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INTRODUCTION

MATHEMATICS FOR INTERMEDIATE
TEACHERS

Mathematics for teachers

You might wonder why teachers with a post-secondary mathematics back-
ground would be interested in learning more about school mathematics. In
fact, there has long been the assumption that prospective secondary math-
ematics teachers already know mathematics. And indeed, they likely do
know a great deal about higher level mathematics! However, making the
switch from a learner of mathematics, to a teacher of mathematics is a fun-
damental one. Importantly, one’s main focus becomes human development,
rather than themastery of a particular scientific field, albeit a fascinating one.
When I made this switch myself, and began thinking about unpacking inter-
mediate level mathematics in such a way that might be useful for students to
explore, understand, and generalise the ideas, I realised, with some shock,
that I understood mathematics in a mainly functional manner. I could factor
expressions, solve equations, and simplify a polynomial. I could work with
integer expressions, and multiply and divide fractions. But to my astonish-
ment, I realised that I didn’t understand many of the underlying processes
or associated reasoning in as deep a way as needed to help students explore
and make sense of these ideas.

In parallel with my own personal development, work on what has come
to be known as mathematics for teaching (Ball, Thames and Phelps 2008,
389-407) was evolving. One very important aspect ofmathematics for teach-
ing is mathematical representation and the associated reasoning, an area in
which teachers may need support (Mitchell, Charalambous and Hill 2014,
54-56). Representations can be concrete models such as a model of a frac-
tion process using fraction bars, or models of integer chips, algebra tiles,
and so on, but they can also be drawings, computer environments, or even
mental images. A crucial aspect of the use of such materials and models is
the associated reasoning; that is, an understanding of what the models are
for, and how students might use them. Critically, these representations and
models are tools to think with, they are not simply a means to show a dia-
gram of a final answer after the thinking has taken place. It is the support of
the in-the-moment problem-solving and thinking process that is important.
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Much of the work to date on mathematics for teaching has focused on
elementary (grades one to six) mathematics. At this level, it has now be-
come fairly acceptable for teachers to use diagrams and physical tools such
as counters and other math manipulatives to support students’ developing
understanding. But by grades seven and eight, and secondary school grades
nine and ten, students in the past have typically been expected to work more
symbolically. Some teachers even felt that physical tools were only a crutch
for less able students (Holm and Kajander 2015, 266-268).

This book extends the understanding of the field of mathematics for
teaching to the intermediate secondary level. It is a book on mathematics,
not pedagogy. It does not focus on lesson design, questioning techniques,
assessment, and so on. But what it may do, is allow and support you to think
more deeply about the mathematical ideas in such a way that these pedagog-
ical aspects become much more effective.

While teachers experienced with traditional teaching methods might feel
that teaching for understanding, such as by using the tools and methods pre-
sented in this book, simply takes too much classroom time, there is great
news. Have you ever watched – or even yourself been – a teacher trying, over
and over again, to “tell” students a concept that they didn’t seem to remem-
ber, or didn’t want to pay attention to? Repetitive review with unengaged
students takes a lot of time, frustrates everyone, and often the concepts still
do not make it into students’ long term memory. This is because procedures
and rules that aren’t connected to meaning and reasoning become exercises
in memorization, and are easily forgotten (if they were ever absorbed in the
first place). In fact, disengaged students often don’t take in much useful con-
tent anyway. On the other hand, experiences of meaning, ownership, action,
involvement, and problem solving can actually motivate students to want
to figure things out. Another great aspect of teaching for understanding is
that concepts logically build on one another. So new concepts can actually
take less time to learn over time, because some of the underpinnings of the
ideas are already understood – and retained. I am always astonished at how
quickly disengaged students can become engaged if they see a purpose or
meaning in a given activity.

In countries such as Canada, attention is also finally being given to the
learning needs of Indigenous students. Some scholars (such as Lunney Bor-
den 2018, 64-65) espouse the ideas of visualizing and verbing as helpful
starting points. Such learning approaches align well with a models and rea-
soning approach, as is described in this book. In both cases, students begin
with a real world or visual context, concrete materials, and the connection
to visual mathematical models. Then the physical materials or models are
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explored and manipulated according to student reasoning and teacher ques-
tioning, to form new ideas. Through discussion, the new ideas can be shared,
generalised, and later, formalized and named. Such learning processes also
align with the principles of social constructivism, as discussed by Papert,
Piaget and others (Papert 1980, vi-viii; Beth and Piaget 1974, 6-23).

If you already like and feel confident in mathematics, you may be sur-
prised when learning more about the mathematical ideas as needed for teach-
ing how much more there is to know about the concepts you thought you
already knew! I am always astonished at how frequently even mathematics
graduates claim that they are understanding these fundamental concepts as
never before. Or, if you are less keen on mathematics, then this book might
change your feelings about the subject! Either way, it will certainly help
your students.
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CHAPTER ONE

THE PROCESSES OF MATHEMATICAL
LEARNING

Mathematics for teachers

This book is intended for teachers of intermediate mathematics. While the
main focus of the book is the mathematics needed by teachers of grades
seven to 10, the foundations of the relevant ideas originating in the junior
grades (grades four to six) are included where needed for the purpose of
building on them for the secondary level. As well, what the field calls “hori-
zon knowledge”, in other words the idea of where the concepts are heading,
is also explored, hence some concepts are connected to the ideas typically
developed in grade 11 and 12.

This book is intended for both prospective as well as practicing teachers.
In many countries, prospective teachers of high school mathematics have
already taken a number of university level mathematics courses. This book
does not replace that requirement. Rather, this book focuses on the specific
new field of mathematics called mathematics for teaching–a type of applied
mathematics needed particularly by teachers.

Mathematics for teaching is a specialised field of mathematics, which
has been developed over the last 20 to 30 years. Most of the publications in
this field only include content up to about grade six, but this book extends
the grade levels of the content to the secondary level.

I have experienced a lot of confusion around what the field of mathe-
matics for teaching actually is. Some people think it is simply the need for
teachers to take more university level mathematics courses. Other people
think it is pedagogy – the kinds of topics that would be covered in curricu-
lum and instruction courses. In fact, it isn’t really either of these. It is a
brand new field in its own right – a particular kind of applied mathematics.

The field of mathematics for teaching was initially described and named
by a team of researchers in the northern United States (e.g. Ball et al, 2008).
The theory includes two general intertwined aspects, namely subject mat-
ter knowledge, and pedagogical content knowledge. The latter of these as-
pects is the kind of pedagogical work often done in teacher education and
preparation. The former, subject matter knowledge, focuses more on aspects
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of understandings of mathematics, which is the topic of this book. Within
subject matter knowledge are common content knowledge, specialised con-
tent knowledge, and horizon knowledge. It is likely that you already have
good common content knowledge and horizon knowledge; these refer to the
knowledge you have already gained from your own previous mathematics
courses, related respectively to the curriculum content in the grades in ques-
tion, and ideas related to where the concepts are heading. However, our re-
search (e.g. Kajander & Holm, 2013; Holm &Kajander, 2020) suggests that
even teachers with strongmathematics backgroundsmay not have developed
specialised content knowledge as needed for teaching. The development of
such specialised understanding is the topic of this book.

As an example of the knowledge teachers need, it is likely you already
understand that in the number “23”, the symbols “2” and “3” have different
meanings due to their location within the number. You likely know how
to compute 23×14 or 2–(−3). However, perhaps you don’t know how un-
derstanding an area model representation of 23×14 allows students to them-
selves determine ways to simplify expressions such as (2x + 3)(x + 4),
without teaching them rules such as “FOIL”. Teachers wishing to build on
the area model to develop binomial multiplication need to be aware of the
origins of the model with whole numbers.

Importantly, teachers of conceptually-rich mathematics classes need to
know about representations, and which models and manipulatives might be
helpful for a given context, as well as the associated reasoning. For exam-
ple, it might be helpful to know which specific fraction division questions
can be modelled with fraction strips or bars, such as 3

4÷
2
8 , and which ques-

tions would be easier with the use of an area model, such as 4
5÷

2
3 . You might

need to know how integer chips can be used to help students figure out inte-
ger operations, and in lesson planning and sequencing, what type of integer
questions would require students to know about zero pairs, and which would
not. Perhaps you are interested in having students explore how to factor al-
gebraic expressions such as x2 + 5x + 6 for themselves, without imposing
a rule, and which representations and manipulatives might be helpful. You
might be interested to find out that once students see how the process of
binomial multiplication is the “same” as the one for multiplying two-digit
whole numbers, they really do not need memorized procedures named with
acronyms such as “FOIL” to remind them of the procedure for simplifying
algebraic expressions. Even better, the ideas generalise to trinomials without
learning new “rules”. If you are interested in these mathematical questions,
then this book is for you!

The book does not simply provide a picture, model, or explanation of a
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known rule, as this would not illustrate a problem-solving approach. Rather,
the book develops the new mathematical ideas based on familiar ideas, be-
ginning with the concrete and visual concepts and understandings, and then
gradually uses those to illustrate how students can abstract and generalise to
higher order ideas. Lastly the ideas can be formalized and named. Thus, the
“rules” that might otherwise have to be taught directly, become necessary
outcomes or generalisations of the models and reasoning approach.

The notion of generalisation in mathematics is a powerful one, deeply
linked to the processes of reasoning and proving. This key higher-level con-
cept in mathematics, the idea of using reasoning to move from existing ideas
to higher order generalisations, is deeply embedded in the book. Such a
process is significantly different from simply using a picture or diagram to
“explain” a mathematical procedure, after providing one. It is important to
recognise that such “explaining” only takes place after the fact–that is, after
”telling” the rule. Rather, the book supports the actual development of the
method or rule, via models and reasoning. This is a significantly different
approach, and much more mathematical, than starting with the rule itself as
is often done.

It has been suggested to me many times that this type of mathematical
understanding is really pedagogy, and thus should be taught in curriculum
and instruction courses for teachers. If prospective teachers have not had the
opportunity to develop this type of mathematical understanding previously,
then these concepts have to be included in courses on pedagogy. However,
this specialised type of mathematical understanding is indeed mathematics,
and thus can–and ideally should-be included in stand-alone mathematics for
teachers courses, or as the focus of professional development initiatives.

Curriculum reform initiatives around the globe describe the importance
of problem-solving, and learningmathematics in a deep, conceptual and con-
textual way. To effectively teach in this manner requires teachers to have
these new and enhanced understandings of mathematics for teaching. Inter-
estingly, teachers’ specialised understanding of mathematics as needed for
teaching is the one type of teacher mathematical understanding that has been
linked positively to student achievement (e.g. Baumert et al, 2010). I have
also heard over and over the comment “wow, I finally get it now, I never
knew all this before!” from prospective teachers when initially experienc-
ing the field of mathematics for teaching.
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A models and reasoning approach

Historically in mathematics, the fields of geometry and algebra were closely
intertwined. The idea of using a models and modelling approach (Lesh &
Doerr, 2003) draws on this historical connection. The word ‘model’ can also
be used to refer to a mathematical way of characterizing a real-world phe-
nomenon, in order to try to make sense of it. Climate change, for example,
is a context for which mathematical models are used to attempt to predict
the future. An alternate use of the word model in mathematical learning is
as a visual or concrete representation of a quantity or expression in order to
think and reason, and this is the main use of the word model here. In this
book, I use the words models and representations somewhat interchange-
ably, to refer to such visual and often concrete aids to thinking. These aids
can take the form of diagrams, physical tools such as math manipulatives,
or even mental images. Importantly, these tools will be used as supports to
thinking and reasoning – they are much more than diagrams of a final an-
swer as is sometimes thought. As well, their use involves much more than
a teacher drawing a picture to “explain” an idea after telling students a rule.
Rather, the fundamental idea is to provide a support for students to explore
and make sense of an idea themselves, which only later becomes generalised
to a method or rule, and only when the students are ready to do so.

Many of the seemingly incomprehensible rules of algebra logically build
on the understanding of whole number operations. Ideally, understanding of
the reasoning behind these operations should develop in elementary school,
and indeed many elementary teachers now do teach much more visually and
conceptually. In turn then, it is also necessary for secondary teachers to un-
derstand these foundations, in order to explicitly build upon them. In fact,
sometimes these foundations need to explicitly be the starting point for the
development of flexible algebraic understanding and reasoning. Jo Boaler,
one of the most prolific and respected mathematics education researchers of
our time, claims that the most important foundation for deep and flexible un-
derstanding of algebra is deep and flexible understanding of whole numbers
and operations, including methods students come up with themselves (see
some of Boaler’s work at www.youcubed.org). Such non-standard student
methods are often called “invented methods”. What is important about such
invented methods is that in order to come up with the ideas, students need to
reason.

Reasoning is actually one of themathematical “learning processes” stated
in many Canadian curriculum documents as well as those in other coun-
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tries, as are representing and problem solving. You may know from your
own work in mathematics that reasoning and problem solving often form the
mainstays of mathematical thinking and new development. Fundamentally,
these processes are what mathematicians do. Models and representations
are crucially helpful in this regard, in that they provide tools to reason with.
These tools are far from being supports for students previously perceived as
less able, they are fundamental aspects of mathematical understanding and
development at all levels of mathematical development.

Many countries have previously imposed what may be termed a tradi-
tional Western approach to mathematics teaching, but more recently other
ways of thinking and knowing are receiving more attention. In Canada for
example, attempts are being made to “Indigenize” learning environments,
including mathematics classes. Interestingly, Indigenous ways of thinking
and knowing align much better with a problem-based approach which uses
representations and reasoning, than with a teacher-directed more procedu-
ral approach, even without adding specifically cultural contexts (Lunney-
Borden, 2018). This is an exciting benefit of such learning environments.

Mathematics reform

The teaching methods sometimes referred to as “mathematics reform” began
to be commonly studied and explored during the 1980’s. Research took place
in many regions including North America, Great Britain, and Europe. In the
United States for example, a document outlining what is involved in this type
of teaching was initially published by the National Council of Teachers of
Mathematics (NCTM, 1989), and is still often referred to as The Standards.
The challenge for teachers was that this earlier work was not well-explicated
for day-to-day classroom teaching. Of course, teachers wanted their students
to deeply understand the ideas, but how exactly was that to be enacted?

Teachers naturally continued to follow the methods they knew and had
experienced themselves as learners of mathematics, for want of something
else that was well defined. In particular, at the high school level, mathemat-
ics teachers have generally themselves been successful in learning math-
ematics in a traditional teacher-directed, rule-based manner. Such personal
bias is difficult to overcome. The best way to open your mind to the possibil-
ity of learning mathematics differently is to either experience it yourself, or
see a student experience it. Watching a student develop a deep understand-
ing of a concept, and be able to generalise it, is like watching a beautiful
sunrise; suddenly all is illuminated! This book is designed to give you the
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tools to support students’ experiences in this manner.
What I find particularly helpful with a focus on representations and mod-

els, and the processes of representing and modelling, is that these tools and
processes can be used by teachers in both a more directed manner, as well
as a more open or problem-based manner. Thus the transition to supporting
more problem solving, student inquiry, and alternate and invented methods
can evolve gradually, as both teachers and students develop the confidence
and problem solving capacity, as supported by experiences in representation
and reasoning. You may find yourself learning and developing alongside
your students-at least I did!

Inquiry and problem solving

The pedagogical methods often known as problem solving or inquiry are
generally drawn from the basic principles of mathematics reform, as based
on theories of social constructivism, as just described. It is important to
understand that these teaching methods, as the skeptics might suggest, do
not imply teachers simply handing students some manipulatives and hop-
ing they will discover something useful. These methods involve carefully
planned, crafted, and thought-out lessons, in which student thinking is both
anticipated and supported, and possible directions and outcomes are care-
fully crafted, anticipated, and planned. They require more preparation and
involvement on the part of the teacher, along with carefully thought out
supports such as visual models and manipulatives, together with an under-
standing of the associated reasoning. As mentioned, this is not a book on
pedagogy; its purpose is not to help you design effective lessons or craft
evaluation instruments. Rather, its purpose is to enhance the mathematical
understanding needed to support this kind of learning environment.

The power of deep mathematical understanding for the purpose of teach-
ing should not be undervalued. You may find that as your own mathemati-
cal lens grows ever deeper and wider roots, your values in terms of teaching
and learning change in parallel. For example, once the connections among
visual representations and meanings of whole number multiplication, bino-
mial expansion, factoring, and other algebraic processes are illuminated, it
is hard to think of these things as disconnected algebraic rules with no mean-
ing; rather they become an interconnected web of applications of models of
multiplication. Such an evolving view continues to grow, and in turn con-
tinues to influence the design and delivery of lessons. The shift to valuing
understanding is so powerful it has the potential to also shift your classroom
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practice to one that values flexible thinking, connections, sense making, and
deep understanding. And best of all, it has the potential to influence how
students see mathematics, as well as themselves mathematically.

The role of coding

Recently there has been a re-emergence of interest in coding as a tool to sup-
port mathematical understanding. Indeed, technology provides a dynamic
representational tool in its own right. In fact, the ideas around the potential
of computer programming, now more commonly referred to as coding, were
initially explored by a number of mathematicians and mathematics educa-
tors as early as the 1970’s. The best known and most prolific of these was
Seymour Papert, whose seminal work Mindstorms: Children, computers,
and powerful ideas (Papert, 1980) ignited the mathematics education com-
munity. Papert’s work was deeply constructivist in nature, and in a sense far
beyond the typical vision of mathematics classrooms of his time. Only now,
as the field is getting better at truly enacting the initial promise of construc-
tivism, mathematics reform, problem-based learning, and the use of repre-
sentations and reasoning including coding, do we see the beginnings of the
authentic application of some of these inspirational visions of the future.

Introduction to Scratch coding

One of the issues with early coding environments such as those created by
Seymour Papert and his team, was the available technology of the time.
Computer storage was no where near as plentiful as now, and as a result
computer languages were much less powerful. The children’s computer pro-
gramming language Logo, developed by Papert and his team at the Mas-
sachusetts Institute of Technology (MIT) relied on cryptic short forms for
commands, such as “FD” for the command to move forward. The com-
mands typically had to be “taught” to students, already disrupting the idea
of the environment as a place for children to think and explore. Although
quite a bit of research took place in the 1980’s around using Logo in math-
ematics learning, the ideas never really became mainstream.

More recently, the huge technological advances in computer power, com-
bined with research in learning theory resulting in mathematics reform, as
well as an emergence of the popularity of technology-based gaming, have
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all had a role to play in the use of technology environments in mathematics
learning. Since the early days of Logo, the MIT team has moved far along
with its vision, and more recently their computer language “Scratch”, a com-
puter language for children, has become freely available. Early concepts
embedded in Logo are now much more user-friendly, dynamic, colourful,
and game-like in the new environment, while retaining the original math-
ematical power. Examples and activities using Scratch will be provided
from time to time in the book; the computer language is freely assessable
at https://scratch.mit.edu/ and includes many pre-made activities, tutorials,
and programs.



CHAPTER TWO

FLEXIBLE UNDERSTANDING OF THE
FUNDAMENTAL OPERATIONS: THE

FOUNDATION FOR DEEP
UNDERSTANDING

Whole numbers and invented methods

It might seem strange to begin a book on intermediate secondary mathemat-
ics with an exploration of whole numbers and the four fundamental opera-
tions. And yet over and over, it is often the case that difficulties with higher
level content are partially rooted in narrow and superficial understandings
of the four fundamental operations. In fact, understanding whole number
operations in a deep, flexible, and conceptual way turns out to be critically
helpful when exploring more challenging concepts such as fraction division,
multiplication of algebraic expressions, processes with quadratics, and so on.

In the past, it was thought better to have all students performing arith-
metical calculations using exactly the same procedures. They would then
practice these over and over, to develop speed and fluency. It turns out that
in the age of technology, our priorities shift a bit. At a certain point, when
dividing a four digit decimal by a two digit decimal, we will likely reach for
a phone or calculator. (And as for the ‘what if you are stranded on a desert
island’ scenario, we will likely have bigger problems than fluency with dec-
imal division). But a number of things remain critically important. First, we
need students to have fluent and effective methods for rough estimation – the
best way to immediately catch keystroke errors. Second, we need students
to understand why and how the procedures work, so that the ideas lay the
groundwork understanding how to apply the ideas to higher level contexts
such as those mentioned. Thus, encouraging multiple methods, as well as
students’ own invented methods, turns out to be very important.

We often use invented methods when doing mental math, without even
realising it. For example, try adding 18 + 25 in your head. After you have
finished, jot down your method, and ideally compare with a colleague or
classmate. Can you think of other methods? Did you find yourself using the
traditional ‘regrouping’ method, or something else?



FLEXIBLE UNDERSTANDING OF THE FUNDAMENTAL
OPERATIONS: THE FOUNDATION FOR DEEP UNDERSTANDING 13

It’s surprising howmany people tend to do this calculation using amethod
other than the traditional method they were taught, when doing it mentally.
For example, some people make the 18 into an easier number by taking 2
from the 25, to add to the 18, making it 18 + 2 or 20. So the calculation
becomes 20 + 23 instead–much easier. Another common method is to add
the bigger parts of each number first, 10 + 20, and then add on the sum of
the smaller parts (8 + 5). And there are many more. All of these invented
strategies are both great for mental math and also lay the foundation for a
more flexible understanding of operations, in order to build algebraic rea-
soning in the future.

Activity 2-1:
1. Try these calculations with mental math, and afterwards, record your

method. If possible, do each in more than one way. Ideally, share your
methods with a partner.
a) 197 + 254
b) 306–189

2. A student calculated 306–189 by calculating 307–190. Does thismethod
work in general? Why or why not? Explain the student’s possible rea-
soning.

Models and manipulatives for whole numbers

Concrete models and manipulatives are visual representations and physical
tools to help with the reasoning process. This modelling and reasoning pro-
cess is much more than “showing your work” with a picture, after complet-
ing a calculation. Such tools and reasoning processes are aids to thinking.
Appropriate representations can be constructed by students themselves, but
sometimes teachers need to support the process. Thus, teachers need to have
a toolkit on hand, and even more importantly, have an understanding of pos-
sible student-generated representations and how these models can support
students’ thinking.

Counters are one of the most fundamental manipulatives available. Con-
veniently, we are equipped with ten of them usually, right on our hands!
However, as the numbers get larger, it is simply inefficient to count or draw
a lot of counters, one by one.
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Fig. 2-1:

So it makes sense to group the counters, and since we normally have ten fin-
gers, a popular way of grouping involves groups of ten; the decimal system.
Perhaps if we lived on a planet where beings had eight fingers wewould have
a system based on groups of 8. Such an octal system would be much more
efficient for computer programmers as computers work on a binary number
system, or base 2, which is much easier to translate to base 8 then base 10.
But let’s stick with the modern standard base 10 for now! (However, if you
really want a challenge, try practicing some standard calculations using a
different base.)

Here is the same quantity shown above, but now grouped by tens.
Fig 2-2:

We have one group of 10, and 4 units, so we write 14. The value 14 as shown
has four “units”, and one “ten” (the tens piece is sometimes nicknamed a
“long”, or a “rod”).

This “place value” system, in which the location of the digit matters
as well as its size, is typically developed with children in early elementary
grades. Teachers may use many representations to support the ideas of place
value, but one of the standard types of materials are the “base 10 blocks”,
illustrated here. To represent evenmore counters, ten groups of ten (10 x 10),
can represent a group of 100, shown by ten of the longs. This “hundreds”
piece is comprised of a 10 by 10 arrangement of unit squares.
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Fig. 2-3:

Sometimes this 100’s piece is nicknamed a “flat”. The largest piece we can
build in our three-dimensional world is the thousands cube, sometimes called
the “block”. (Imagine 10 flats stacked on top of each other to make a 10 by
10 by 10 cube). Sometimes we write 10× 10× 10 as 103, which is read as
“ten-cubed”. Yes, the meaning of the word cubed is literal!

These base 10 materials are not only a fundamental representation of our
number system and its properties and operations, but they also directly gen-
eralise to representations of algebraic representations. In fact, the algebra-
tile representations used in later chapters specifically build on a meaningful
understanding of whole number representations and operations. If students
don’t have a solid and conceptual foundation of the whole number system
and of operations on it, subsequent algebraic operations and “rules” will have
little meaning – just as some people report experiencing when learning high
school algebra. I often found myself reviewing these whole number expres-
sions and operations when teaching grade nine mathematics, prior to build-
ing algebraic understanding.
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Additive operations: Models to numeric methods

If you watch primary age children exploring basic operations such as ad-
dition and subtraction without being taught formal “rules”, you will be as-
tonished how many great methods they can come up with. (See for exam-
ple, Constance Kamii’s book Children Reinvent Arithmetic). These ways
not only increase overall number sense, they are also very useful for mental
math facility, as the 18 + 25 example illustrated.

A models and reasoning approach can also be used to develop the “tra-
ditional” or standard addition and subtraction procedures. It should be noted
however that unlike some classroom perceptions, these “standard” proce-
dures are somewhat culturally-based. For example, I have taught students
from a number of other countries who were taught a different “standard”
subtraction procedure than the usual North American one.

Let’s try the 18+25 calculation again with base ten blocks. Ideally, fol-
low along with concrete materials, drawings, or with a virtual manipulatives
platform.

The fundamental action associated with addition is combining. So to
model the addition operation, we can model each of the amounts 18 and 25
with base ten blocks and then combine the amounts into one representation.
Already we see that the order of the traditional method of starting with the
units or ones is not likely the method we would choose if we were doing
mental math, such as when shopping. If we were adding 18 and 25, we
would most likely add the 10 and 20 first, which are the most significant
parts of the numbers, or possibly first adding 2 from the 25 to the 18 to make
20 and 23. (If you’re like me, you might find that by the end of this chapter,
your reliance on these standard methods might have shifted to ones you find
more useful!).

See if you can model the standard method for the calculation 18 + 25
using base ten blocks (or drawings of them). Pay particular attention to the
decomposing step, in which a group of ten units is “traded” for a “long”.
While the term ”regrouping” was used in the past, teachers are now being
encouraged to use the more mathematically accurate term ”recomposing”
for this same process.

Once you have created the model, see if you can make an explicit link
to the traditional numeric procedure. You may now find the writing of the
recomposed amount (often a small “1” at the top of a column) is something
that could easily cause a mistake.
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Ex. 2-1

11 8
+ 2 5
4 3

Based on the model, I have found myself writing traditional addition
calculations like this instead:

Ex. 2-2
1 8

+ 2 5
1 3←the “recomposed” ten, written as the actual value rather than a
3 0 tiny “1” above
4 3

Activity 2-2:
Try adding 136 + 278 in as many ways as you can. You might use an

invented numeric method or two, a model, and the standard method.

While addition involves combining, subtraction can represent a number
of actions. Brainstorm a quick list of what subtraction might mean.

You might have listed interpretations such as remove (or take away),
compare or how far apart. It is important that students have seen all these
ideas in early years, because all will be useful later. For example, while take
away is often an early way to think about subtraction, ensuring that students
see other problems such as those involving change, comparison or distance
will become very important later, such as with integer subtraction. For ex-
ample, the 5 – 3 operation can be thought of as “how much farther is 5 than
3” on the number line:

Fig.2-4

0 1 2 3 4 5 6

The example in Activity 2-1, #2 illustrated a student calculating 306-189
by calculating the easier answer to 307–190. This method can be understood
if we simply think of sliding the two numbers one unit to the right on the
number line–the distance between them is preserved. A student using this
method and asked to “show their work” might well draw a number line with
the values indicated, which is an excellent way to illustrate this thinking.

It is critical for teachers to understand that just because we have done a
particular traditional procedure many times and thus find it “easy”, students
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won’t necessarily find the traditional method the easiest one. In fact, as with
the number line example just discussed, sometimes it isn’t! For example, the
calculation 1001–999 would be very difficult with the standard procedure–
and yet is simple when we think about comparing, or adding up from 999.
In fact there are other “standard” methods than the typical North American
ones. I have met students from other countries who have learned a different
“standard” method for subtraction. Try it with 123− 86:

Ex. 2-3

11 21 3
− 1 89 6

3 7

Can you figure out what is going on? If not, you may be feeling like many
students first feel when first presented with the standard method in North
America. We’ll come back to this method after exploring other ways to sub-
tract.

Activity 2-3: Further explore 123–86 using
1. An invented numeric method of your own
2. A model with base ten blocks
3. The standard North American numeric procedure
4. The equal additions method above. (Hint – the first step which makes

“3” into “13” is compensated for by subtracting an extra ten later –
the 80 to be subtracted becomes 90.)

As with addition, students are very good at coming up with their own
methods, and these methods can be helpful and generative for developing
later concepts. For example, a grade 6 teacher recently shared this method
with me which came from one of her students:

Ex. 2-4

123–86 = 40–3 = 37

Can you figure out the student’s thinking? (See Hint 1 at the end of the
chapter if you are stuck!)

Multiplicative operations: The area model

One of the ways that multiplication is often introduced is by “repeated addi-
tion”. While it is true that 2×3 can be thought of as “two groups of 3” or “2
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added three times” or even “three groups of 2”, theseways tend to rely at least
partly on additive reasoning. However, if we are thinking of “two groups of
3”, we don’t model both the 2 and the 3 as separate values with counters as
when adding. Rather, we start with 3, and then the ”2×” operates on the 3.
This thinking will be important when thinking about multiplying fractions.
In fact, there is more to multiplicative reasoning than adding groups. Take a
moment to brainstorm all the ways you might think about multiplication.

Multiplicative reasoning relates to area, dimensions, ratios, proportion,
division, and many other things. It is fundamental to a conceptual under-
standing of algebra. Here is a very important model called the “area model”
representation of 2× 3.

Ex. 2-5

2

3

The area model is a critically important model to illustrate the product of
two quantities, and continues to be useful in higher grades. The area model
has an immediate connection to rectangular area, hence its name. The two
factors (here, 2 and 3) form the measures of the sides of the rectangle, and
the associated rectangular area represents the product.

The area model also makes it clear that multiplication can be done in
either order. We see that multiplying by something can be thought of as
increasing the dimension of the original quantity. This illustrates “multi-
plicative thinking”. In the area model, each value forms the side length of a
rectangle, and the answer is the area inside the rectangle formed.

Multiplicative reasoning is also critically important for understanding
fractions. For example, if a student seeking to model 1

2 ×
2
3 begins by mod-

elling both the quantities, here one-half and two-thirds, they may be thinking
additively. Alternately, if they are able to think “one half of two-thirds”,
then they may begin by representing only the two-thirds quantity (perhaps
with fraction manipulatives), and then modelling the multiplication by tak-
ing one-half of that amount. This sequence involvesmultiplicative thinking,
which should be conceptually developed with whole numbers prior to work-
ing with other numbers and quantities.

When working with whole numbers, the area model can in fact be used
to generate the traditional multiplication procedure. But even more impor-
tantly for intermediate teachers, it can also provide a basis for the construc-
tion of fraction multiplication, multiplication of algebraic expressions, and
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later, even algebraic techniques such as factoring, simplifying and so on. Vi-
sual models such as this can also be helpful in helping students understand
expressions such as 2x, and also x multiplied by x, (sometimes written x2).
Grade 9 teachers working with students who have been taught traditionally
often notice students confusing x2 with 2x. The critical difference here is
that the first term, x2, involvesmultiplication by xwhile the second, 2x, can
be thought of as adding x’s, or multiplying by 2.

Fig. 2-5

2

x

x

x

Activity 2-4:
Use an invented numeric method to answer 12× 14. Now redo the cal-

culation with the standard numeric method you remember being taught in
school. Thirdly, use drawings, or base ten blocks, to model 12× 14 with an
area model. Remember, the 12 and 14 form the length of the sides of the
rectangle, when forming an area model.

Let’s further explore the area model, and explore how that model could
actually be used to generate the traditional procedure with students (rather
than “explaining” to students the “steps” in the procedure, after presenting
the procedure to students).
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Perhaps your area model in Activity 2-4 looked something like this:
Fig. 2-6

10× 10 = 100

10

10

10

10

1
0

1
0

14

12

10

10

2

4

+

+

The calculation 12 × 14 can be thought of as four separate calculations,
as can be found in the areamodel above. The following somewhat simplified
version of the area model shows how the four sub-products are generated.
These can be added up in any order.


