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INTRODUCTION 
 
 
 
This book was born by a misunderstanding. Solitons, stable solitary waves, 
attracted scientists for their remarkable behavior. Studying this topic, 
researchers found that solitons are solutions of integrable nonlinear 
equations with astonishing mathematical properties – first of all, they are 
integrable by the inverse-scattering transform (IST). Many scientists ended 
up believing that the physics of solitons is at the heart of modern research.  
The 2001 Nobel Prize in physics was awarded because of many experiments 
on Bose-Einstein condensation, based on the nonlinear Schrodinger 
equation, one of the fundamental equations of soliton theory. 

Now we tell you another story, solitons and coherent solutions are very 
important in nonlinear physics but there are also chaotic and fractal 
solutions we cannot neglect. The situation is complex and the asymptotic 
perturbation (AP) method allows us to understand some basic ideas, but we 
need a premise. The linear physics has been a fruitful approach for many 
problems, from the electromagnetism (Maxwell equation) to oscillations in 
engineering systems, from the harmonic oscillator to quantum mechanics. 
In the real world, weak nonlinear effects are always present and can change 
drastically the system behavior. Nowadays, nonlinear systems cannot be 
neglected in engineering and science. Many perturbation methods can be 
used to study these systems in order to predict remarkable bifurcations. In 
this book, we will use the AP method both for nonlinear ordinary differential 
equations (NODEs) and nonlinear partial differential equations (NPDEs). 
However, there is another approach to solve nonlinear equations – using at 
the beginning a few approximations in order to obtain a simple nonlinear 
equation we can solve explicitly (for example the Korteweg-de Vries, the 
sine-Gordon or the nonlinear Schrodinger (NLS) equations and so on). The 
main drawback of these nonlinear equations is that they are able to catch 
only one remarkable nonlinear effect, for instance pulse or envelope solitons. 
On the contrary, the AP method can be applied to the complete physical 
nonlinear system in order to obtain a new system of integrable equations. 

In other words, the usual approach is to find exact solutions of approximate 
equations (KdV, sine-ordon, NLS equations and so on), while using the AP 
method we find approximate solutions of the exact complete physical system. 
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In Part I, we will study NODEs and by the AP method we will derive a 
suitable model system to explore the most important nonlinear system 
characteristics. Moreover, we illustrate two vibration control methods based 
on delay state feedback or nonlocal feedback. Numerical simulation 
confirms our method validity. A mathematical overview is necessary to 
understand Part II and the following chapters 5 and 6, where we are able to 
find new integrable equations.  

The AP Method can be used in order to find approximate solutions in 
relevant physics problems (Part III); we will study nonlinear water waves 
and electron acoustic waves. 

Subsequently, we turn to the nonlinear Dirac equation and show one of the 
most important findings of this book, i.e., the particle concept is no longer 
trustworthy in particle physics, because it cannot explain the quantum 
meaning of the new chaotic and fractal solutions that are everywhere in the 
nonlinear world. 

We also consider the classic physics and the frequency splitting for a mass 
particle moving in a central field. 

Chapter 11 is a gift to the Einstein-de Broglie ideas about particles as 
solutions of a nonlinear equation, in this case a relativistic scalar field model 
in 3+1 dimensions. 

Moreover, we illustrate how to find new integrable nonlinear equations, 
likely to be of physical relevance. In the last chapters, we will study the 
primary resonance of the nonlinear Schrodinger equation in 2+1 dimensions 
and the possibility of coherent and not coherent (chaotic and/or fractal) 
solutions in the Born-Infeld nonlinear model of electromagnetism. This 
book is not exhaustive and many other research fields are available in 
physics, biology, sociology, economy, ecology and so on. 

This course developed from a course given at the Foligno-based campus of 
Perugia University, Italy for students graduating in ‘Mathematical Physics’. 
Many teaching years allowed me to write this book and I would to thank my 
students at Foligno, Perugia University, Italy for their helpful and valuable 
suggestions. 

Rome, December, 31 2021 
      Attilio Maccari 

 
 



PART I 

THE ASYMPTOTIC PERTURBATION METHOD 
 
 
 

Introduction 

In the first chapters, we describe in some detail the AP method and how it 
can be used to clarify the behavior of many physical systems that in the 
linear case become simple harmonic oscillators. We know linear physics is 
a successful theory and can identify many characteristics about complex 
systems. Nevertheless, there are always small nonlinear effects and we 
cannot neglect them if we want a complete picture of our system. The AP 
method is able to catch these nonlinear effects, various types of 
bifurcations and so on. 

In Chapter 1, we show the basic steps of the method and then we consider 
a nonlinear oscillator with multiple resonant or non-resonant forcing terms. 
The AP method allows us to find the conditions for the quenching of the 
free oscillations and the conditions for its persistence. Nonlinear ordinary 
differential equations (NODEs), with an oscillatory behavior in the linear 
case, are the ideal environment for the method, and the most important 
finding is that a nonlinear model system can describe the oscillator 
characteristics. 

In Chapter 2, we describe a simple extension of the method and study the 
parametric excitations for two internally resonant van der Pol oscillators, 
in the presence of a one-to-one internal resonance. We obtain the nonlinear 
model system for the amplitude and phase modulations in such a way that 
we find steady-state responses, corresponding to a periodic motion for the 
starting system (synchronization). Parametric excitation-response and 
frequency-response curves can be easily obtained. Moreover, we can 
perform a global analysis of the nonlinear model system and study 
existence and characteristics of its limit cycles. We underline that a limit 
cycle corresponds to a two-period amplitude and phase modulated motion 
for the van der Pol oscillators. We find that for very low values of the 
parametric excitation a two-period modulated motion is also possible and 



Part I 
 

2

if the parametric excitation increases then the oscillation period of the 
modulation becomes infinite, and an infinite period bifurcation occurs. 

We consider other interesting oscillators in this chapter, i.e., fractal 
oscillators. In this particular case, the Weierstrass function is the weak 
fractal forcing for the nonlinear oscillator. We observe that, being that the 
Weierstrass function is nowhere differentiable, we can use only suitable 
approximations. In the linear case, the resulting motion is simply the 
superposition between the fractal forcing and the standard oscillation, 
while in the nonlinear case, the oscillator phase and its frequency become 
fractal and we are able to obtain the corresponding Poincaré sections to 
corroborate our findings. 

In Chapter 3, we introduce a new topic, i.e., active vibration control for 
nonlinear oscillators, and study the response of a parametrically excited 
van der Pol oscillator to a time delay state feedback (the control term). As 
usual, we obtain a nonlinear model system with two equations for the 
amplitude and phase modulation and we consider the effect of time delay 
and feedback gains from the viewpoint of vibration control and perform a 
global analysis of the limit cycles for the nonlinear model system, 
corresponding to a two-period modulated motion. In order to exclude the 
possibility of quasiperiodic motion and to reduce the amplitude peak of the 
parametric resonance, we find the appropriate choices for the feedback 
gains and the time delay. 

In Chapter 4, we introduce a new method for vibration control and the 
suppression of self-excited vibrations in nonlinear oscillators. i.e., the 
nonlocal feedback. We consider two cases, the van der Pol equation and a 
nonlinear oscillator with quadratic and cubic nonlinearities. A nonlocal 
control force is considered in such a way to obtain a third-order nonlinear 
differential equation (jerk dynamics). The performance of this new control 
strategy is carefully considered. The feedback gains are connected with the 
stability and response of the system under control. Uncontrolled and 
controlled systems are compared and the appropriate choices for the 
feedback gains are found in order to reduce the amplitude peak of the self-
excitations. 



CHAPTER 1 

NONLINEAR OSCILLATORS  
 
 
 

1. Introduction 

Linear oscillations are a fundamental topic in general physics [150]. When 
a system is near its equilibrium point, it begins to oscillate but if the 
displacement increases then the nonlinear terms are not negligible. First of 
all, we consider the differential equation for the harmonic oscillator + 𝜔 𝑋 𝑡 = 0                                                                                   (1.1) 

where X(t) is the displacement and ω the circular frequency. The most 
general solution is  𝑋 𝑡 = 2𝜌𝑐𝑜𝑠 −𝜔𝑡 + 𝜃                                                                        (1.2) 

where 𝜌 and 𝜃 are fixed by the initial conditions (The Cauchy problem) 𝑋 0 = 𝑋  for the displacement and 𝑋. 0 = 𝑋.   for the initial velocity, 
where the dot denotes differentiation with respect to the non-dimensional 
time, then we easily get 

2𝜌 = 𝑋 + .
                                                                         (1.3) 

and 𝑡𝑎𝑛𝜃 = .
                                                                                          (1.4) 

Now, we can consider a weakly nonlinear part in the differential equation 
(1.1) or on the contrary, a strongly nonlinear part but with small solutions. 
The first consequence is that the amplitude and the phase are slowly 
varying with time so we can introduce a slow time 
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𝜏 = 𝜀 𝑡                                                                                                     (1.5) 

where 𝜀 is a bookkeeping device and q is a rational number that will be 
chosen afterwards. If we want to study the asymptotic solution behavior 
(𝑡 → ∞) and 𝜀 → 0 then 𝜏 must assume finite values. So, we assume that 
an approximate solution is given by 𝑋 𝑡 = 2𝜌 𝜏 𝑐𝑜𝑠 −𝜔𝑡 + 𝜃 𝜏 = 𝜌 𝜏 𝑒𝑥𝑝 −𝑖𝜔𝑡 + 𝑖𝜃 + 𝑐. 𝑐.       (1.6) 

or better 𝑋 𝑡 = 𝜀 𝛹 + 𝜀𝛹 𝑒𝑥𝑝 −𝑖𝜔𝑡 + 𝜀 𝛹 𝑒𝑥𝑝 −2𝜔𝑡 +𝜀 𝛹 𝑒𝑥𝑝 −3𝑖𝜔𝑡 + 𝑐. 𝑐. +ℎ. 𝑜. 𝑡.                                                          (1.7) 

where c.c. stands for complex conjugate, h.o.t. for higher order terms and r 
is another rational number. 

Following this path, we are mixing the most important features of two 
well-known perturbation methods, the harmonic balance and the multiple 
scale methods (for more details about these two perturbation methods 
[112,113, 130]).  

If we consider a weakly nonlinear differential equation + 𝜔 𝑋 𝑡 = 𝑁𝐿                                                                                (1.8) 

where NL stands for the nonlinear part, for instance  𝑎𝑋 𝑡 + 𝑏𝑋 𝑡                                                                                      (1.9) 

we can insert the solution (1.7) in the nonlinear equation (1.8) and with 
some algebra manipulation we get for n=0 𝜔 𝜀 𝛹 = 2𝑎𝜀 |𝛹|                                                                        (1.10) 

then r=1, for n=2 −3𝜔 𝜀 𝛹 = 𝑎𝜀 𝛹                                                                              (1.11) 

and for n=1 −2𝑖𝜔𝜀 𝜓 = 2𝑎 𝜀 + 𝑟 𝛹 𝛹 + 𝜀 𝛹 𝑐. 𝑐.𝛹 + 3𝑏𝜀 |𝛹| 𝛹          (1.12) 
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then q=2 for the proper nonlinear terms balance and with some algebra 
manipulation = |𝛹| 𝛹,                           𝐴 = + 𝑏.                                 (1.13)                        

With the substitution  𝛹 = 𝜌𝑒𝑥𝑝 𝑖𝜃                                                                                        (1.14) 

where 𝜌  is the solution amplitude and 𝜃  is its phase, we arrive at the 
following equations:  = 0,             = 𝜌                                                                      (1.15) 

 We observe that the variable change (1.5) implies that (𝑛 ≠ 0) → −𝑖𝑛𝜔 + 𝜀                                                                                 (1.16) 

when the temporal differential operator acts on the function 𝛹 𝜏 𝑒𝑥𝑝 −𝑖𝑛𝜔𝑡                                                                                  (1.17) 

From the equations (1.15), we can see that the approximate solution is 
always periodic, the amplitude is constant but the period changes and 
becomes 𝑇 = , where 

 𝛺 = 𝜔 − 𝜌                                                                                       (1.18) 

However, if  𝑏 = − .                                                                                         (1.19) 

the period does not change and is equal to the linear case period (see 
(1.113)). 

We now can begin our journey among other nonlinear physical systems. 
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2. Nonlinear dynamical systems with a finite number  
of harmonic forcing terms 

We want to study the transient and steady-state response of a very general 
nonlinear oscillator subject to a finite number of harmonic forcing terms 
using the asymptotic perturbation (AP) method and improve previous 
work devoted to this topic [10, 101, 136, 137]. We consider three cases: i) 
the forcing frequencies are not close to each other or close to the primary 
resonance of the oscillator; ii) the forcing frequencies are close to each 
other but not close to the primary resonance; iii) all the forcing frequencies 
are close to the primary resonance. We determine both the conditions for 
the quenching of the free oscillation and the conditions for its persistence. 
Analytical results are validated by numerical integration. 

We consider the transient and steady-state response of a nonlinear 
oscillator subject to a finite number of harmonic forcing terms: �̈� 𝑡 + 𝑋 𝑡 + 𝑎�̇� 𝑡 + 𝑏𝑋 𝑡 + 𝑐𝑋 𝑡 �̇� 𝑡                                       (1.20) +𝑑𝑋 𝑡 + 𝑒𝑋 𝑡 + 𝑓�̇� 𝑡 𝑋 𝑡  +𝑔𝑋 𝑡 𝑋 𝑡 + ℎ𝑋 𝑡 = 𝐹 𝑡 , 
 
where the dots denote differentiation with respect to the non-dimensional 
time and F(t) is a finite sum of N harmonic forcing terms of the form 𝐹 𝑡 = ∑ 2𝐴 cos 𝛺 𝑡 ,                                                                     (1.21) 

where 𝐴  is the amplitude and 𝛺  is the non-dimensional frequency of the 
ith component of F(t). (All times are referred to the time scale 1 𝜔⁄ , where 𝜔 is the natural frequency of the linearized homogenous version of (1.20)). 

We are primarily interested in the case N>1 and especially to the 
modifications induced by the nonlinear terms on the solution of the 
linearized version of (1.20): 𝑋 𝑡 = 2𝜌 cos −𝑡 + 𝜃 + ∑ cos 𝛺 𝑡                                 (1.22) 

where 𝜌 ,𝜃  are fixed by the initial conditions. This solution is the sum of 
the free oscillation and of the forced oscillation. In particular, it is essential 
to discover if the free oscillation, i.e., the first term of the r.h.s. of (1.22), 
will persist or decay (“quenching”), when the non-linear terms are active. 
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Equation (1.20) contains well-known oscillators: the van der Pol oscillator 
(𝑎, 𝑓 ≠ 0 and all the others parameters zero), the Duffing oscillator (𝑎, 𝑒 ≠0 and all the other parameters zero) and so on.  

We will demonstrate that the most important finding is that if the forcing 
frequencies are not close to the primary resonant frequency, the amplitude 
of the oscillation will decay exponentially in time otherwise it will 
approach a constant value. Our purpose is to generalize these results to the 
general nonlinear oscillator (1.20). 

It is well-known that any signal over a specific time period can be 
approximated by a finite number of trigonometric terms and then our study 
can be judiciously applied to determine the transient and steady-state 
response of a nonlinear oscillator subject to a virtually arbitrary signal. 

The general approach is inspired by the asymptotic perturbation method 
[77, 78, 82, 83, 84] for dynamical systems. The formal perturbation 
solution is carried out to the lowest order approximation. First of all, we 
assume that the forcing frequencies of (1.22) are not close to each other or 
close to the primary resonance, but firstly we expose the most important 
characteristics of the asymptotic perturbation method. It comes from a 
similar method employed in nonlinear partial differential equations and is 
based on the detailed computation of the interaction, induced by the 
harmonics, of solutions of the linear part of the differential equation, 
because of the presence of the nonlinear terms. 

By means of the temporal rescaling 𝜏 = 𝑒 𝑡,                                                                                                (1.23) 

with q a rational positive number, which will be fixed later on, attention is 
devoted to the asymptotic behavior of the solution: when t®¥ and e®0, the 
parameter q can be chosen in such a way that t assumes finite values. 

The required solution can be expressed as a perturbation expansion, based 
on the parameter e, which is formally written 𝑋 𝑡 = ∑ 𝑒 𝜓 𝜏; 𝜀 exp −in𝜔𝑡 + 𝜀 ∑ exp 𝑖𝛺 𝑡 +𝑐.𝑐.                                                                                                       (1.24) 
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where c. c. stands for complex conjugate, 𝛾 = |𝑛| for 𝑛 ≠ 0, 𝛾 = 𝑟  a 
non negative rational number, which will be fixed later on, and 𝜓 𝜏, 𝜀 =𝜓~ 𝜏, 𝜀 , because X(t) is real (the tilde denotes complex conjugate). 

The function 𝜓 𝜏, 𝜀  depends on the parameter e and it is supposed that 
the limit of the 𝜓  for 𝜀 → 0 exists and is finite. The expansion (1.24) can 
be substituted into the differential equation (1.20) so as to obtain separate 
equations for each n and subsequently we equate coefficients of like 
powers of 𝜀. 

A key feature of the present method is that we can simultaneously take 
into account the advantages of the harmonic balance method (see (1.24)) 
and the multiple scales technique (see (1.23)). The method is constructive 
in a local sense, i.e., near an equilibrium point of the oscillator, so that one 
can reconstruct the general motion of the system. 

Indicating with 𝜓 𝜏  the limit of 𝜓 𝜏, 𝜀  when e®0, for n=1, the 
following equation is obtained: −2ì𝜓𝜀 − 𝑖𝑎𝜓𝜀 + 2𝑏 − 𝑖𝑐 𝜓 𝜓𝜀 + 𝜓 𝜓~𝜀 + 4𝑑𝜓 𝜓~𝜀 +3𝑐 − 𝑖𝑓 − 3𝑖ℎ𝑔 |𝜓| 𝜓𝜀 + 2𝑔𝐴~− 6𝑖ℎ𝐴~+ 6𝑒𝐴 − 2𝑖𝑓𝐴 𝜓𝜀 +ℎ. 𝑜. 𝑡. = 0                                                                                              (1.25) 
 
where 𝐴 = ∑ ,    𝐴~ = ∑                                                        (1.26) 

and h.o.t. stands for higher order terms. For the proper balance of the 
various terms, we set q=r=2. 

 For n=0 and n=2, equation (1.20) yields 𝜓 =-2 𝑏 + 𝑑 |𝜓| − 2 bA + 𝑑𝐴~ + ℎ.𝑜.𝑡.                                          (1.27) 𝜓 = ic 𝜓 + ℎ.𝑜.𝑡.                                                                      (1.28) 

Equations (1.27) and (1.28) can be substituted into (1.25) and in such a 
way we arrive at the very nice equation 𝜓 = 𝛼 + 𝑖𝛼 𝜓 + 𝛽 + 𝑖𝛽 |𝜓| 𝜓                                                 (1.29) 

where 
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𝛼 =- + bc − 𝑓 𝐴 + cd − 3ℎ 𝐴~                                                        (1.30) 
 𝛼 = 2𝑏 − 3𝑒 𝐴 + 2bd − 𝑔 𝐴~                                                        (1.31) 𝛽 = bc + cd − 𝑓 − 3ℎ                                                                      (1.32) 𝛽 = 10 𝑏 + bd + − 3𝑐 − 𝑔                                              (1.33) 

By means of the standard substitution 𝜓 𝜏 = 𝜌 𝜏 exp 𝑖𝜃 𝜏                                                                         (1.34) 

equation (1.29) can be separated in two parts = 𝛼 𝜌 + 𝛽 𝜌                                                                                    (1.35) = 𝛼 + 𝛽 𝜌                                                                                      (1.36) 

The approximate solution good to the order of  𝜀  is 𝑋 𝑡 = 2𝜀𝜌 𝜀 𝑡 𝑐𝑜𝑠 −𝑡 + 𝜃 𝜀 𝑡 − 2 𝑏 + 𝑑 𝜀 𝜌 𝜀 𝑡 − 2 𝑏𝐴 + 𝑑𝐴~                         

+ 𝑏 − 𝑑 𝜀 𝜌 𝜀 𝑡 𝑐𝑜𝑠 −2𝑡 + 2𝜃 𝜀 𝑡 + 𝜀 ∑ 𝑐𝑜𝑠 𝛺 𝑡 .                       

(1.37)                        
(1.3(1.37)7)

  
Note that the temporal evolution of 𝜌 𝑡  does not depend on 𝜃 𝜏  and then 
equation (1.35) can be easily integrated 

𝜌 𝑡 = 𝜌 1 + exp −2𝛼 𝑡 −                                       (1.38) 

From inspection of (1.38), we deduce that 𝜌 𝑡  diverges when 𝑡 = 𝑡 = log                                                                  (1.39) 

if 𝛽 > 0, 𝛼 + 𝛽 𝜌 > 0.  
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We distinguish four cases: 

(i) 𝛼 > 0,  𝛽 > 0 : stable equilibrium points do not exist and the 
solution diverges (obviously our approximation is not valid for 𝑡 ≃𝑡 ); 

(ii) 𝛼 < 0, 𝛽 < 0: the origin is a stable equilibrium point and 𝜌 𝑡  
approaches zero as 𝑡  goes to infinity (“quenching” of the free 
oscillation term in (1.37)); 

(iii) 𝛼 > 0, 𝛽 < 0: 𝜌 𝑡  approaches the stable equilibrium point  
 𝜌 = −                                                                                           (1.40) 

and then the free oscillation is always present. Unless the 𝛺  are all 
rational numbers, i.e., commensurable with 𝜔 , the motion will be 
quasiperiodic; the asymptotic solution is 𝑋 𝑡 = 2𝜌 𝑐𝑜𝑠 1 −𝜔~ 𝑡 − 2 𝑏 + 𝑑 𝜌 − 2 𝑏𝐴 + 𝑑𝐴~      + 23 𝑏 − 𝑑 𝜌 𝑐𝑜𝑠 2𝑡 − 2𝜔~𝑡 + 23 𝑐𝜌 𝑠𝑖𝑛 2𝑡 − 2𝜔~𝑡  +∑ 𝑐𝑜𝑠 𝛺 𝑡                                                                          (1.41)
  
where  
 𝜔~ = 𝛼 + 𝛽 𝜌                                                                                       (1.42) 
 
(iv) 𝛼 < 0, 𝛽 > 0: the origin is a stable equilibrium point (“quenching” 

of the oscillation) and (1.40) is unstable. If 𝜌 > 𝜌  then the 
solution diverges when 𝑡 ≃ 𝑡 . 

Numerical integration of (1.20) confirms the qualitative picture which 
emerges from our analysis. For example, in Figure 1, we show the 
numerical solution compared with our approximate solution (1.41) for the 
case iii). The mean difference between the two solutions is 0.002, i.e., of 
order 𝜀  as expected. 



Nonlinear Oscillators 11 

 

Figure 1: Comparison between numerical (rectangles) and analytical 
(circles) solutions in the (𝑋, �̇� = 𝑌) plane. 

Values of parameters: a=-0.01, b=1.5, c=-0.9, d=0.2, e=1.0, f=0.1, g=-
0.1, h=-0.3.  

Forcing frequencies not close to each other and not close to the primary 
resonance: 𝛺 = √3,   𝛺 = √5,    𝛺 = √7 

Amplitudes of the external excitations: A1 0 03 . ,  A2 0 05 . ,  
A3 0 05 . . 

3. The approximate solution with the frequencies close  
to each other 

The results of the previous section can be extended to the case when the 
forcing frequencies are close to each other, but not close to the primary 
frequency. 

We let 
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𝛺 = 𝛺 + 𝜀 𝜎 ,    𝑖 = 1....𝑁                                                                   (1.43) 

where 𝛺  is a fixed frequency not close to one, while 𝜎  measures the 
differences of the frequencies from each other. Substituting (1.43) in 
(1.21), we find that F(t) becomes 𝐹 𝑡 = exp ∑ 𝜀𝐴 exp 𝑖𝜎 𝑡 + 𝑐.𝑐. + 𝑂 𝜀                                  (1.44) 

The non-linear oscillator is then subject to an applied force with frequency 𝛺 and with an amplitude that is a slowly varying function of time. 

We apply the same method as in section 2 and obtain the equations (1.35-
1.36) but now with 𝛼 𝑡 =- + bc + cd𝛺 − 3ℎ𝛺 − 𝑓 𝐴 𝑡                                            (1.45) 𝛼 𝑡 = 2𝑏 + 2bd𝛺 − 𝑔𝛺 − 3𝑒 𝐴 𝑡                                            (1.46) 

where 𝐴 𝑡 = ∑ 𝐴 + ∑ 𝐴 𝐴 exp 𝑖 𝜎 − 𝜎 𝑡, ,        (1.47) 

and 𝛽 ,𝛽  unchanged. Also, in this case the evolution of 𝜌 𝑡  does not 
depend on 𝜃 𝑡 , but the difference is now that 𝛼  and 𝛼  are explicitly 
dependent on 𝑡. It is advantageous to introduce a new function 𝛾 𝑡 , with 
the following characteristics: �̇� 𝑡 = 𝛼 𝑡 ,     𝛾 0 = 0                                                                  (1.48) 

where the dot denotes differentiation with respect to 𝑡.  
A simple integration shows that 

𝛾 𝑡 =-
𝑎2 𝑡 + bc + cd𝛺 − 3ℎ𝛺 − 𝑓

⎝⎜
⎜⎛ 𝑡1 − 𝛺 𝐴 − 𝑖1 − 𝛺

𝐴 𝐴 exp 𝑖 𝜎 − 𝜎 𝑡 − 1𝜎 − 𝜎, ⎠⎟
⎟⎞ 

     (1.49) 

This function can be separated into two parts 



Nonlinear Oscillators 13 

𝛾 𝑡 = 𝐵𝑡 + 𝛿 𝑡                                                                                    (1.50) 

where 𝐵=- + bc + cd𝛺 − 3ℎ𝛺 − 𝑓 ∑ 𝐴                                  (1.51) 

and 𝑑 𝑡 indicates the oscillating part. The temporal evolution of 𝜌 𝑡  is 
now 𝜌 𝑡 = exp

exp
                                                             (1.52) 

The behavior of 𝜌  as 𝑡  becomes large can be easily determined if we 
consider 𝛾 𝑡  in the form (1.50). It is straightforward to show that if B<0, 
the asymptotic behavior is 𝜌 𝑡 ∼ exp 𝐵𝑡 , as 𝑡 → ∞ (B<0)                                                          (1.53) 

and then we again obtain the decay of the free oscillation and the 
quenching of the solution. If B>0 a new behavior arises, not observable for 
N=1: the amplitude of the free oscillation approaches an oscillatory 
function of time, which depends on both the amplitudes 𝐴  as well as the 
detuning parameters 𝜎 : 𝜌 𝑡 ∼ 𝑒𝑥𝑝 𝛿 𝑡 ,  as 𝑡 → ∞ (B>0)                                                 (1.54) 

In Figure 2, we show the numerical solution compared with our 
approximation. The mean difference between the two solutions is 0.004, 
i.e., of order 𝜀  as expected. 
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Figure 2: Comparison between numerical (rectangles) and analytical 
(circles) solutions in the (𝑋,𝑋· = 𝑌) plane.  

Values of parameters: a=-0.01, b=1.5, c=-0.9, d=0.2, e=1.0, f=0.1, g=-0.1, 
h=-0.3.  

Forcing frequencies close to each other but not close to the primary 
resonance: 𝛺 = √3,   𝛺 = √3.1,    𝛺 = √3.2 

Amplitudes of the external excitations: A1 0 03 . ,  A2 0 05 . ,  𝐴 =0.05.  
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4. Forcing frequencies near primary resonance 

We consider the case when the frequency of each component of the 
forcing term is near the primary resonant frequency of the oscillator. We 
let 𝛺 = 1 + 𝜀 𝜎 ,    𝑖 = 1....𝑁                                                                   (1.55) 

where 𝜎  measures the differences of the frequencies from the natural 
frequency of the oscillator. Substituting (1.55) in (1.21), we find that F(t) 
becomes 𝐹 𝑡 = 𝜀 exp it ∑ 𝐴 exp 𝑖𝜎 𝜏 + 𝑐.𝑐.                                             (1.56) 

The non-linear oscillator is then subject to an applied force with N 
different frequencies and amplitudes, which are supposed to be of order 𝜀 , 
because we are in the primary resonance zone. 

We now look for a solution in the form 𝑋 𝑡 = ∑ 𝜀 𝜓 𝜏; 𝜀 exp −in𝜔𝑡                                                 (1.57) 

with the same conventions as in (1.24).  

We substitute (1.57) in (1.20) so as to obtain different equations for each n 
and subsequently we equate coefficients of like powers of 𝜀 to obtain  −2𝑖𝜓 − ia𝜓 + 2𝑏 − ic 𝜓 𝜓 + 𝜓 𝜓~ + 4𝑑𝜓 𝜓~ +3𝑐 − if − 3ih + 𝑔 |𝜓| 𝜓 − ∑ 𝐴 exp −𝑖𝜎 𝑡 = 0                          (1.58) 

We do not give the details of the calculation and furnish the final results. 
By means of the substitution (1.34), we obtain the equations for the 
amplitude and the phase of the free oscillation = 𝛼 𝜌 + 𝛽 𝜌 + ∑ 𝐴 sin 𝜎 𝑡 − 𝜃                                             (1.59) 𝜌 = 𝛽 𝜌 + ∑ 𝐴 cos 𝜎 𝜏 − 𝜃                                                    (1.60) 

where 𝛼 =- ,                                                                                                    (1.61) 

and 𝛽  , 𝛽  are given by (1.32-1.33). 
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The difference with the preceding cases is that now equations (1.59-1.60) 
are two coupled nonlinear differential equations, which must be integrated 
numerically. 

However, a very interesting behavior is observed if 𝛼 > 0 and 𝛽 < 0 
and 

𝛽 𝜌 >>∑ |𝐴 |,   with 𝜌 = −                                                   (1.62) 

i.e., for weak external excitations. In this case, at least for initial conditions 
near 𝜌 , the system (40-41) can be approximated by  

=-2𝛼 𝜌 + ∑ 𝐴 sin 𝜎 𝑡 + 𝛺𝑡 + 𝜃                                              (1.63) 𝜃 = 𝛺𝜏 + 𝜃                                                                                           (1.64) 

where 𝛺 = 𝛽 𝜌 . The solution of (1.63) is  𝜌 𝑡 = 𝜌 𝑒𝑥𝑝 −2𝛼 𝑡 + ∑ ~ 2𝛼 𝑠𝑖𝑛 𝛺~ 𝑡 + 𝜃 −𝛺~𝑐𝑜𝑠 𝛺~ 𝑡 + 𝜃 + 𝐴𝐷 (1.65) 

where AD is 𝐴𝐷 = 𝑒𝑥𝑝 −2𝛼 𝑡 𝛺~𝑐𝑜𝑠𝜃 − 2𝛼 𝑠𝑖𝑛𝜃                                            (1.66) 𝛺~ = 𝛺 + 𝜎                                                                                            (1.67) 

The asymptotic behavior of (1.65) is  𝜌 𝑡 = ∑ ~ 2𝛼 𝑠𝑖𝑛 𝛺~ 𝑡 + 𝜃 − 𝛺~𝑐𝑜𝑠 𝛺~𝑡 + 𝜃           (1.68) 

The approximate solution good to the order of 𝜀  is 𝑋 𝑡 = 2𝜌 𝑡 𝑐𝑜𝑠 1 − 𝛺 𝑡 + 𝜃 − 2 𝑏 + 𝑑 𝜌 𝑡 − 2 𝑏𝐴 + 𝑑𝐴~    + 𝑏 − 𝑑 𝜌 𝑡 𝑐𝑜𝑠 2𝑡 − 2𝛺𝑡 + 𝜃 + 𝑐𝜌 𝑡 𝑠𝑖𝑛 2𝑡 − 2𝛺𝑡 + 2𝜃                           
(1.69) 

where 𝜌 𝑡  is given by (1.68). 
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In Figure 3, we show a comparison between the numerical solution of 
(1.20) and the approximate solution (1.68). The mean difference between 
the two solutions is 0.003, i.e., of order 𝜀  as expected. 

 

Figure 3: Comparison between numerical (rectangles) and analytical 
(circles) solutions in the (𝑋, �̇� = 𝑌) plane. 

Values of parameters: a=-0.01, b=1.2, c=-0.9, d=0, e=1.2, f=0.3, g=-0.2, 
h=-0.3.  

Forcing frequencies close to each other and close to the primary resonance: 𝛺 = √1.3,   𝛺 = √1.2,    𝛺 = √1.1 

Amplitudes of the external excitations: 𝐴 = 0.003,   𝐴 = 0.002,  𝐴 =0.002. 

5. Conclusion 

We have used the asymptotic perturbation method to analyze the transient 
and steady-state response of a very general nonlinear oscillator under a 
finite number of harmonic forcing terms. Three cases of different forcing 
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frequencies are investigated and the corresponding analytical results are 
compared to numerical simulations. If the forcing frequencies are not close 
to each other or close to the resonant frequency, then the original free 
oscillation can vanish (“quenching”) or maintain a finite value. 

When the forcing frequencies are all close to a particular frequency 𝛺, the 
“quenching” is possible but in certain cases the amplitude of the free 
oscillation oscillates with a frequency determined by the detuning 
parameters. 

When the forcing frequencies are close to the resonant frequency, then 
both the amplitude and the phase of the free oscillation can eventually 
oscillate with a frequency that is determined by both the forcing 
amplitudes 𝐴  and the detuning parameters 𝜎 . 

If we want to calculate the second order approximation solution, the 
amount and complexity of the algebraic computations required increase in 
a very dramatic manner. Consequently, the use of symbolic manipulation 
systems is strongly recommended.  

The problem considered in this chapter clearly demonstrates the power of 
the asymptotic perturbation method. An important feature of this method 
is that it provides quantitative results regarding dynamic behavior, in 
contrast to much of the current work in dynamical systems theory, which 
is concerned with qualitative behavior. 

 

 

 

 

 

 

 



CHAPTER 2 

BIFURCATIONS AND NONLINEAR 
OSCILLATORS 

 
 
 

1. Introduction 

Approximate analytical and numerical methods have been applied to the 
van der Pol oscillator, and its dynamics have been studied in detail over 
the last years. Now we want to turn to the investigation of the behavior of 
two nonlinearly coupled van der Pol oscillators under the effect of a 
parametric excitation and an internal resonance. The response of a system 
of two nonlinearly coupled van der Pol oscillators to a principal parametric 
excitation in the presence of one-to-one internal resonance is investigated. 
The asymptotic perturbation (AP) method is applied to derive the slow 
flow equations governing the modulation of the amplitudes and the phases 
of the two oscillators. These equations are used to determine steady state 
responses, corresponding to a periodic motion for the starting system 
(synchronization), and parametric excitation-response and frequency-
response curves. Energy considerations are used to study existence and 
characteristics of limit cycles of the slow flow equations. A limit cycle 
corresponds to a two-period amplitude- and phase-modulated motion for 
the van der Pol oscillators. Two-period modulated motion is also possible 
for very low values of the parametric excitation and an approximate 
analytic solution is constructed for this case. If the parametric excitation 
increases, the oscillation period of the modulations becomes infinite and 
an infinite-period bifurcations occur. Analytical results are checked with 
numerical simulations. Therefore, we study a class of nonlinear systems 
described by the equations �̈� + 𝜔 − 2𝜀𝑓cos 𝛺𝑡 𝑋 − 𝜀 1 − 𝑋 − aY �̇� = 0,                         (2.1) �̈� + 𝜔 𝑌 − 𝜀 1 − bX − 𝑌 �̇� = 0,                                                     (2.2) 

where dot denotes differentiation with respect to time, 𝜔 �𝜔  are the 
fundamental frequencies (internal resonance 1:1), the parametric 
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excitation frequency is 𝛺»2𝜔 , the constants 𝑎, 𝑏 are of order 1, and � is a 
small parameter. 

Two-degree-of-freedoms and multi-degree-of-freedoms systems under the 
action of parametric excitations have been extensively studied. The most 
important feature in these systems is a nonlinear interaction between 
parametric and self-excitations. Usually, an entrainment of vibration 
occurs and a synchronization phenomenon is observed, i.e., the system 
behavior is characterized by a simple periodic motion [112, 113]. For 
example, Asmis and Tso [8] considered the response of two-degree-of-
freedom systems with cubic nonlinearities to a combination parametric 
resonance of the sum type in the presence of one-to-one internal resonance. 
Tso and Asmis [138] analyzed the response of two-degree-of-freedom 
systems with cubic nonlinearities and no internal resonances to a 
parametric harmonic excitation. The absence of Hopf bifurcations was 
demonstrated by Miles [109] for an internally resonant pendulum with the 
lower mode excited by a principal parametric excitation. Internally 
resonant two-degree-of-freedom systems with quadratic nonlinearities and 
combination parametric resonance were considered by Nayfeh and 
Zavodney [115]. Using numerical integration they demonstrated limit-
cycle behavior and modulated response in the amplitude and phase of the 
oscillation. Asrar [9] used the method of multiple scales for a system with 
quadratic nonlinearities in the case of a principal parametric resonance and 
a three-to-one internal resonance and derived stability conditions for the 
steady-state solutions. 

Nayfeh and Chin [114] examined the response of a parametrically system 
with cubic nonlinearities and widely spaced frequencies. In some cases, 
energy can be transferred from high- to low-frequency modes and chaotic 
response coexist with periodic behavior. Yu and Huseyin [141] performed 
a theoretical study about parametrically excited systems and compared the 
Chen-Langford and the harmonic balance methods. They found that the 
two methods furnish qualitatively equivalent results.  

Warminski, Litak and Szabelski [142] have analyzed synchronization and 
chaos in a parametrically and self-excited system with two degrees of 
freedom. The system is formed by two van der Pol oscillators coupled by a 
linear spring with a periodically changing stiffness of the Mathieu type. 
Existence and stability of periodic solutions is investigated and regions of 
chaotic response are found.  


