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CHAPTER ONE 

ISOTROPIC AND ANISOTROPIC  

SCATTERERS AND WAVEGUIDES 

A. A. KLESHCHEV 

 

 

 

1.1. Сharacteristics of  Isotropic Spheroidal Scatterers 

In this section, the resonances of prolate and oblate spheroidal bodies (in 

their entirety and in the form of shells), which are impacted by three-

dimensional and axisymmetric angles of irradiation, are going to be 

investigated. Debye’s potentials have been used to calculate the three-

dimensional pattern of irradiation in order to solve the diffraction problem. 

Various publications are devoted to the resonances of elastic spheroidal 

bodies [1, 2 – 9]. Debye first proposed expanding the vector potential A  

and the scalar potentials U and V in his publication [10], which is 

devoted to studying the behavior of light waves near the local point or line. 

Later, this approach was used to solve the diffraction problems in the 

electromagnetic wave diffraction of a sphere, a circular disk, and a 

paraboloid revolution [11 – 16], as well as for the diffraction by spheroidal 

bodies in longitudinal and transverse waves [1, 17].  

When Debye’s potentials are applied to problems based on the theory of 

dynamic elasticity, it occurs as follows: the displacement vector u  of an 

elastic isotropic medium obeys the Lame equation 

                      
2( ) ,graddivu curlcurlu u             (1.1)    

where   and   are Lame constants,   is the density of the isotropic 

medium, and   is the circular frequency of harmonic vibrations. 
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According to the Helmholtz theorem, the displacement vector u  is 

expressed through scalar   and vector   potentials as follows: 

                              u grad curl                                (1.2)       

Substituting equation (1.2) in equation (1.1), we obtain two Helmholtz 

equations, which include one scalar equation for   and one vector 

equation for : 

                                      
2 0,h                               (1.3)   

                                    
2

2 0.k                             (1.4)   

Here 1/h c  is the wavenumber of the longitudinal elastic wave; 1c  

is the velocity of this wave; 2 2/k c  is the wavenumber of the 

transverse elastic wave; and 2c  is the velocity of the transverse wave. In 

the three-dimensional case, the variables involved in scalar equation (1.3) 

can be separated into 11 coordinate systems. As for equation (1.4), in the 

three-dimensional problem, it yields three independent equations for each 

of components of the vector function   in the Cartesian coordinate system 

alone. To overcome this difficulty, one can use Debye’s potentials U  and 

V , that obey the Helmholtz scalar equation as follows: 

                         
2

2 0;V k V    
2

2 0.U k U                         (1.5) 

The vector potential   (according to Debye) is expanded in potentials 

V  and U  as follows: 

                           )()( 2 VRcurlikURсurlcurl


             (1.6) 

where R  is the radius vector of a point of the elastic body or the elastic 

medium. 
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Let us demonstrate the efficiency of using Debye’s potentials to solve the 

three-dimensional diffraction problems in the acoustical diffraction of an 

elastic spheroidal shell. The advantage of the representation (1.6) becomes 

evident, if we consider that potentials V  and U  obey the Helmholtz 

scalar equation. It is convenient to represent components of   in the 

spherical coordinate system by expressing them through ,U  V , and R  

and then, using vector analysis formulas, to change to spheroidal 

components. The expressions for spherical components of the vector 

function ( , , )R       in terms of Debye’s potentials take the 

following form [1]: 

2 2 2 2 2 2 2( / ) ( / ) 2( / )( / )( / ) ( / ) ( / )R R B R R B R B                             

2 2 2 2 2

2( / )( / ) ( / )( / ) ,R B R B k B                            (1.7) 

2 2 1 2 2 2

0[ ( 1 )] [( / )( / )( / ) ( / )( / )( / )h R B R B                               

2 2 2 2( / )( / )( / ) ( / )( / )( / ) ( / )( / )R B R B B R                                 

2 1

2( / )( / )] (sin ) ( / ),B R ik V                                 (1.8) 

2 2 1/2 1 2 2

0 2[ ( 1 ) sin ] [ / )( / ) ( / )( / )h R B R B ik                           

[( / )( / ) ( / )( / )],V V             
                               (1.9)

  

2 2 1/2

0( 1 ) ; 1 1;1 .B h U              
 

Spheroidal components of the function ( , , )       are expressed as 

follows [1]: 

2 2 1/2 2 2 1/2

0 0( / ) ( 1 ) ( / )( 1 ) ( / ),R h h h h                   (1.10) 

2 2 1/2 2 2 1/2

0 0( / ) ( 1 ) ( / )( 1 ) ( / ),R h h h h                   (1.11) 
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                                  ,                                         (1.12)                                                             

2 2 1/2 2 1/2

0( ) ( 1) ;h h       
2 2 1/2 2 1/2( ) (1 ) .h       

Let us consider a scatterer in the form of an isotropic elastic spheroidal shell 

(Fig. 1-1). All potentials, including the plane wave potential 0 ,  the 

scattered wave potential 1,  the scalar shell potential 2 ,  

Debye’spotentials U  and V , and the potential 3  of the gas filling the 

shell can be expanded in spheroidal functions: 

(1)
, ,0 1 0 1 , 1

0

2 ( , ) ( , ) ( , )cos ,n
m n m nm m n

m n m

i S C S C R C m    
 



 

    (1.13)  

(3)
,1 , 1 , 1

0

2 ( , ) ( , )cos ;m nm n m n

m n m

B S C R C m  
 

 

            (1.14) 

(1) (2)
,2 , , , ,

0

2 [ ( , ) ( , )] ( , )cos ;m nm n m n l m n m n l l

m n m

C R C D R C S C m   
 

 

    (1.15) 

(1)
,3 , , 2 2

0

2 ( , ) ( , )cos ;m nm n m n

m n m

E R C S C m  
 

 

                     (1.16) 

(1) (2)
,, , , ,

1

2 [ ( , ) ( , )] ( , )sin ;m nm n m n t m n m n t t

m n m

U F R C G R C S C m   
 

 

   (1.17) 

(1) (2)
,, , , ,

0

2 [ ( , ) ( , )] ( , )cos ,m nm n m n t m n m n t t

m n m

V H R C I R C S C m   
 

 

   (1.18) 

  ,1, CS nm represents the angular spheroidal function; 
(1)

, 1( , ),m nR C   

(2)

, 1( , )m nR C  , and  ,1

)3(

, CR nm  represent the radial spheroidal functions of 

the first, second, and third kinds 0;lC hh  2 0;tC k h  1 0 ,C kh k  is 

the wavenumber of the sound wave in the liquid; 2 1 0 ,C k h 1k  is the 
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wavenumber of the sound wave in the gas filling the shell; 0h  represents 

the half-focal distance; , , , , ,, , , , ,m n m n m n m n m nB C D E F nmnm HG ,, , and 

nmI ,  are unknown expansion coefficients. 

The expansion coefficients are determined from the physical boundary 

conditions presented at two surfaces of the shell 0(  and ;1  see Fig. 1-1) 

[1]: 

(i) The continuity of the normal displacement component at both of the 

boundaries 0  and 1;  

(ii)  The normal stress on the outside boundary of the elastic shell is equal 

to the sound pressure in the liquid 0( )  and the normal stress on the 

inner boundary of the shell is equal to the sound pressure in the gas 1( );  

 

Figure 1-1: The elastic spheroidal shell in a harmonic plane wave field 

 

(iii) The absence of tangential stresses at both shell boundaries, 0  and 1.  
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The corresponding expressions for boundary conditions take the following 

form [1]: 

0

1 1 1

0 1 2( ) ( / )( ) ( ) ( / ) ( ) [( / )( ) ( / )( )] ;h h h h h h              

                (1.19) 

1

1 1 1

1 2( ) ( / ) ( ) ( / ) ( ) [( / )( ) ( / )( )] ;h h h h h h              

              (1.20) 

0

2 2 1 1

0 0 1 2( ) 2 [( ) ( / ) ( ) ( / )] ;k h h h h u h u            

             (1.21)

1

2 2 1 1

1 1 3 2 2 [( ) ( / ) ( ) ( / )] ;k h h h h u h u            

           (1.22) 

0 1;0 ( / )( / )( / ) ( / )( / )( / ) ;h h u h h h u h                    (1.23) 

0 1;0 ( / )( / )( / ) ( / )( / )( / ) ,h h u h h h u h                    (1.24) 

where
2 1/2 2 1/2

0( 1) (1 ) ;h h      0 is the bulk compression 

coefficient of the liquid and  1  is the bulk compression coefficient of the 

gas filling the shell, 

1 1

2( ) ( / ) ( ) [( / )( ) ( / )( )];u h h h h h                    

1 1

2( ) ( / ) ( ) [( / )( ) ( / )( )];u h h h h h                    

1 1

2( ) ( / ) ( ) [( / )( ) ( / )( )].u h h h h h                      

The substitution of series (1.13)–(1.18) in boundary conditions (1.19)–

(1.24) yields an infinite system of equations to determine the desired 

coefficients. Due to the orthogonality of the trigonometric functions,    

sin m  and  cos m  , the infinite system of equations breaks into infinite 

subsystems with fixed numbers, m. Each of the subsystems is solved 

usingthe truncation method. The number of retained terms of expansions 

(1.13)–(1.18) is increased with a greater wave size for the given potential. 

The solution to the axisymmetric problem of sound waves diffraction from 

elastic spheroidal bodies was presented in [2, 3], and [1, 8, 9].  
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The characteristics of the prolate gas-filled shell were calculated for two 

angles of irradiation: 
0

0 0   and 
0

0 90 .   In a different scale, Figure 

1-2 shows the modules of the angular characteristics of the ( )D   

scattering of a steel prolate gas-filled spheroidal shell (curve 1), a soft 

prolate spheroid (curve 2), and a hard spheroid (curve 3) impacted by the 

sound wave at an angle of 
0

0 0  , where 1 1,0.C    

Figures 1-3 and 1-4 present the same angular distributions, but C1 is the 

wave size; 1 3,1C   (for the elastic shell), 0,31 С  (for the ideal 

spheroid), and 1 10,0C   (for the ideal spheroid). The notations of the 

curves for all three figures are identical. An analysis of the results shows 

that for an angle of 
0

0 0   and a wave dimension of 1 1,0C   (see Fig. 

1-2), the angular characteristic of the elastic shell is equal to the 

characteristic of the hard spheroid. When 1 3,1C   and the irradiation 

angle of the impact is equal to 
0

0 0  , the situation becomes 

indeterminate. The angular characteristic of the shell has a dipole character 

at the hard spheroid (see Fig.1-3). In parallel with the increase of the wave 

dimension 1C , the character of the sound scattering from the shell remains 

complicated (see Fig. 1-4). In the lit region, the characteristic is ( )D   in 

the hard spheroid but, in the shaded region, it is nearer to the shade lobe of 

the soft spheroid than the shadow lobe of a hard spheroid. From known 

angular characteristics of ( , )D   it is  possible to calculate  relative 

backscattering of the cross-sections ( 0 ) from the elastic spheroidal bodies 

can be calculated [1]. Figure 1-5 shows the mathematical term for the 

relative backscattering of cross-sections 0  of prolate spheroids with a 

semi axes correlation of 1:10 0( 1,005)  , which are impacted by the 

sound wave at an axially symmetric angle of irradiation 
0

0( 0 ).   The 

behavior of the solid elastic spheroid is very similar to that of the ideal hard 

scatterer. This is seen through a comparison of the angular characteristics 

( , )D   in steel and ideal spheroids. This is a coincidence and can be 
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observed everywhere, with the exception of the resonance point, 7,4C 

. This resonance is called a Rayleigh surface wave [1, 30, 34, 36]. At a wave 

dimension of C   7,4, the surface contour of the continuous steel prolate 

spheroid is 2,5 ,R  where R  is the length of a Rayleigh-type wave. The 

velocity of the wave Rc  is equal to 2889 ;/ sm  however, on the planar 

boundary of the steel-vacuum, the velocity of the Rayleigh wave is equal to 

2980 / .m s   

 
 

Figure 1-2: Modules of angular characteristics for spheroidal scatterers 

 

 
 

Figure 1-3: Modules of the angular characteristics of spheroidal scatterers  

Figure 1-4: Modules of the angular characteristics of spheroidal scatterers 
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Figure 1-5: The relative backscattering of prolate spheroid cross-sections 

 

Figure 1-6 shows the relative backscattering in the cross-sections 0  of 

oblate spheroids with a semi-axes correlation of 1:10 0( 0,1005)   when 

the notations coincide with Figure 1-5 otations through an axially symmetric 

angle of irradiation 
0

0 0  . 

This will occur until the rthe notationesonance of the zeroth 

antisymmetrical- flexural wave (C  5,3) 0  of the steel oblate spheroidis 

closer to the 0  
of the soft spheroid, whereas for 5,3C  , it approaches 

the 0  of the hard spheroid, although the angular characteristic ( )D 

obtained for the elastic spheroid at 
0

0 0   is for any wave size C  close 

to the angular characteristic ( )D   of the hard spheroid.  

Figure 1-7 shows sections 0  of prolate spheroidal scatterers. The steel 

prolate spheroid is irradiated by the sound wave at an angle of 
0

0 90   

has the resonance of the surface wave with the same meaning C   7,4 (see 

curve 2, Fig. 1-5) [1]. The same section of the scattering 0  of the steel 
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continuous spheroid (curve 3), which is irradiated by the sound wave at an 

angle of 
0

0 90  , is visibly closer to the 0  of the hard spheroid (curve 

4) in comparison with the 0  of the soft spheroid (curve 5). This similarity 

in the scattering properties of continuous elastic and hard spheroids was also 

shown in the angular characteristic ( , ).D    The frequency dependence 

of the relative section 0  in the prolate spheroidal shell (curve 1) irradiated 

by the sound wave at an angle of 
0

0 0   shows the presence of 

considerable resonance by 6,75C   [1, 2, 8, 9]. Figure 1-8 shows the 

modular uses of angular characteristics ( )D   in prolate spheroidal 

scatterers. Curve 1 is the steel, gas-filled shell with a wave dimension 

6,75C   that corresponds to its resonance. Curve 2 is a soft spheroid, 

while curve 3 is a hard spheroid. For all ideal spheroids, the wave size C  

is equal to 10,0. From the comparison of the three curves, we can see that 

the shaded lobe of shell’s angular characteristic is shown as the “soft 

background”, but the lobe of the backscattering is shown as the “hard 

background”.  

             
 

Figure 1-6: The relative backscattering in the cross-sections of oblate spheroid 
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Figure 1-7: The relative backscattering in cross-sections of the prolate spheroidal 

scatterer 

 

           
 

Figure 1-8: Modules with the angular characteristics of prolate spheroidal bodies 
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Table 1-1 

 
 

Wave size 

С 

0  at an angle of 
900    

Spheroidal gas-filled shell  

;005075,10 

005,11   

 Hard spheroid  

005,10   

Soft spheroid  

005,10   

0,5 0,3012·10-3 0,2452·10-3 4,506 

1,0 0,4748·10-2 0,3908·10-2 4,760 

1,5 0,2365·10-1 0,1965·10-1 5,194 

2,0 0,7354·10-1 0,6147·10-1 5,748 

2,5 0,1751 0,1479 6,300 

3,0 0,3470 0,3006 6,754 

3,5 0,6068 0,5418 7,094 

4,0 0,9736 0,8911 7,358 

4,5 1,447 1,362 7,592 

5,0 2,014 1,960 7,815 

  

The relative backscattering of the cross-section 0  of a spheroidal shell 

irradiated by a sound wave at an angle of 
0

0 90   was calculated for a 

wave size ranging from C=0,5 to 5,5C  . The meanings of the 0  in a 

shell are  very similar to the 0  in a hard spheroid; it is worthwhile to 

compare these sections in tabular form. As it can be seen from Table 1-1, 

the angle of the shell’s irradiation with wave sizes ranging from C=0,5 to 

5,5C   indicates a “hard background” to the scattering. This is what we 

can see from a comparison of the angular characteristics of the scattering 

( , ).D    

1.2. Characteristics of Anisotropic Spheroidal Scatterers 

Let us pay attention to an anisotropic (transversal-isotropic) spheroidal 

scatterer. A transversely-isotropic medium is characterized by five elastic 

moduli: 4433131211 ,,,, AAAAA . Hooce’s generalized law for such a body 

is presented in the form [18, 19]: 
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where:   ,,,,,  - are the components of the stress tensor, 

  ,,,,,  - are components of deformation, which, in turn, 

are equal in spheroidal coordinates: 
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There are two orientations of such an anisotropic spheroidal scatterer for 

which the characteristics of an isotropic spheroidal body, in this case, the 

elastic moduli in the plane of isotropy of transversely isotropic scatterer will 

coincide with the elastic moduli of isotropic body.   
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1) angle of incidence   900  , viewing angle   is also 
90 , and the 

planes of isotropy angle of incidence   900  , viewing angle   is 

also 
90 , and the planes of isotropy of the anisotropic spheroidal 

scatterer are perpendicular to the axis of rotation Z (see Fig. 1-1),  thus 

curve 3 of Figure 1-7, depicting the relative backscattering in the cross-

sections  0  will be common for a prolate steel spheroid and the 

corresponding transversely isotropic spheroid; 

2)  at an angle 
00  (axisymmetric problem), the planes of isotropy of 

an anisotropic body correspond to the condition  const  and contain 

the axis of rotation Z. Curves with number 2 in Figures 1-5 and 1-6, 

characterizing the dispersion 0  of steel spheroids, will coincide with 

the corresponding anisotropic scatterers. Curve 1 refers to a steel gas-

filled shell and at the selected irradiation angle 
00  will have an 

anisotropic analogue with the same characteristic. An analogue 

coincidence Awill be observed for the modulus of the angular scattering 

characteristic  D  (curve 1 of Fig. 1-8, 
00  ). Axes 1 and 2 lie 

in the plane of isotropy, and axis 3 is perpendicular to this plane (for 

both orientation). 

1.3. Characteristics of Anisotropic Cylindrical Scatterers 

Let us turn to the problem of diffraction of elastic waves by a transversely 

isotropic infinite cylinder placed in an isotropic medium [20]. The geometry 

of the problem is presented in the Figure 1-9. The displacement vector u


  

is represented as:    

                                 .Arotgradu


         (1.25) 
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Figure 1-9: The transversely isotropic plane wave irradiated cylinder  

For the vector function   A


, in turn, the decomposition was proposed in 

[20]:                                                  

    ,erotaeA zz


                                       (1.26) 

where: χ and ψ are scalar functions obeying the scalar Helmholtz equation,

ze


 -  Z –is  axis unit vector, a –is  cylinder radius. 

  Potentials i  and i  (polarization r-φ) and i  (polarization r-z) are 

presented in the form of expansions in cylindrical functions:  

        ,tzkexpncosrkJi
0n

z11n

n

ni 



                      (1.27) 

where: coskk 11  , sinkk 1z1  , 1k  - is longitudinal wavenumber in 

the cylinder material;  

                    ,tzkiexpnsinrkJi
1n

z22n

n

ni 



     (1.28)                     

where: coskk 22  , sinkk 2z2  , 2k  - is the wavenumber of a shear 

wave in a cylinder material; 

                      ,tzkiexpncosrkJi
0n

z22n

n

ni 



       (1.29) 
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Potentials Φ, Ψ and χ of the transversely isotropic cylinder itself are 

determined by the expansions [20]:   

          ;tzkiexpncosrsJBqrsJA
0n

z2nn21nn1 




   (1.30) 

          ;tzkiexpncosrsJBrsJAq
0n

z2nn1nn11 




   (1.31) 

                   ,tzkiexpnsinrsJC
1n

z3nn1 




           (1.32) 

where: nnn C,B,A - unknown expansion coefficients determined by from 

boundary conditions; z1z kk   - in the case of a longitudinal wave incidence 

on the cylinder; z2z kk   - for the incident shear wave; 

;
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z33
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1 kAkA   ; 

1  - cylinder material density. 

Potentials s , s  and s  of scattered waves in an isotropic medium are 

presented in the forms of expansions:  

                 ;tzkiexpncosrkHD
0n

z1

1

nns 



           (1.33) 
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               ;tzkiexpncosrkHE
0n

z2

1

nns 



           (1.34) 

                     ,tzkiexpnsinrkHF
1n

z2

1

nns 



                 (1.35) 

where: nnn F,E,D  are unknown expansion coefficients determined by 

boundary conditions. 

The displacement vector u


 in isotropic medium consists of two components:  

                                                .uuu si


                     (1.35) 

Boundary conditions on the surface of the cylinder consist in the continuity 

of three components of the displacement vector and three components of 

the stress   tensor (normal and two tangential), this leads, when finding the 

unknown nn E,D  and nF  of the scattered waves according to Cramer’s 

rule, to the ratio of the determinants of the 6th order. Figures 1-10 and 1-11 

show the normalized back reflection amplitudes for transversely isotropic 

cylinders. Figure 1-10 shows the form-function of the back reflection of an 

axially polarized shear wave resulting from irradiation of a cylinder with a 

radius a =0,37 mm by an axially polarized shear wave at an angle 
0 . 

 

 
 

Figure 1-10: The form-function of the back reflection 
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Figure 1-10 corresponds to an isotropic stainless - steel cylinder, the dotted 

line – to a steel cylinder, in which elastic 

 

 
 

Figure 1-11: The form-function of the back reflection 

 

The cylinder is embedded in an isotropic epoxy matrix. The solid line in 

moduli have increased by 10% 44A   and 55A , wherein 5544 AA  . Other 

modules have not changed. 

Figure 1-11 shows the form-function of the back reflection of a shear wave 

polarized in the plane r-φ, resulting from irradiation of the cylinder at an 

angle 
0 . The cylinder is enclosed in an isotropic epoxy matrix. The 

solid line is an isotropic stainless - steel cylinder, the dashed line is the same 

cylinder which module 66A  is increased by 10%. the value of the module 

11A , has been adjusted accordingly, since 11A = 66A . 

1.4. Plane Waveguide with Anisotropic Bottom 

It is well known [21] that a pulsed sound signal, like a bunch of energy, 

propagates at a group velocity. This circumstance forces us to use the 

method of imaginary sources when studying the temporal characteristics of 

pulsed signals scattered by various bodies placed in a plane waveguide [22 



Isotropic and Anisotropic Scatterers and Waveguides 

 

19 

– 27]. Wherein the spectral characteristics of the pulses dea-ling with 

continuous harmonic signals can be also studied using the normal wave 

method [28]. 

When studying waves in anisotropic media, the initial equations are the 

dynamic equilibrium of continuous medium [18, 19, 29 – 31]: 
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                   (1.37)                                                

We restrict ourselves to the consideration of plane monochromatic waves 

[31], the general expression of the displacement vector of such a wave can 

be written as:  

                                         ,euu trki0 


                          (1.38)                                            

where: 
0u


 - is the constant vector (independent of either coordinates or 

time), called the vector amplitude of the wave. 

The displacement vector (1.38) will only in that case will satisfy the 

equations of motion (1.37) if its real and imaginary parts individually satisfy 

the same equation. If the vector amplitude 



u is real, then: 

                                   ,uiusinicosuu 


          (1.39)  

moreover   trkcosuu 



 and  trksinuu 




 are real 

solutions of the basic equations (1.37) in the form of plane monochromatic 

waves. Therefore, we can always choose any of them, for example, u 


, as a 

real solution. A plane monochromatic wave (1.38) will not satisfy the 

equations of motion (1.37) for any parameter values ,k,u



. We rewrite 

the equations of motion (1.37) in another form, using the notation of the 

elastic moduli as components of the 4th rank tensor [25]:    
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 3,2,1m,l,j,i   

Substituting (1.38) in (1.40) and considering that  
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mljmljii

2 ukkcu            (1.41) 

We introduce instead mljic  of the tensor 

                              ,c
1

mljimlji


            (1.42)  

which we will call the reduced tensor of elastic moduli.  

Considering that nkk


  ( n


is the unit vector); ;kk;1n2


  

kc;nkk jj  , we rewrite (1.42) in the form: 

                            0ucunn i

2

mljmlji                       (1.43) 

   If we introduce a tensor of the second rank: 

                      ,nn ljmljimi

n  


         (1.44) 

then equation (1.43) can be written in direct form:  

                                  ,0u 


           (1.45)            

From (1.45) it follows that the displacement vector of plane wave u


 is an 

eigenvector, and the square of the phase velocity of the wave 
2c  is an 

eigenvalue of the tensor Λ. 
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Vector equation (1.45) is the main one for the theory of elastic waves in 

anisotropic media and is called the Christoffel equation. Solving this equation 

is reduced to finding the eigenvectors and eigenvalues of the tensor Λ. 

A real symmetric positive definite (for any directions of the wave normal) 

tensor Λ in the general case has three different eigenvalues 
2

33

2

22

2

11 c;c;c   , each of which has its own vector that 

determines the direction of displacement in the wave. Therefore, three 

waves with different phase velocities can propagate in anisotropic media in 

the general case, for any given direction of the wave normal. We will call 

such three waves, having a common wave normal, isonormal. 

Transversely isotropic elastic medium is characterized by five elastic 

modules: 4433131211 ,,,, AAAAA  , and the generalized Hooke’s law for 

such a medium is written in the form [18, 19, 29 - 31]:  
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                    (1.46)                       

where: 
zxyzyxxzy ,,,,,   are deformation components. 

The problem will be solved in a flat setting, i. e. the displacement vector U


 

has only two components other than zero U (on the X axis) and W (on the Z 

axis) and there is no dependence on the coordinate y. Taking this into 

account, the deformation components will be equal to: 
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And Hooke’s law will be simplified: 
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The equations of dynamic equilibrium for a flat formulation take the form: 
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where: 
1  – is transverse isotropic half – space density. 

We turn to a familiar problem of the diffraction of pulses on spheroidal 

bodies in the plane waveguide [19, 29, 30], retaining the upper boundary 

condition of Dirichlet, waveguide dimensions and scatterer with respect to 

boundaries, replacing only ideal hard boundary on the elastic isotropic 

bottom. Physical parameters of the lower medium will correspond to the 

isotropic elastic bottom, but in their values, they will be very close to 

parameters of transversely-isotropic rock – a large gray siltstone [18]. The 

longitudinal wave velocity in this material is 4750 m/s, the transverse wave 

velocity – 2811m/s. When used in this case the method of imaginary 

sources, we need to enter the reflection coefficient V for each source [32], 

when displaying sources are relative to the upper border sources, as before 

[1, 18, 19, 27, 28, 29, 30, 32], we will change the sign on the opposite, this 

corresponds to a change of phase by .  

It is known to [32], that the imaginary sources method boundary conditions 

are not fulfilled strictly on any of borders of the waveguide even in the case 

of ideal boundary conditions of Dirichlet and Neumann. For the better 


