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Foreword

Boolean variables are the basis of all research, progress, and appli-
cations belonging to the Boolean domain. Boolean variables are the
simplest variables of all because these variables can store only two
different values. In propositional logic the values true and false are
usually used as values of Boolean variables that are also denoted by
logic variables. Descriptions of circuits sometimes use the values H
(high voltage) and L (low voltage) as values of a Boolean variable.
Most often the values 1 and 0 determine the two different values of a
Boolean variable.

Is it beneficial to read a book about advances in the Boolean domain?
The answer to this question is YES. Looking back in the history, schol-
ars, scientists, and engineers tried over a very long time to build a com-
puter and failed. The use of switching elements with only two states
(OFF and ON) facilitated Konrad Zuse’s successful construction of
the first computer. The performance of computers has been strongly
increased since that point in time, but the basis remains switching
elements and circuits that can be described by Boolean variables,
Boolean expressions, Boolean functions, and several representations
of such functions.

An old proverb says “Everything has two sides”. This proverb is also
true in the Boolean domain. The simplicity of Boolean variables on
the one side usually requires on the other side many Boolean variables
to describe a certain problem and a Boolean function of n Boolean
variables determines 2n Boolean function values. Hence, we are faced
in the Boolean domain with an exponential complexity. Successful ap-
proaches that contribute to increased large numbers of Boolean vari-
ables are explained in this book.

Another important view to the Boolean domain relates to the word
“bit” (short for binary digit). A bit is the smallest unit of information
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and represents a logic state with only two values; hence, a bit can be
expressed by a Boolean variable. The new aspect is the transmission
of information using a sequence of bits, i.e., a sequence of values 0
and 1. It is possible to transmit more than 1011 bits per second using
a single optical fiber.

The combination of computers, special digital devices, and trans-
mission channels like wired Ethernet, wireless local area network
(WLAN), digital enhanced cordless telecommunications (DECT),
Bluetooth, and many others has generated a gigantic number of high
quality applications used in our daily lives. We can notice day-to-day
the progress in digitization. Results of the research in the Boolean
domain are often the basis for new digital application that contribute
to a better live.

Both the number of topics of research in the Boolean domain and
the number of recently developed digital applications is so large that
strong selection was required to realize a book of an appropriate size. I
thank all authors of the chapters of this book for their great contribu-
tions and kind collaboration. Their successful research and preparing
the found results in an understandable manner as chapters of this
book are the key that this book could be created as a new highlight
in the Boolean domain.

My thanks go also to Michael Miller for his careful proofreading of the
complete book and all members of the staff of Cambridge Scholars
Publishing for their support and fruitful collaboration in preparing
this scientific book. I hope that the readers enjoy reading this book
and get helpful suggestions for their own future work to reach further
advances in the Boolean domain as well as associated applications.

Bernd Steinbach

Department of Computer Science
Freiberg University of Mining and Technology
Freiberg, Saxony, Germany
April 2022



Preface

The progress in the Boolean domain supports a wide field of applica-
tions in digitization. Many new theoretical insights, concepts, meth-
ods, and tools contribute to this progress. Some of these new results
are presented in this book.

Computers are the main technical basis of digitization due to their
ability to compute and store data. A second important resource of
such applications is the net between computers so that an interchange
of information becomes possible. Data must be protected against at-
tacks while computed, stored, and transmitted. Encryption of data is
an effective approach to protect data against several types of attacks.
Logic functions are used to realize both encryption and decryption
procedures. The achieved protection of the encrypted data against at-
tacks strongly depends on the properties of the logic functions used.
The three chapters of Part I contribute new results of research to
increase cyber security.

Boolean functions, also denoted as logic functions or switching func-
tions, assign a Boolean value 0 or 1 to each of the 2n different vectors
of n Boolean values. Such functions play a central role in almost all
procedures that solve a certain Boolean problem. There are many
possibilities to represent a Boolean function; several of them will be
introduced in Chapter 1 so that this chapter serves also as a basis
for all other chapters of this book. The effort to solve a given prob-
lem usually depends on the chosen representation. The description
of a Boolean function as a disjunction (OR) of conjunctions (AND)
of optionally negated Boolean variables is widely used; this form of a
Boolean expression is often denoted as the Sum Of Minterms (SOM).
However, important properties needed for cryptographic applications
are not well observable in this form. The representation of a Boolean
function in the Algebraic Normal Form (ANF) reveals cryptographic
information much better. Chapter 1 presents several approaches to
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transform a Boolean function into such an ANF explained by com-
prehensible examples. The ANF is an exclusive-OR of conjunctions
consisting only of non-negated variables; hence, this form is also de-
noted as the positive polarity Reed-Muller form (PPRM).

The netlist of a switching function can be a more compact representa-
tion in comparison to the truth table of the associated logic function.
Hence, the computation of the coefficients of the ANF of a given netlist
of a circuit can be more efficient than the Möbius transform explained
in the first chapter. Chapter 2 provides an algorithm that computes
all spectral coefficients of the ANF for all logic functions realized by a
circuit using a single traversal of all N gates in a time complexity of
O(N). The basis for this approach is the representation of the trans-
fer functions of the gates in common Hilbert space. It is noteworthy
that this approach facilitates computing the spectral coefficients in an
arbitrary order. An algorithm is presented that generates the netlist
based on a black box version of a cryptographic switching function, ex-
tracts efficiently the associated ANF coefficients and computes finally
the degree of the cryptographic primitives.

Boolean functions used as primitives of cryptographic applications
must satisfy several properties to be resistant again possible attacks.
Unfortunately some of these properties cannot be satisfied by a single
function. Bent functions have the wanted property of a maximum
non-linearity; however, these functions are not balanced which is an-
other wanted property of Boolean functions for cryptographic applica-
tions. Plateaued functions are a class of Boolean functions providing
a good trade-off between these properties which makes them useful in
cryptographic applications. Chapter 3 proposes a method to construct
additional plateaued functions based on a single given plateaued func-
tion and a class of permutation matrices derived from factor matrices
describing steps in the Cooley-Tukey Fast Fourier Transform (FFT).

It is well known that the number of different assignments to n Boolean
variables is equal to 2n; hence, we are faced with algorithms of an
exponential time complexity in the Boolean domain. Therefore, it
is an important aim for scientists to find more efficient algorithms
for Boolean problems of great practical interest. Part II shows one
selected example of high practical importance, where the exponential
time complexity has been reduced to a polynomial one.
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The verification of a synthesized circuit is an important step within the
design procedure. 2n output patterns must be verified for a combina-
tional circuit with n inputs. One already published result of research
was that the correctness of certain types of designed adders can be ver-
ified in polynomial time using an approach based on Binary Decision
Diagrams (BDDs). However, not only the worst case time complexity
but also the coefficients of each term within the polynomial deter-
mines the time to solve the real problem. Chapter 4 demonstrates
the computation of the coefficients of the polynomials that determine
the time needed to verify two different types of adders of an arbitrary
number of bits. Experimental results confirm the known worst case
theoretical results. It is an impressive result that the verification of
carry look-ahead adders to add two integers of 256 bits needs less than
half a second and the verification of ripple carry adders of the same
size is even faster.

The progress in the Boolean domain contributes to the solution of
practical problems of almost all areas. Out of the huge number of
applications we selected in Part III an application belonging to the
main challenges that human welfare is facing at this time.

Renewable energy sources must replace traditional fossil burnings and
large power stations. The energy generated by a large number of rel-
atively small wind farms and photovoltaic installations must be dis-
tributed to the locations of the consumers of energy in a manner that
satisfies the equilibrium in the distribution net. Chapter 5 explains
how distributed agents efficiently solve this combinatorial problem
of demand and supply using a lightweight power exchange protocol,
ternary vector lists, and operations of XBOOLE. It should be men-
tioned that this solution, based on approaches of the Boolean domain,
is already used in several locations to control electrical sub-nets.

The last part of this book is related to future technologies. The tech-
nological effort of reducing the size of gates causes the change from
classical logic circuits to quantum circuits. Quantum computing is
based on completely different paradigms. The two chapters of Part IV
explore these new paradigms stepwise. The approaches to analyze
reversible circuits of Chapter 6 are reused in Chapter 7 to analyze
quantum circuits. This partition facilitates the understanding of this
topic.
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One property of quantum circuits is that these circuits realize re-
versible functions. For that reason the realization of systems of logic
functions by reversible logic circuits has been intensively explored. In
addition to approaches for the synthesis of reversible circuits, their
analysis and verification have also become an important topic of re-
search. Chapter 6 presents three approaches to compute the behavior
of a given reversible logic circuit and to compare the computed behav-
ior with the expected behavior. It is shown that problem programs
executable by the XBOOLE-monitor XBM 2 solve this task very effi-
ciently. Background information about reversible functions, reversible
gates, properties and the XBOOLE functions used as well as hints for
the download and use of the XBOOLE-monitor XBM 2 increase the
understandability of this and the subsequent chapter.

The behaviors of both a quantum circuit and the gates used are ba-
sically described by unitary matrices. Such a matrix of a quantum
circuit of n qubits consists of 2n row and 2n columns of complex num-
bers. At first glance we are leaving the Boolean domain when we are
dealing with quantum circuits. A more detailed analysis shows that
the occurring complex numbers specify, due to the gates used, only
a finite number of positions in the complex plane. Due to this fi-
nite number an encoding of all required complex numbers by Boolean
values can be defined. Chapter 7 determines such an encoding and
demonstrates the analysis of the behavior of a quantum circuit in the
Boolean domain. Logic values, superposed quantum states, rotations,
and possible entanglements are easily computed and shown for the
behaviors between the inputs and the cut positions after each gate.
Using these insights is was possible to remove two gates from the
explored quantum circuit without changing the global behavior.

Bernd Steinbach

Department of Computer Science
Freiberg University of Mining and Technology
Freiberg, Saxony, Germany
April 2022



Acronyms

ABL Arithmetic Bit-Level
ALU Arithmetic Logic Unit
ANF Algebraic Normal Form
BDC Boolean differential calculus
BDD Binary Decision Diagram
BLIF Berkeley Logic Interchange Format
BMD Binary Moment Diagram
*BMD Multiplicative Binary Moment Diagram
CNF Conjunctive Normal Form
CNI Critical National Infrastructure
CNOT Controlled NOT gate
CCNOT Controlled NOT gate with two control lines
CnNOT Controlled NOT gate with n control lines
COHDA Combinatorial Optimization Heuristic for Distributed

Agents
CUDA Compute Unified Device Architecture
D Disjunctive form
DD Decision Diagram
DER Distributed Energy Resources
DFT Discrete Fourier Transform
EDA Electronic Design Automation
ESOP Exclusive-OR Sum-Of-Products
EXOR Exclusive-OR
FDD Functional Decision Diagram
FFT Fast Fourier Transform
FWT Fast Walsh Transform
GCD Greatest Common Divisor
GPU Graphical Processing Unit
HDL Hardware Description Language
ICT Information and Communication Technology
IEEE Institute of Electrical and Electronics Engineers
ISAAC Intelligent Self-orgAnizing Aggregator and Controller



xxii Acronyms

ISCAS International Conference on Circuits And Systems
ITE If-Then-Else
IWLS International Workshop on Logic Synthesis
K*BMD Kronecker Multiplicative Binary Moment Diagram
LPEP Lightweight Power Exchange Protocol
LUT Look Up Table
MAS Multi-Agent System
MIS Multilevel (Logic) Interactive Synthesis (System)
NP Nondeterministic Polynomial
OBDD Ordered Binary Decision Diagram
ODA Orthogonal Disjunctive or Antivalence form
PHL PHase List
PLA Programmable Logic Array
PMU Phase Measurement Unit
POM Product-Of-Maxterms
PPRM Positive-Polarity Reed-Muller
PRNG Pseudo-Random Number Generator
PRP PRoblem Program
PV Photovoltaic
RM Reed-Muller
ROBDD Reduced Ordered Binary Decision Diagram
RTL Register Transfer Level
RV Random Variable
SAT Satisfiability
SCA Symbolic Computer Algebra
SOM Sum-Of-Minterms
TEPCO Tokyo Electric Power Company
TV Ternary Vector
TVL Ternary Vector List
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit
VT Variable Tuple
XBM XBOOLE Monitor



Cyber Security





1. Computing the Reed-Muller
Spectrum / Algebraic Normal
Form: Functional Methods

Mitchell A. Thornton David K. Houngninou

D. Michael Miller

1.1. Introduction

Researchers and Electronic Design Automation (EDA) tool develop-
ers use Reed-Muller (RM) spectra for various applications including
synthesis and verification. Separately, the cryptographic community
has interest in the Algebraic Normal Form (ANF) of switching func-
tions that comprise primitive building blocks present in various dif-
ferent cryptographic applications. These two forms are connected.
In particular, the ANF coefficients of a switching function denoted
ai ∈ B where B = {0, 1} are known as the Positive-Polarity Reed-
Muller (PPRM) spectral coefficients among switching theorists.

Cryptanalysts are interested in the algebraic degree of switching func-
tions because the degree is a measure of linearity. For example, bent
functions have a high degree, whereas linear functions have a degree
of unity. The ANF/PPRM spectrum provides one with the degree of
a switching function of interest.

Cryptographic primitives serve as the building blocks of larger cryp-
tographic systems [15, 26]. Such primitives include Pseudo-Random
Number Generators (PRNGs), cryptographic hash functions, substi-
tution boxes (S -boxes), permutation boxes (P -boxes), and others. De-
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pending upon the application of the primitive within a larger crypto-
graphic system, various properties are of interest. For example, [26],
a cryptographic hash should approximate the properties of a one-way
function to prevent pre-image, attacks and it should be very difficult
to find two different strings that produce the same hash value (i.e.,
cause a collision) to prevent attacks such as birthday attacks [15, 26].

A class of attacks known as algebraic cube attacks [5] is based upon
the exploitation of switching functions with a low algebraic degree.
More generally, property testing such as cube testing can be used to
detect structure (non-randomness) in switching functions and may be
used to devise tests for balance, linearity, the presence of linear or
neutral variables, and others [1, 16].

For the case of cryptographic applications, binary-valued Boolean, or
switching function, properties such as 0-1 balance, nonlinearity, and
others are commonly considered and measured for use as a qualifying
metric [4, 22]. Secure hash functions should have these properties as
well as consistency with the strict avalanche criterion, collision resis-
tance, and resistance to correlation attacks [4]. Switching functions
with these properties are often characterized as being cryptographi-
cally strong.

While the theory is rich and provides many important concepts, it
is typically the case that a closed form representation of a switching
function is required for these types of analyses to be applied. This
motivates one to devise and use sample sets and statistical methods
for analysis when the underlying switching functions are unknown or
too large for direct analysis to be practical [10].

The ANF allows for direct observation of the algebraic degree of a
switching function. Switching functions that characterize a crypto-
graphic primitive whose primary purpose is to generate confusion
should have a high algebraic degree since low-degree functions are
susceptible to attack. For example, in the case of block ciphers, low-
degree switching functions are susceptible to higher order differential
attacks [17, 18].

Likewise, low-degree switching functions representing a stream cipher
allow the actual functions ftrue to be approximated as linear functions
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denoted here as flin . Under a linear function approximation, flin and
the corresponding affine function, faff , can be computed or vice versa.
The affine function is faff = 1⊕flin and likewise, flin = 1⊕faff . Given
the approximations of flin and faff as an estimate of a low-degree
function of interest, ftrue ; a so-called fast correlation attack can be
successfully applied if the degree of the function ftrue is sufficiently
small since the approximations can be viewed as errors in transmission
and an error-correcting code is applied to recover ftrue [21]. Another
important class of attacks known as algebraic cube attacks exploits
low-degree switching functions [5].

Hash functions may be modeled as collections of switching functions
where the collection is parameterized by the size of the input message.
In each of these examples, knowledge of the ANF of the modeled
switching functions is of high interest, and thus there is a motivation
for enabling the efficient computation of the ANF or PPRM.

While high-degree functions are advantageous in several cryptographic
applications, there are tradeoffs in maximizing the degree. One exam-
ple is a cryptographic switching function that models or implements
a stream cipher. It may be desirable for the observed output of such
a cipher to resemble a pseudorandom sequence to render it indistin-
guishable from a random bit sequence. A pseudorandom sequence is
very difficult to distinguish from a binary random walk wherein each
bit appears to be the result of an independent Random Variable (RV)
that is Bernoulli distributed.

A consequence of pseudo-randomness is that the expected number
of observations of f = 1, denoted as N1, is approximately equal to
the expected number of observations of f = 0, likewise denoted as
N0, when the total number of observations, Ntot = N0 + N1, grows
without bound. When N0 = N1, the switching function is said to be
balanced. Generally, linear or low-degree functions are balanced since
balanced higher degree functions are rare and difficult to find. This
is a contradictory constraint to that of maximizing the degree.

Another application of the ANF is in the general area of property
testing [1, 16]. Property testing, such as cube testing, can be used
to detect structure (non-randomness) in switching functions and may
be used to test balance, linearity, the presence of linear or neutral
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variables, and others. For example, a χ2 goodness-of-fit test can be
used to test for the distribution of a collection of ANF coefficients
since an ensemble of randomly selected switching functions should
have, collectively, binomially-distributed ANF coefficients [10].

For at least these reasons, it is desirable to extract or formulate the
ANF for a switching function of interest. This chapter describes meth-
ods that allow for ANF/PPRM computation to be accomplished with
decreased complexity. The techniques apply to a variety of function
representations. ANF/PPRM computation directly from a circuit
netlist is considered in Chapter 2.

1.2. Background

Switching functions are of the form f : Bn → B, where B = {0, 1} and
n is a positive integer representing the number of dependent variables
of f . A switching function can be expressed in a variety of normal
forms. Normal forms are canonical because any unique, fully specified
switching function has one and only one representation for a partic-
ular normal form. Due to this canonicity property, normal forms are
convenient for use in equivalence proofs and other common design and
analysis tasks.

Two very well-known canonical forms are the Sum-Of-Minterms
(SOM) and Product-Of-Maxterms (POM). The SOM form is ubiq-
uitous in the digital design community and can be expressed in a va-
riety of ways, including as a list of minterms, a truth table, a symbolic
expression, or a cube list.

For example, a switching function with n = 3 can be written as shown
in (1.1) where mi ∈ B. This can be generalized to any n as shown
in (1.2) where

∨
denotes the inclusive-OR of the terms that are con-

junctions (AND) in which each variable appears either negated or
non-negated.

f = m0x1x2x3 ∨m1x1x2x3 ∨m2x1x2x3 ∨m3x1x2x3

∨m4x1x2x3 ∨m5x1x2x3 ∨m6x1x2x3 ∨m7x1x2x3 (1.1)
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f =
2n−1∨
i=0

miẋ1ẋ2 . . . ẋn (1.2)

Another normal form is the Algebraic Normal Form (ANF) which, for
n=3, takes the form shown in (1.3) where ai∈B and ⊕ denotes the
exclusive-OR.

f = a0(1)⊕ a1x1 ⊕ a2x2 ⊕ a3x3 ⊕ a12x1x2
⊕ a13x1x3 ⊕ a23x2x3 ⊕ a123x1x2x3 (1.3)

The general symbolic form for the ANF/PPRM representation of a
switching function is given in (1.4) where pi represents a conjunctive
term composed of 0 ≤ k ≤ n positive-polarity literals. Because the
degree k varies for each conjunctive term or monomial, pi is character-
ized by its degree. Examination of the form of (1.3) illustrates that
each product term pi in (1.4) contains a number of distinct literals
equal to the degree k where k is binomially distributed.

f =

2n−1⊕
i=0

aipi (1.4)

The ANF illustrated in (1.3) and (1.4) is most commonly known to
the switching theory community as the positive polarity Reed-Muller
expansion [25] and the set of ai coefficients is referred to as the Reed-
Muller spectrum of f .

One can transform from SOM to ANF as follows:

an = Rnmn . (1.5)

where mn = [m0,m1, ...,m2n−1]
t, an = [a0, a1, ..., a2n−1]

t and Rn is
a transformation matrix. For this computation, modulo-2 addition is
used and multiplication is performed by the conjunctive logical-AND
operation. In other words, all operations are over the Galois field
GF2, also denoted as F2.

It can be shown [31] that

Rn =

n⊗
i=1

R1 , R1 =

[
1 0
1 1

]
(1.6)



8 Computing the PPRM/ANF: Functional Methods

where
⊗

is the Kronecker product.

For example, for n = 3:

R3 = R1 ⊗R1 ⊗R1 =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


. (1.7)

1.3. Switching Function Representations

Methods for the computation of ANF/PPRM depend upon the form
in which the switching function is represented. For example, the
straightforward transformation shown in (1.5) has several computa-
tional issues that cause it to be impractical for all but the smallest of
switching functions. For this reason, several different methods have
been formulated that allow for the calculation of the ANF/PPRM
coefficients as an entire set or as single values or subsets.

In this section, we provide a brief survey of representations of switch-
ing functions. The following section then describes methods for com-
puting the entire or the partial ANF/PPRM for a switching function
for these various representations.

1.3.1. Classical Representations

Switching functions can be represented in various forms, including
sets, tables, graphs, symbolic, and textual objects. Furthermore, there
are multiple variations of each of these representations.

The SOM and ANF were introduced in Section 1.2. In terms of tabular
forms, popular representations include the well-known truth table and


