic Rankine cycle (RORC) with liquid subcooling... 308

Figure 8.5: Condensation in a vertical tube, (a) A shell and tube condenser, and (b) Condensation flow pattern in a vertical tube... 315

Figure 8.6: Condensation in a horizontal tube, (a) A shell and tube condenser, and (b) Condensation flow pattern in a horizontal tube. ... 318

Figure 8.7: Flow patterns for inside horizontal tube condensation, (a) Annular, (b) Stratified, and (c) Slug .. 319

Figure 8.8: Complete condensation and subcooling inside the horizontal channel.. 320

Figure 8.9: The film condensation mechanism outside a horizontal tube .. 324

Figure 8.10: A schematic presentation of ideal and actual flow condensation patterns over a horizontal tube bank, Tarrad (1997 [25]). ... 327

Figure 8.11: Tube layout arrangements in a tube bundle, (a) In-line and (b) Staggered.. 328

Figure 8.12: The geometry of the numerical condensation analysis inside a vertical tube, Charef et al. (2018 [95]). .. 341

Figure 8.13: The liquid film thickness and condensing mass flux variation with position, (a) Effect of Length, and (b) Effect of wall temperature, Charef et al. (2018 [95]). .. 343

Figure 8.14: Effect of the type of noncondensable gas on the evolution of the liquid film thickness and the condensing mass flux at the interface along the tube, Charef et al. (2018 [95]). 344

Figure 8.15: A comparison of thermal and hydrodynamic condensation performance for R-290, R-1270, and R-600a in a smooth tube with mass flux G in kg/m² s, (a) Condensation heat transfer coefficient, and (b) pressure drop, Allymehr et al. (2021 [96]). .. 346

Figure 8.16: Effect of internal surface enhancement on heat transfer coefficient at G = 300 kg/m² s for (a) R-290, (b) R-1270, and (c) R-600a, Allymehr et al. (2021 [96]). .. 348

Figure 8.17: Scanning electron microscope (SEM) images of an inverse opal coating at different magnifications. The low magnification SEM images in (a) and (b) show fabrication defects (cracks) that formed
when the supporting matrix shrunk during drying. (a) An illustration shows a vanishing contact angle for a water droplet deposited on the porous structure. The high magnification images in (c) and (d) show the pores which resulted from the dissolution of the sacrificial polystyrene beads (≈ 395 nm diameter). The contact points between the polystyrene beads that were not wetted by the solution during co-assembly created interconnected pores (≈ 215 nm diameter), Adera et al. (2021 [97]).

Figure 8.18: Time-lapse images of water condensation on copper tubes subject to varying surface treatments, showing different modes of condensation. (a) Filmwise condensation (FWC) on a smooth plasma-treated copper tube, (b) Dropwise condensation (DWC) on the smooth hydrophobized copper tube, (c) Inverse opal condensation (IOC) on a silica inverse opal-coated copper tube, and (d) Slippery liquid-infused surface (SLIPS) condensation on an oil-impregnated porous structure, Adera et al. (2021 [97]).

Figure 8.19: A shell and tube heat exchanger geometry.

Figure 9.1: A schematic diagram of an organic Rankine cycle (ORC) utilized in waste energy recovery, Tarrad (2022) [2].

Figure 9.2: Double U-tube in parallel orientation (PFPD), (a) Borehole heat exchanger, and (b) Tube layout, Tarrad (2020a [17]).

Figure 9.3: Typical double-pipe heat exchanger arrangements, (a) Straight, (b) Top view of a vertical structure, and (c) Serpentine architecture.

Figure 9.4: A schematic diagram of an immersion coil evaporator, (a) A stainless steel tank, (b) A copper tube coil, and (c) Assembly of the evaporator, Tarrad et al. (2015 [33]).

Figure 9.5: Immersion coil steam generator used in an experimental laboratory set-up, Tarrad and Altameemi (2015 [34]).

Figure 9.6: A shell and tube heat exchanger architectures.

Figure 9.7: A general architectural feature of a condenser in a thermal power plant, Tarrad and Majeed (2010 [39]).

Figure 9.8: Tube layout arrangements in a tube bundle, (a) In-line (Square) and (b) Staggered (Triangular).

Figure 9.9: Typical air-cooled heat exchanger design. (a) Mechanical design and physical dimensions. (b and c) Detailed dimensions of tube shape and passes. (d) A photo for a top view of a radiator.