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PREFACE 
 
 
 

This book presents the theory necessary for the understanding, 
implementation and use of Fourier series and Fourier transforms. The 
content is aimed at both beginners and people familiar with the 
theory of Fourier analysis. The theory is presented in the simplest 
and most focused manner possible so as not to weigh down the 
content with generalities that span multiple disciplines. We have 
avoided burdening this content with rigorous mathematics such as 
definitions and names of sets, theorems and other postulates. We 
have supported the theory with several examples, solved exercises 
and programming in Matlab throughout the content. We have 
privileged the understanding of Fourier transforms which is done by 
calculations and applications rather than by analytical developments. 

The programs written in Matlab in a simple and concise way allow 
even those who have never used Matlab to apply them. These 
programs are accompanied by an introduction to Matlab. The main 
purpose of these programs, other than to display the results, is that 
the user can implement them by modifying certain parameters in 
order to observe their effects, and this allows the reader to better 
understand the influence of these parameters. In other words, the 
reader can use these programs for simulation purposes, which will 
increase their understanding of both the mathematics and the 
phenomena intended by the applications. 

Usually equations are written as two members per line or they are 
separated by punctuation. In this book, we have written the 
equations repeatedly where multiple members are separated by an 
equal sign (=) and may span more than one line in some cases. This 
choice is made so as not to repeat the handwriting of the members 
with each mathematical development and also to save space. From 
a reading point of view, we believe that it is easier to move from one 
member to the next when the equations are written in chain. 
Additionally, we have written as many reasonable steps as possible 
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in solving equations to allow for easy switching from one equation to 
another.  

The examples and exercises provided in this book are among the 
simplest in order to understand the theory and facilitate their 
programming.  Some exercises are classical and elementary and can 
be found in several references. The reference books for this work 
that we have consulted most often are those of Morrison 
(Introduction to Fourier analysis. Norman Morrison, 1994) [1], of Hsu 
(Applied Fourier analysis. Hwei P. Hsu, 1984) [2], of Howell 
(Principles of Fourier analysis. Kenneth B. Howell, 2001) [3], of 
Spiegel (Analyse de Fourier et application aux problèmes de valeurs 
aux limites. Spiegel, Murray R, 1974) [4] and of Bracewell (The 
Fourier transform and its applications. Ronald Bracewell, 2000) [5]. 

For safe and effective practices, it should be noticed that the 
texts, equations and applications in this book do not commit the 
author or the publisher in any way as to their accuracy and that users 
should verify this before any use in particular applications. 



SUMMARY 
 
 
 
Fourier series and Fourier transforms are widely used in several 

fields for signal and image processing. Stated in a simple way, 
Fourier series allow to represent functions as a sum of cosine and 
sine functions. This representation is very useful especially in the 
case of numerical functions. On the other hand, Fourier transforms 
allow to discriminate functions according to their frequency. In this 
handbook, the understanding of Fourier series begins with the 
introduction of complex numbers in their different forms: algebraic, 
trigonometric and exponential. The analytical, discrete and fast 
Fourier transforms are initially described by simple numerical 
procedures in order to follow the different operations and to be able 
to visualize the correspondence between time or space and the 
frequency domain. The origin of filters is demonstrated with 
electronic circuits. Filters determined with Fourier analysis and other 
filters related to the frequency domain are studied and applied to 
functions and medical images of different formats. All the concepts 
are presented with basic analytical and numerical examples, backed 
with exercises with direct calculations and with programming in 
Matlab, and by depicting in 185 figures of diagrams, graphs and 
images. The simplicity in the introduction of the definitions helps the 
reader to conceptualize the theory and to understand its application. 
This handbook is intended to be a guide for students, teachers and 
researchers. 

 





Chapter I. Complex Numbers 

 

 
 

I.1 Brief history of complex numbers 

Imaginary numbers first appeared in the 1st century AD when the 

Greek mathematician Heron of Alexandria was trying to calculate the 

volume of a truncated pyramid and had to calculate the number 

√81 − 144. He had then evaded the problem by eliminating the 

negative sign under the radical.  

It was not until the 16th century that imaginary numbers 

reappeared when Italian mathematicians tried to solve equations of 

the third degree and above. Scipione del Ferro (1465 - 1526) 

considered the solutions to equations with square roots of negative 

numbers as impossible [6]. Nicolo Fontana, called Tartaglia (1500 - 

1557), Girolamo Cardano (1501 - 1576), Ludovico Ferrari (1522 - 

1565) and Raphaël Bombelli (1526–1573) [7] faced the same 

dilemma and recognized the existence of square roots of negative 

numbers, but they did not come up with solutions. They solved the 

equations of the third degree according to the method attributed to 

Cardano: 𝑥3 + 𝑝𝑥 + 𝑞 = 0, and that of the 4th degree according to 

the Ferrari method: 𝑎𝑥4 + 𝑏𝑥3 + 𝑐𝑥2 + 𝑑𝑥 + 𝑒 = 0. They found 

solutions to these equations having their square as a negative 

number. Later, in 1637, René Descartes named these solutions 

imaginary solutions. In the 18th century, Abraham de Moivre and 

Leonhard Euler consolidated the concept of complex numbers [6]. 
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I.2 Definition 

The problem posed to the 16th century algebraists was to solve 

second and third degree equations. 

Let the equation of the second degree consists of the real 

constants 𝑎, 𝑏 and 𝑐, and the variable 𝑥 (eq. I.1):  

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0                                                                        eq. I.1 

It is to calculate the values of the unknown variable 𝑥 which allow 

to verify this equality. Since the variable is of degree 2, which is the 

highest exponent of the variable 𝑥, then this equation admits two 

solutions, 𝑥1 and 𝑥2 so that these two values verify eq. I.1: 

𝑎𝑥1
2 + 𝑏𝑥1 + 𝑐 = 0 and 𝑎𝑥2

2 + 𝑏𝑥2 + 𝑐 = 0. 

To calculate the solutions (roots) of this equation, we define the 

discriminant 𝐷: 

 𝐷 = 𝑏2 − 4𝑎𝑐                                                                                        eq. I.2 

The roots are then given by: 

𝑥1,2 =
−𝑏±√𝐷

2𝑎
=

−𝑏±√𝑏2−4𝑎𝑐

2𝑎
                                       eq. I.3 

According to this notation, the root 𝑥1 is obtained with the + sign 

preceding the square root in the numerator, and 𝑥2 is obtained with 

the − sign. There is no inconvenient in assigning to 𝑥1 the − sign 

and to 𝑥2 the + sign. The essential is to find the two roots 𝑥1 and 𝑥2. 

In eq. I.3, the quantity under the square root can be negative, 

which drives us to the imaginary numbers, because it is not possible 

to have a negative value as a square of a real number. If the 

discriminant 𝐷 is negative, we can rewrite it as 𝐷 = −1 ×  𝐷1, with 

𝐷1 > 0. Thus, it is possible for us to calculate the square root of the 
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positive number 𝐷1, but we need to calculate the square root of −1 

in order to be able to calculate the square root of the discriminant 𝐷. 

It is at this level that the imaginary numbers intervene, by posing: 

𝑖2 = −1                   eq. I.4 

Thus, the discriminant 𝐷 can be expressed in the form: 

𝐷 = −𝐷1 = −1 × 𝐷1 = 𝑖
2 × 𝐷1 

Now, with this new definition, it is possible to calculate the square 

root of the discriminant 𝐷, whether positive or negative. If 𝐷 > 0, its 

square root is real, and if 𝐷 < 0, its square root is imaginary, i.e. it 

contains the imaginary number 𝑖. 

As long as we can transform −1 into 𝑖2, we are able to calculate 

all the roots of polynomials of different orders. 

For example, the square root of a real number 𝑎: √𝑎2 = ±𝑎. 

Example: √22 = ±2. If the number is negative: √−22 = √𝑖222 = ±2𝑖. 

After we have introduced the imaginary numbers, let us go back 

to solving eq. I.1. The solutions or roots 𝑥1 and 𝑥2 are indicated by 

eq. I.3. We can predict three types of roots according to the sign of 

the discriminant 𝐷: 

1.  𝑥1,2 are real and distinct roots if 𝐷 > 0. 

2.  𝑥1=𝑥2 are real roots if 𝐷 = 0. 

3.  𝑥1,2  are complex conjugate roots if 𝐷 < 0. Here the conjugate 

word means the imaginary parts have opposite signs, these are 

the signs  which are in front of the square root of the 

discriminant in eq. I.3. A number that contains an imaginary part 

is called a complex number. We will come back to this a little later. 
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Find the roots of 𝑥2 − 3𝑥 − 4 = 0. Answers. This polynomial is of 

the form 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 where 𝑎 = 1, 𝑏 = −3, 𝑐 = −4. 

The discriminant value is: 𝐷 =  𝑏2 − 4𝑎𝑐 =  (−3)2 −

 4  1  (−4) =  25. 

The roots are given by eq. I.3: 𝑥1,2 =
−𝑏±√𝐷

2𝑎
=

−(−3)±√25

2
, as 𝑥1 = 4 

and 𝑥2 = −1. Let us see if these two roots satisfy the given equation. 

Let us use first 𝑥1: 𝑥1
2 − 3𝑥1 − 4 = 0. Replacing 𝑥1 by its value: 42 −

3 × 4 − 4 = 0, which is true, the equation value is 0. Now let us 

replace 𝑥 par 𝑥2: 𝑥2
2 − 3𝑥2 − 4 = 0, giving (−1)2 − 3 × (−1) − 4 = 0 

which evidently gives 0. 

  

Find the roots of 𝑥2 −  3𝑥 +  3 =  0. Answers. This polynomial is 

of the form 𝑎𝑥2 +  𝑏𝑥 + 𝑐 =  0. 

The discriminant is: 𝐷 =  𝑏2 −  4𝑎𝑐 =  (−3)2 −  4 ×  1 ×  3 =  −3. 

We find that 𝐷 < 0, this means that the square root of the 

discriminant gives an imaginary number, and the solutions are two 

complex conjugate numbers given by 𝑥1,2 =
−𝑏±√𝐷

2𝑎
=

−(−3)±√−3

2
 which 

are 𝑥1 =
3

2
+ 𝑖

√3

2
;  𝑥2 =

3

2
− 𝑖

√3

2
. 

The form of these two roots informs us about two notions: 

1.  these two roots appear identical except that the signs in front of 

the imaginary part are opposite, a + for 𝑥1 and a − for 𝑥2. This is 

what we earlier called complex conjugate roots. 

2.  The two roots are made up of two terms. The first is real, that is 

the number 
3

2
, and the second is imaginary because it is multiplied 
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by 𝑖, that is 𝑖 √ . The sum of these two terms forms a complex 
number. A complex number is therefore formed of a real part and 
an imaginary part, that is in a general form: 𝑧 𝑎 𝑖𝑏, with 𝑎 
and 𝑏 belonging to the set of real numbers  (𝑎, 𝑏 𝜖  . 

Application with Matlab 

Since the calculations are quick and easy in the examples Example 
I.2.1 and Example I.2.2 and they do not require writing a program 
(function), it is faster to do the calculations in the Matlab command 
window (Matlab command window, which we abbreviate as MCW). It 
suffices then to type the following texts, according to the examples: 

p=[1 -3 -4], r=roots(p), 

and Matlab displays: 

p =  1    -3    -4 
r =  4     -1 

 
Here, we have defined a vector 𝑝 in which we put the values 1, 

3 and 4 which are the coefficients of our polynomial in Example 
I.2.1. Next, we used the Matlab function roots which allows to 
calculate the roots that we called 𝑟. The Matlab display gives the 
values of 𝑝 and 𝑟. If we followed the equation of 𝑝 and 𝑟 with a 
semicolon instead of a comma, Matlab would not have displayed 
anything: p = [1 -3 -4]; r = roots (p); and in this case, by typing the 
name of the variable 𝑝 or 𝑟, Matlab displays its value. 

The way you do the calculations in MCW does not allow you to 
remember these calculations or to reuse them on another day. It is 
also not convenient to type long text. We then proceed by creating 
a text file by typing in MCW: edit example_I1. Matlab then displays 
a window to confirm the creation of a new file. We click on 𝑌𝐸𝑆 to 
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create a new file. The new file opens in the Matlab editor. We type 
the following text: 

function [p,r]=example_I1 
p=[1 -3 -4]; 
r=roots(p); 

Then, we save the file by clicking on 𝐹𝑖𝑙𝑒  𝑆𝑎𝑣𝑒 𝑎𝑠 and choosing 
the name example_I1.m and the directory C:\user\fourier where to 
save the file. We see that the edited file has an .m extension 
associated with it. 

To be able to run the example_I1.m file, we must first tell Matlab 
in which folder this file is located with the addpath command, by 
typing in MCW: addpath C:\user\fourier -end if for example your file 
has been saved in the C:\user\fourier directory. The declaration with 
addpath is only done once during a work session so that Matlab can 
locate the file. 

To run the newly created file, we type in MCW: [p, r] = 
example_I1; then, to display the results, we type the variables 𝑝 or 𝑟. 

To implement Example I.2.2, we take the same procedure as for 
Example I.2.1: edit example_I2;. Once the example_I2.m file has 
been created, enter the following text in it then save the file: 

function [p,r]=example_I2 
p=[1 -3 3]; 
r=roots(p); 

To run the file, in MCW, type: [p,r]=example_I2, and Matlab 
displays: 

p = 
     1    -3     3 
r = 
   1.5000 + 0.8660i 
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   1.5000 - 0.8660i 

We now want to generalize the program example_I1.m and call it 

example_roots1.m to do the same calculations as example_I1.m and 

example_I2.m. First, we create the program example_roots1.m by 

opening example_I1.m, then saving it with this new name, 

example_roots1.m. In example_roots1.m which is already open, 

remove the declaration for 𝑝, and keep only the line r=roots (p);. We 

must also replace the header of the function function 

[p,r]=example_I1 with function r=example_roots1(p). So we provide 

the variable 𝑝 to example_roots1.m and the program returns the 

variable 𝑟. If the file is not open, we first make sure that the folder or 

directory where this file is located is in the list of directories of Matlab. 

To see this list, type the path command in MCW. If it isn't, add it by 

typing in MCW: addpath C:\user\fourier -end, where C:\user\fourier 

is the name of the directory where the program is located. If it has 

been closed, the file can be opened by typing in MCW the name of the 

file: edit example_roots1. To run the example_roots1.m program, we 

need to supply it with the vector 𝑝. This is done as follows in MCW: p 

= [1 -3 -4]; r = example_roots1(p);. To see the result, we type in 

MCW 𝑟. The example_roots1.m program or function can now calculate 

any roots of polynomials by entering the values of 𝑝. 

Possible confusions 

In some works, 𝑗 represents the complex value instead of 𝑖, as in 

electricity, where the letter 𝑖 designates the intensity of the electric 

current. 

The letters 𝑖 and 𝑗 could be used as the unit vectors of a 

coordinate system in 2D, in this case, we choose 𝑢 and 𝑣 as unit 

vectors (or 𝑒1 and 𝑒2  etc.). 
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In some software, the letter 𝑖 is reserved for the complex unit 

value (as in Matlab), we must distinguish it from the variable used in 

the calculation loops. 

Also, Matlab recognizes 𝑗 as much as 𝑖 as a complex number. By 

typing in the command window 𝑖, or 𝑗, Matlab displays: 

i 
ans =         0 + 1.0000i 

j 

ans =         0 + 1.0000i 

By definition, a complex number is a number composed of a real 

part and an imaginary part: 𝑧 =  𝑎 +  𝑖𝑏 where 𝑎 is the real part and 

𝑖𝑏 is the imaginary part because it contains the imaginary 𝑖. To start, 

we will consider the coefficients 𝑎 and 𝑏 as real constants. 

I.3 Geometric representation of complex 

numbers 

The complex number 𝑧 = 𝑎 + 𝑖𝑏, with 𝑎 and 𝑏 real, can be written 

in a compact form 𝑧 = (𝑎, 𝑏). This writing reminds us of writing a 

point in a coordinate system according to its coordinates along the 𝑥 

and 𝑦 axes. Also, we can call 𝑎, the real part of 𝑧, 𝑎 = 𝑅𝑒(𝑧), and 𝑏, 

the imaginary part of 𝑧, 𝑏 = 𝐼𝑚 (𝑧) (with Matlab: z=4+6i; real(z) 

displays 4 and imag(z) displays 6). 

By plotting the complex number 𝑧 in a frame formed by the axis 

of real numbers represented by the usual 𝑥-axis, and by the 

imaginary number axis represented by the usual 𝑦-axis. Thus, the 

coordinates of 𝑧 are 𝑎, along the real axis, and 𝑏, along the imaginary 

axis. Fig. I-1 presents the complex number 𝑧 = 2 + 3𝑖, where 𝑎 = 2 

and 𝑏 = 3. 
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A complex number is characterized by its coordinates 𝑎 = 2 and 

𝑏 = 3 in Fig. I-1, by its modulus |𝑧| which is given by |𝑧| =

√𝑎2 + 𝑏2 = √22 + 32 = √13 according to the Pythagorean rule, and 

finally by its argument, that is, by its angle made by the vector 

starting from the coordinates (0,0) towards the coordinates (2,3) with 

the axis of the reals, as 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
) = 𝑎𝑡𝑎𝑛 (

3

2
), where 𝑎𝑡𝑎𝑛 is the 

arc tangent. 

 

Fig. I-1. Graphic representation of a complex number. The real part is carried 
by the x-axis, and the imaginary part is carried by the y-axis. 

Note that we write 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
) and the result is given in degrees 

most of the time (in Matlab we have to write θ=atand (b/a) to get 

the angle in degrees, and θ=atan(b/a) gives the angle in radians. 

Example: d=atand(3/2) gives 56.31 degrees, r=atan(3/2) gives 0.98 

radians and d=r*180/pi  gives  56.31 degrees). In the following, we 

write 𝑎𝑡𝑎𝑛 for both degrees and radians. In other cases where the 

expression in radians is usual, we use the angles in radians. A 

complex number can therefore be represented by its coordinates 𝑎 

and 𝑏, or by its modulus |𝑧| and its argument 𝜃. The relation between 

these two representations is given by: 

|𝑧| = √𝑎2 + 𝑏2

𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
)
                                                                                       eq. I.5 
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Note that it is possible to calculate the argument using the 

modulus and the sine and cosine functions: 

|𝑧| = √𝑎2 + 𝑏2 

𝜃 = acos (
𝑎

|𝑧|
) 

𝜃 = asin (
𝑏

|𝑧|
) 

If you use the latter option, be sure to calculate the argument 

with the cosine and sine to determine the sign of the angle.  

  

Let the complex number be 𝑧 = 3 + 5𝑖. a) Calculate its modulus 

and its argument. b) Represent 𝑧 graphically. Answers. a) The 

modulus of 𝑧 is: |𝑧| = √32 + 52 = √34 = 5.8.  

The argument of 𝑧 is: 𝜃 = 𝑎𝑡𝑎𝑛 (
5

3
) = 59°. 

b) Graphic representation of 𝑧. 

 

Fig. I-2. Graphical representation of 𝑧 =  3 +  5𝑖. The real part is carried by 

the x-axis and is 3, and the imaginary part is carried by the y-axis and is 5. 
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By convention, positive angles are counted in the trigonometric 

direction, i.e. counterclockwise. Negative angles are counted 

clockwise. The origin of the angles being the x-axis or the real axis 

in the case of complex numbers. Fig. I-3 shows two angles 𝜃 and 𝜙, 

with 𝜃 > 0 and 𝜙 < 0. These two examples are illustrated by the 

complex numbers 𝑧1 = 3 + 5𝑖 and 𝑧2 = 3 − 5𝑖. 

The arguments of 𝑧1 and 𝑧2 are calculated as before with the 

formula 𝜃 = 𝑎𝑡𝑎𝑛 (
5

3
) = 59° and 𝜙 = 𝑎𝑡𝑎𝑛 (

−5

3
) = −59°. On the other 

hand, the moduli of 𝑧1 and 𝑧2 are the same: |𝑧| = √32 + 52 =

√32 + (−5)2 = √34 = 5.8. 

 

Fig. I-3. Graphical representation of 𝑧1 = 3 + 5𝑖 and 𝑧2 = 3 − 5𝑖 with their 

moduli |𝑧1| and |𝑧2|, as well as their angles 𝜃 and 𝜙. 

We note that these formulas do not tell us about the true position 

of 𝑧. Let us compare the moduli and arguments of the numbers 𝑧1 =

3 + 5𝑖 and 𝑧4 = −3 − 5𝑖. These two numbers have the same moduli 

and arguments calculated by the formulas |𝑧| = √𝑎2 + 𝑏2 and 𝜃 =

𝑎𝑡𝑎𝑛 (
𝑏

𝑎
), either |𝑧1| = |𝑧4| = 5.8 and 𝜃1 = 𝜃4 = 590, and they would 

be superimposed in the graph. The same thing happens to the 
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numbers 𝑧3 = −3 + 5𝑖 and 𝑧2 = 3 − 5𝑖, |𝑧3| = |𝑧2| = 5.8 and 𝜃3 =

𝜃2 = −590. On the other hand, the coordinates clearly indicate 

different positions of these four numbers 𝑧1, 𝑧2, 𝑧3 and 𝑧4 on the 

chart (Fig. I-4). 

Since the argument as calculated by 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
) indicates only 

the angle that the complex number makes with the axis of the reals, 

we must refer to the geometric representation to calculate the 

argument. Fig. I-4 shows the arguments of the following complex 

numbers as calculated by 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
): 𝑧1 = 3 + 5𝑖, 𝑧2 = 3 − 5𝑖, 

𝑧3 = −3 + 5𝑖, and 𝑧4 = −3 − 5𝑖, and Fig. I-5 shows the true 

arguments of these same numbers based on the graphs. The 

arguments of Fig. I-5 are: 𝜃1 = 59
0,  𝜃2 = 3600 − 590, 𝜃3 = 1800 −

590,  𝜃4 = 1800 + 590.  

These same angles can be expressed in another way using positive 

and negative angles at the same time (here we are talking about 

angles and not arguments): 𝜃1 = 590,  𝜃2 = −59
0,  𝜃3 = 180

0 − 590,

𝜃4 = 1800 + 590. What emerges from these new expressions are the 

symmetries with respect to the axis of the reals. Thus  𝑧1 and 𝑧2 are 

symmetrical, and the same for the pair 𝑧3 and 𝑧4. This observation is 

also present in the algebraic expressions of these four numbers where 

the imaginary parts are of opposite signs, so 𝑧1 and 𝑧2 are complex 

conjugate numbers, and likewise for 𝑧3 and 𝑧4. 

Clearly, the four numbers have identical moduli, either |𝑧| =

√32 + 52 = √32 + (−5)2 = √(−3)2 + 52 = √(−3)2 + (−5)2 = √34 =

5.8, and separate arguments that distinguish them as set out in Fig. 

I-5: 𝜃1 = 59
0,  𝜃2 = 3600 − 590 = 3010, 𝜃3 = 1800 − 590 =

1210,  𝜃4 = 1800 + 590 = 2390.  
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We can establish a simple rule to calculate the argument of a 

complex number 𝑧 = 𝑎 + 𝑖𝑏. Let be the angle 𝛼 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
), the 

argument of 𝑧 is:  

𝜃 = 𝛼,                        𝑖𝑓 𝑎 ≥ 0, 𝑏 ≥ 0,     1𝑠𝑡  𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 

𝜃 = 180 − 𝛼,           𝑖𝑓 𝑎 < 0, 𝑏 ≥ 0,     2nd 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 

𝜃 = 180 + 𝛼,           𝑖𝑓 𝑎 ≤ 0, 𝑏 < 0,     3rd 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 

𝜃 = 360 − 𝛼,           𝑖𝑓 𝑎 > 0, 𝑏 < 0,     4th 𝑞𝑢𝑎𝑑𝑟𝑎𝑛𝑡 

 

Obviously, a complex number whose imaginary part is 0 is a pure 

real number, and a complex number whose real part is 0 is a pure 

imaginary number. For example 𝑧1 = 𝑎 and 𝑧2 = 𝑖𝑏. The graphical 

representation of a purely real number has only one component 

along the axis of the reals, and the purely imaginary number has a 

component along the axis of the imaginaries. The modulus is the 

component itself, i.e. |𝑧1| = √𝑎2 = 𝑎 for 𝑧1 = 𝑎, and |𝑧2| = √𝑏
2 = 𝑏 

for 𝑧2 = 𝑖𝑏, while the argument 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
) could encounter specific 

difficulties. Indeed, for 𝑧1 = 𝑎, 𝜃 = 𝑎𝑡𝑎𝑛 (
𝑏

𝑎
) = 𝑎𝑡𝑎𝑛 (

0

𝑎
) = 0. This can 

be verified graphically where the angle is along the axis of the reals. 

For 𝑧2 = 𝑖𝑏, the argument calculated according to the formula 𝜃 =

𝑎𝑡𝑎𝑛 (
𝑏

𝑎
) = 𝑎𝑡𝑎𝑛 (

𝑏

0
) = 900. Note that the expression 

𝑏

0
 is 

undetermined. 
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Fig. I-4. Graphical representation of 𝑧1 = 3 + 5𝑖, 𝑧2 = 3 − 5𝑖, 𝑧3 = −3 + 5𝑖, 
and 𝑧4 = −3 − 5𝑖. 

 

Fig. I-5. Graphical representation with the geometric arguments of 𝑧1 = 3 +
5𝑖, 𝑧2 = 3 − 5𝑖, 𝑧3 = −3 + 5𝑖, and 𝑧4 = −3 − 5𝑖. Observe the angles that 

start from the axis of the reals counterclockwise to the line of 𝑧. 

I.4 Operations on complex numbers 

Complex numbers, being numbers operated like real numbers, 

are considered in various operations. Below we expose the main 

operations with complex numbers. 
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Addition 

The addition is done by summing the real parts together and the 

imaginary parts together. Let be the numbers 𝑧1  =  𝑎1  +  𝑖𝑏1;  𝑧2  =

 𝑎2  +  𝑖𝑏2. Their sum gives the number 𝑧3 such as:  

𝑧3 = 𝑧1  +  𝑧2  =  (𝑎1 + 𝑎2) +  𝑖(𝑏1 + 𝑏2) 

which can be written in a compact form: 𝑧3 = (𝑎1 + 𝑎2, 𝑏1 + 𝑏2). 

  

1. 𝑧1 = 4 +  𝑖;  𝑧2 =  3 +  3𝑖. Their sum gives 𝑧3 = 𝑧1 + 𝑧2 = (4 +

3) + 𝑖(1 + 3) = 7 +  4𝑖. 

2. 𝑧1 =  4 − 𝑖; 𝑧2 =  3 + 3𝑖. Their sum gives 𝑧3 = 𝑧1 + 𝑧2 = (4 + 3) +

𝑖((−1) + 3) = 7 + 2𝑖. 

The graphical representation of these two examples is displayed 

in Fig. I-6. The sum of the real parts between them and the 

imaginary parts between them is equivalent to determining the total 

real and total imaginary components on the graph, and the number 

sum 𝑧3 appears as the diagonal of the parallelogram formed by the 

two starting numbers 𝑧1 and 𝑧2. 

3. 𝑧1 = 4 − 2𝑖; 𝑧2 = 3 + 3𝑖; 𝑧3 = 5 + 2𝑖; 𝑧4 = −6 − 5𝑖. Their sum 

gives 𝑧5 = 𝑧1 + 𝑧2 + 𝑧3 + 𝑧4 = (4 + 3 + 5 − 6) + 𝑖((−2) + 3 + 2 +

(−5)) = 6 − 2𝑖. 

It is not necessary from now on to write +(−5) as in the previous 

operation, we will simply write −5. 

It is difficult to represent the graph of the sum of four or more 

complex numbers, it would overload the figure. However, and since 

the addition is associative, it is possible to group numbers two by 

two and sum them sequentially. For example, one can obtain a 

number by summing 𝑧1 and 𝑧2 to obtain 𝑧6, and by summing 𝑧3 and 
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𝑧4 we obtain 𝑧7, then we sum 𝑧6 and 𝑧7 to obtain 𝑧5 as in example 3 

above. 

Just like real numbers, complex numbers can be located in a 

coordinate system based on their coordinates 𝑎 and 𝑏 as in 𝑧1 = 𝑎1 +

𝑖𝑏1 and 𝑧2 = 𝑎2 + 𝑖𝑏2, and we can evaluate the distance from 𝑧1 to 

𝑧2. We have seen that the modulus of 𝑧1 is √𝑎1
2 + 𝑏1

2. This can be 

considered as the distance from the point (0,0) to the point (𝑎1, 𝑏1), 

either the modulus or the length. The calculation of this distance is 

equivalent to making the difference between the point 𝑧1 = 𝑎1 + 𝑖𝑏1 

and the point of origin (0,0), either |𝑧1 − 0| = |(𝑎1 + 𝑖𝑏1) −

(0 + 𝑖 × 0)| = |(𝑎1 − 0) + 𝑖(𝑏1 − 0)| = √𝑎1
2 + 𝑏1

2. 

Now, in a similar way, consider the distance between 𝑧1 and 𝑧2, 

either |𝑧1 − 𝑧2| = |(𝑎1 + 𝑖𝑏1) − (𝑎2 + 𝑖𝑏2)| = |(𝑎1 − 𝑎2) + 𝑖(𝑏1 − 𝑏2)| 

= √(𝑎1 − 𝑎2)
2 + (𝑏1 − 𝑏2)

2. Fig. I-7 shows numbers 𝑧1 = 3 + 2𝑖 and 

𝑧2 = 1 + 4𝑖 as points in the coordinate system affected by their 

vectors from the origin. 

 

Fig. I-6. Graphical representation of (upper) 𝑧1 = 4 + 𝑖, of 𝑧2 = 3 + 3𝑖 and 

their sum 𝑧3 = 7 + 4𝑖, and of (lower) 𝑧1 = 4 − 𝑖, of 𝑧2 = 3 + 3𝑖 and their sum 

𝑧3 = 7 + 2𝑖. 

The distance is calculated as 𝑑 = |𝑧1 − 𝑧2| =

√(3 − 1)2 + (2 − 4)2 = √8. Also notice that the complex number 𝑧 =

𝑧1 − 𝑧2 has for coordinates 𝑧 = 𝑧1 − 𝑧2 = (3 + 2𝑖) − (1 + 4𝑖) =
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(3 − 1) + 𝑖(2 − 4) = 2 − 2𝑖. The number 𝑧 is found graphically as the 

diagonal of the parallelogram formed by 𝑧1 and −𝑧2. 

Multiplication 

If the addition is made distinctly between the real numbers and 

the imaginary numbers, the multiplication does not make a 

distinction. A real number can multiply an imaginary number. 

Multiplication between complex numbers is done by multiplying in 

turn the real and imaginary parts of a number by the two real and 

imaginary parts of the other number. 

Let be two complex numbers: 

𝑧1 = 𝑎1 + 𝑖𝑏1;  𝑧2 = 𝑎2 + 𝑖𝑏2. 

The product of 𝑧1 by 𝑧2 is given by: 

𝑧1 𝑧2 = 𝑎1 × (𝑎2 + 𝑖𝑏2) + 𝑖𝑏1 × (𝑎2 + 𝑖𝑏2)

= 𝑎1𝑎2 + 𝑖𝑎1𝑏2 + 𝑖𝑏1𝑎2 + 𝑖
2𝑏1𝑏2

= 𝑎1𝑎2 − 𝑏1𝑏2 + 𝑖(𝑎1𝑏2 + 𝑎2𝑏1)

 

here we used 𝑖2 = −1. 

Among the multiplications of interest in complex numbers, is the 

multiplication of a number by its conjugate. This interest is 

encountered especially when there is a division by a complex 

number, and then we multiply the denominator by its conjugate in 

order to eliminate the imaginary numbers in the denominator. 
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Fig. I-7. Graphical representation of 𝑧 = 𝑧1 − 𝑧2. The vector 𝑧  forms the 

diagonal between vectors 𝑧1⃗⃗⃗⃗  and −𝑧2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  indicated in discontinuous line. 

Let be a complex number 𝑧 = 𝑎 + 𝑖𝑏 where 𝑎 and 𝑏 are real. Its 

conjugate is 𝑧̅ = 𝑎 − 𝑖𝑏. Notice the indication of the conjugate by the 

bar above 𝑧. The multiplication of 𝑧𝑧̅ = (𝑎 + 𝑖𝑏)(𝑎 − 𝑖𝑏) = 𝑎(𝑎 −

𝑖𝑏) + 𝑖𝑏(𝑎 − 𝑖𝑏) = 𝑎2 − 𝑖𝑎𝑏 + 𝑖𝑎𝑏 − 𝑖2𝑏2 = 𝑎2 + 𝑏2. 

  

1. 𝑧1 = 2 + 3𝑖;  𝑧2 = 4 + 5𝑖; 

The multiplication of 𝑧1 × 𝑧2 = 2 × (4 + 5𝑖) + 3𝑖 × (4 + 5𝑖) = 8 +

10𝑖 + 12𝑖 + 15𝑖2 = −7 + 22𝑖. 

2. 𝑧1 = 2 − 3𝑖; 𝑧2 = 4 + 5𝑖; 

Their product 𝑧1 × 𝑧2 = 2 × (4 + 5𝑖) − 3𝑖 × (4 + 5𝑖) = 8 + 10𝑖 −

12𝑖 − 15𝑖2 = 23 − 2𝑖. 

3. 𝑧1 = 2 + 3𝑖; 𝑧2 = 2 − 3𝑖; 

We notice that 𝑧2 is the conjugate of 𝑧1, since they have the same 

real value and an opposite imaginary part. It is customary to name 

𝑧2 like 𝑧1 with a bar: 𝑧2=𝑧1̅, and multiplication is written as 𝑧 = 𝑧1. 𝑧1̅. 


