An Introduction to Viticulture, Winemaking and Wine
An Introduction to Viticulture, Winemaking and Wine:

From Vineyard to Wine Glass

By

Alan J. Buglass
This book is dedicated to all those souls, who at various times have been fellow travelers with me through the world of wine. Except for my father, who in 1962 introduced me to wine in the form of a bottle of 1955 Nuits-St.-Georges Premier Cru, and my mother and sister, they are far too many to mention individually. Sadly, some have gone, but those who remain will realize if they chance to read this dedication.
Table of Contents

LIST OF FIGURES xiii
LIST OF TABLES xvii
PREFACE xx

CHAPTER 1 INTRODUCTION 1
1.1 Wine and Vines 1
1.2 Development and Progress 6
1.3 Crises of the Nineteenth Century and their Remedies 13
1.4 Hybrids 16
1.5 Modern Times 18
Bibliography and Further Reading 21

CHAPTER 2 GROWING GRAPEVINES 22
2.1 Vines 22
2.1.1 Varieties, Clones and Natural Mutations 22
2.1.2 Crossbreeds and Hybrids 33
2.1.3 Crossbreeding Techniques 35
2.1.4 Today’s *Vitis vinifera* Varieties 37
2.1.5 Grapevine Ancestry 40
2.1.6 Vine Breeding Programmes 46
Table of Contents

2.2 Vine Propagation 50

2.2.1 The Need for Propagation 50

2.2.2 Propagation Methods from Hardwood Cuttings 52

2.2.3 Grafting 53

2.3 Planning a Vineyard 58

2.3.1 Preliminary Considerations 58

2.3.2 Climate 60

2.3.3 Site 68

2.4 Planting and Maintaining a Vineyard 74

2.4.1 First Thoughts 74

2.4.2 Vine Varieties and Rootstocks 75

2.4.3 Preparing the Land 84

2.4.4 Planting 87

2.4.5 Training (Culture) Systems 88

2.4.6 Vineyard Maintenance: Weeds and Fertilizer 105

2.4.7 Mildews and Fungal Diseases 109

2.4.8 Late Spring Frost 116

2.4.9 Birds 117

2.4.10 Insect, Acarian and Nematode Pests 118

2.4.11 Viruses and Bacteria 123

2.4.12 Organic and Biodynamic Cultivation 124

Bibliography and Further Reading 127
CHAPTER 3 HARVEST AND WINEMAKING

3.1 Harvest

- 3.1.1 Pre-harvest Considerations 130
- 3.1.2 Harvesting Methods 135

3.2 A Brief Overview of Fermentation and Microorganisms

- 3.2.1 Grape Juice and Microorganisms 136
- 3.2.2 Fermentations Involved in Winemaking 140
- 3.2.3 Alcoholic Fermentation 142
- 3.2.4 Wild Yeasts, Cultured Yeasts and Sulphur Dioxide 147
- 3.2.5 Some Products of Alcoholic Fermentation 154
- 3.2.6 Malolactic Fermentation 156

3.3 Winemaking (With Special Emphasis on White Wine)

- 3.3.1 White Wine Styles 161
- 3.3.2 Crushing and Destemming 164
- 3.3.3 Pressing 167
- 3.3.4 Vertical Basket Presses 169
- 3.3.5 Vertical Hydraulic Presses 171
- 3.3.6 Water Presses 173
- 3.3.7 Horizontal Plate Presses 174
- 3.3.8 Horizontal Pneumatic Presses 175
- 3.3.9 Screw (Continuous) Presses 177
- 3.3.10 Settling, Clarification and Adjustment of Must in White Wine Production 178
- 3.3.11 Fermentation and Maturation 180
- 3.3.12 Sweet Wine 184
- 3.3.13 Types of Fermentation/Maturation Vessels 188
3.3.14 Racking, Fining and Filtration 192
3.3.15 Blending, Stabilization and Bottling 206

3.4 Making Red and Rosé Wines: Essential Features 211
3.4.1 Maceration Techniques and Red Wine Styles 211
3.4.2 Whole Bunch (Cluster) Maceration versus Destalked Bunch Maceration 218
3.4.3 Colour 219
3.4.4 Maturation and Influence of Oak on Red Wine 220
3.4.5 Production of Rosé Wines 224

3.5 Sparkling Wine Production: Essential Features 226
3.5.1 Brief Overview 226
3.5.2 The Traditional Method and the Transfer Method 229
3.5.3 The Tank (Cuve Close or Charmat) Method 236
3.5.4 The Carbonation (Impregnation) and Continuous Methods 238

3.6 Vermouth and Other Flavoured Wines and Aperitifs 239

Bibliography and Further Reading 242

CHAPTER 4 THE WINE TRADE 247
4.1 Overview 247
4.1.1 Summary of Today’s Industry 247
4.1.2 History and Development 249
4.1.3 Recent Trends and Projections 254

4.2 Trade Regulations and Agreements 257
4.2.1 Regulations and Treaties 257
4.2.2 Additives, Residues and Other Contaminants 260
4.2.3 Labeling Requirements 263
4.3 Selling and Buying
4.3.1 Direct Transactions
4.3.2 Brokers, Négociants (Merchants/Distributers/Shippers) and Co-operatives
4.3.3 Buying and Selling Fine Wines

Bibliography and Further Reading

CHAPTER 5 STORAGE, SERVING, APPRECIATION AND ASSESSMENT OF WINE
5.1 Bottle Storage
5.1.1 The Need for Good Storage Conditions
5.1.2 Wine Cellars
5.1.3 Temperature-Controlled Cabinets
5.2 Bottle Closures
5.3 Serving Wine
5.3.1 Preparation for Serving
5.3.2 Serving
5.3.3 Wine Glasses
5.4 Appreciating Wine
5.4.1 Tasting Technique
5.4.2 Wine Colour
5.4.3 Odour
5.4.4 Taste and Tactile Sensations (Mouthfeel)
5.5 Wine and Food
5.6 Assessing/Evaluating and Judging Wine
5.6.1 Types of Wine Assessment
5.6.2 Judging and Scoring at Wine Exhibitions

Bibliography and Further Reading

APPENDICES

A. Measurement of Sugar Content; Scales and Interconversions.
De-acidification of Must Calculations. Measurement Units and
Conversion Factors

B. Major Research Establishments. Prominent Grapevine Breeding
Centres, and Grapevine Collections. Information on Vine Varieties
and General Wine Information

C. Some Prominent Suppliers of Grapevines, Vineyard Equipment
and Materials

D. Some Prominent Suppliers of Winery Equipment and Oenological
Materials

E. Routine Process Monitoring

INDEX
LIST OF FIGURES

Figure 1-1 Family tree of *Vitis vinifera*. 2
Figure 1-2 World map showing approximate mean annual temperature zones and distribution of various *Vitis* species. 3
Figure 1-3 Typical vine flowers. 4
Figure 1-4 Late mediaeval grapevine training (mid 15th century). 9
Figure 1-5 Selection of old bottle types, showing changing shape over a few decades. 10
Figure 1-6 18th-century wooden cross beam (left) and lever beam press (right) at Stellenbosch Wine Museum. 12
Figure 2-1 Illustration of some aspects of grapevine anatomy. 22
Figure 2-2 Parts of vegetative life cycle of the vine. 24
Figure 2-3 Growth stages of a grape berry. 25
Figure 2-4 Family tree of French-American hybrid “Chancellor”. 35
Figure 2-5 Bordeaux vine lineage. 43
Figure 2-6 Grapevine propagation methods. 53
Figure 2-7 Common bench grafts. 55
Figure 2-8 Two common field grafting techniques. 57
Figure 2-9 A: Criteria for setting up a successful vineyard. B: Summary of typical vine requirements. 59
Figure 2-10 Suitable sites for a (northern hemisphere) vineyard. 70
Figure 2-11 Vineyard soil types. 73
Figure 2-12 Grapevine training methods. 91
Figure 2-13 Examples of grapevine training systems. 94
Figure 2-14 Examples of trellis end post support systems. 95
Figure 2-15 Trellis tools. 95
Figure 2-16 Replacement cane (head cane) pruning (a) and spur pruning (b). 100
Figure 2-17 Pruning according to some common training methods. 101
Figure 2-18 Factors that can minimise vineyard fungal infections. 110
Figure 2-19 Vine maladies and pests. 113
Figure 2-20 Multiple row anti-bird netting. 118
Figure 2-21 Simplified life cycle of Daktulosphaira vitifoliae (Phylloxera). 119
Figure 3-1 Measurement of grape juice sugar content. 132
Figure 3-2 Anatomy of a wine grape at maturity (a) Section through berry (b) Short section showing berry tissues (c) Grape constituents. 137
Figure 3-3 Overall chemical equations for important wine fermentations. 141
Figure 3-4 Summary of alcoholic fermentation pathway and respiration. 143
Figure 3-5 Typical fermentation profiles. 144
Figure 3-6 “Sulphur dioxide” or “sulphite” in must and wine. 149
Figure 3-7 Summary of production methods for dry or medium-dry white wine. 163
Figure 3-8 Simplified section through a typical destemmer. 165
Figure 3-9 Common wine presses. 172
Figure 3-10 De-acidification scheme for use with alkaline agents. 178
Figure 3-11 Ways of making medium or sweet wine. 186
Figure 3-12 Some fermentation/maturation vessels. 189
Figure 3-13 Racking white wine between tanks. 193
Figure 3-14 Filtration mechanisms. 201
Figure 3-15 Possible blending schemes for vineyard winery. 207
Figure 3-16 Filtration, bottling and other equipment. 210
Figure 3-17 Outline of dry red wine production processes. 213
Figure 3-18 Red wine pulp or pomace maceration management. 214
Figure 3-19 Racking between casks. 223
Figure 3-20 Ways of making rosé wine. 226
Figure 3-21 Methods for producing sparkling wine. 228
Figure 3-22 Sparkling wine via the Traditional Method (“méthode traditionelle”). 230
Figure 3-23 Methods of Riddling (Remuage). 234
Figure 3-24 Outline of Transfer Method for making good quality sparkling wine. 236
Figure 3-25 Schematic representation of tank (cuve close or Charmat) method of producing sparkling wine. 237
Figure 3-26 Outline of vermouth manufacture. 240
Figure 4-1 Common additives, residues and contaminants sometimes found in wine. 261
Figure 4-2 Typical subsidiary label with information in electronic formats. 267
Figure 4-3 Examples of label logos for (a) organic, (b) biodynamic and (c) sustainable wines. 269
Figure 4-4 Routes between producer (wine grower) and consumer. 271
List of Illustrations

Figure 4-5 Examples of Bordeaux-style bottle ullage terms. 281
Figure 5-1 Example of a temperature-controlled wine cabinet. 290
Figure 5-2 Wine bottle cork types. 293
Figure 5-3 Summary of origins of “cork taint”. 295
Figure 5-4 Assortment of corkscrews and temporary wine bottle closures. 299
Figure 5-5 Selection of wine accessories. 299
Figure 5-6 (a) Corks from old bottles of wine, showing deterioration.
 (b) Sediment from 49 year old Vintage Port. 300
Figure 5-7 Decanting. 301
Figure 5-8 The ISO wine tasting glass. 303
Figure 5-9 Visible absorption spectra of red wines. 310
Figure 5-10 Examples of spider web (radar chart) diagrams. 336
Figure 5-11 Score sheet for preliminary evaluation of wines submitted for exhibition. 337
Figure 5-12 Tasting sheet for evaluation of exhibition wine (with a sample score). 339

Centrefold 1 Red wine colour and age
LIST OF TABLES

Table 1-1 Effect on yield of the first attack of powdery mildew at Château Grand-Puy-Lacoste, Pauillac, Bordeaux 14

Table 1-2 Prominent hybrid grapevine breeders 16

Table 2-1 Selected clones of popular *V. vinifera* varieties 29

Table 2-2 Major grapevine varieties; distribution and trends 37

Table 2-3 Selection of nationally or locally important *V. vinifera* varieties 39

Table 2-4 Summary of probable genetic relationships among selected established varieties of *V. vinifera* 42

Table 2-5 Genetic relationships among selected members of the Muscat family of *V. vinifera* 44

Table 2-6 Genetic Heritage of selected modern *V. vinifera* varieties 47

Table 2-7 Hereditary make-up of selected French-American hybrids 48

Table 2-8 The Winkler Scale of heat summation 62

Table 2-9 Available water in various soils 72

Table 2-10 Common *V. vinifera* varieties and their major characteristics 76

Table 2-11 Important grapevine rootstocks 82

Table 2-12 Comparison of some common culture (training) systems 97

Table 2-13 A northern hemisphere vine grower and winemaker’s calendar 107

Table 2-14 Possible antifungal spraying programme 111
List of Tables

Table 2-15 Common vineyard insect and acarian pests 121
Table 3-1 Summary of chemical content of grape must and wine
 (g/L must; g/L wine) 138
Table 3-2 Comparison of yeasts found on the skins of healthy grapes 146
Table 3-3 Maximum allowed total sulphite (SO₂) levels in wine 150
Table 3-4 Some strains of cultivated wine yeast for inoculation
 of grape must 152
Table 3-5 Yield of must related to weight of pulp or grapes for horizontal
 pneumatic (membrane) presses 175
Table 3-6 Sugar enrichment (“Chaptalisation”) of must legislation
 in the EU 181
Table 3-7 Categories describing the sweetness of wine 184
Table 3-8 Comparison of common clarification (fining) agents used
 in winemaking 197
Table 3-9 Pros and cons of filtration methods 204
Table 3-10 Some flavour characteristics of oak used for wine casks 221
Table 4-1 Major wine exporting nations, in billions of dollars value 250
Table 4-2 World wine production (mean volumes for 2013-18) 251
Table 4-3 Export figures in terms of category, for 2017 and 2018 254
Table 4-4 Selection of notable wine vendors 278
Table 5-1 Chemical composition of natural cork used as wine bottle
 closures 292
Table 5-2 Chemical Components* of wine in relation to organoleptic
 sensation 306
Table 5-3 Common odour descriptors related to notable volatile
 components in wine 314
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5-4</td>
<td>A guide to matching wine with food</td>
<td>325</td>
</tr>
<tr>
<td>Table 5-5</td>
<td>Wine assessment and sensory analysis methods</td>
<td>334</td>
</tr>
</tbody>
</table>
The principal aim of this book is to provide newcomers to the world of wine with sufficient scientific and technical background and guidance to allow progress in their own particular fields, such as growing sound grapes, making good wine, investing and trading wine and the serving, tasting, assessment or judging of wine. In effect, I have attempted to cover all important aspects relating to grapes and wine, albeit necessarily in simplified and abbreviated form. Knowledge of science at high school, college or similar level is a definite advantage regarding most sections of Chapters 2, 3 and 5, although much of the book can be read comfortably by those with little scientific background. The book is intended for the use of novice vine growers, winemakers and trade personnel, students of horticulture, viticulture and/or oenology (such as those attending junior college or university courses or those studying for Wine and Spirit Education Trust–WSET–certificate or diploma, or similar qualifications) and students attending sommelier courses. It is hoped too, that it will be of interest to enthusiastic amateurs and those more experienced in the world of wine. Much of the book, especially Chapters 2, 3 and parts of 5, has been written from a practical viewpoint, so that aspiring vineyard owners, winemakers, sommeliers and traders may find sufficient guidance to enable them to start in the right direction along the path toward the realization of their dreams.
The Bibliography and Further Reading section that terminates every chapter contains a list of general reading matter, most of it technical, but some items are of a more descriptive nature and hence are suitable for all readers. For readers with sound scientific experience or enthusiastic curiosity, details of important and very specific scientific papers, both original research articles and reviews, are included. All the bibliographical items can be accessed, in some form or other, by use of the internet and indeed, a fair number can be found only by that means. Note that a few articles may be accessed freely through the internet only as abstracts or summaries, the full article needing a subscription or arrangement with the publisher.

I am very grateful to the many people who supplied photographic images for inclusion in a large number of the figures; there are too many to mention here, but their identities can be found in the figure captions. I thank also my wife and family for their patience and understanding during the long hours of preparation of this book.

Alan Buglass,
June 2022
CHAPTER 1

INTRODUCTION AND BRIEF HISTORY

1.1 Wine and Vines

Wine is one of the world’s premium beverages and its many styles are enjoyed by people from all walks of life in a wide variety of contexts. A common definition of wine is “the fermented juice of freshly harvested grapes”; it is derived from the fruit of grapevine plants, which belong to the genus *Vitis* (Fig. 1-1). Wine is a name more loosely used to describe the fermented juice of other fruit like apricots or elderberries, or even vegetables such as beetroot, or cereals like rice, but in this book it refers solely to fermented grape juice as mentioned above. In practice, the best wine is usually produced by certain cultivated varieties (cultivars) of the species whose full name is *V. vinifera* Linné spp. vinifera, but which herein simply will be referred to as *V. vinifera*. Collectively, these are by far of greatest importance in the world of wine. In common with the other *Vitis* species, *V. vinifera* is a climbing, ground-covering plant that thrives in wind-sheltered, sunny, moist but well-drained situations (Chapter 2.3). Its wild progenitor, *V. vinifera* silvestris, can still be found in such locations, usually on hillsides, in forest clearings and by riversides in countries surrounding the Mediterranean Sea—from the Iberian peninsular in the west through southern Turkey to the trans-Caucasian countries around the Black and Caspian Seas in the east.
Figure 1-1 Family tree of *Vitis vinifera*. aSometimes divided into two subgenera: Euvitis (the major one) and Muscadin (minor), which includes *V. rotundifolia*. bActual number of species depends on whether some are classed as subspecies of others. cSpecies are further divided into varieties; *V. vinifera*, in particular, has thousands of varieties.

However, it is now rather rare and since 1997 has been included on the International Union for Conservation of Nature (IUCN) “Red List” of threatened species, having suffered from diseases imported from North America (Chapter 1.4) and loss of habitat due to agricultural changes and urban development. Similarly in other parts of the world, other species of *Vitis* can be found growing wild, for example *V. berlandieri* in Arkansas, New Mexico and Texas, or *V. amurensis* in southern Siberia, China, Japan and Korea. Fig. 1-2 outlines the approximate distribution of various *Vitis* species worldwide, including wild and cultivated varieties. It can be seen that the majority are found in temperate zones; those with mean annual
Hybrid means an interspecific cross, such as between a *V. vinifera* variety and a *V. riparia* variety. Species in parentheses are minor ones. Most great wines are made from *V. vinifera* grapes in regions with mean annual temperatures (at sea level) between 10 °C and 20 °C, usually in areas closer to 10 °C. Temperatures between 10 and 20 °C (see Chapter 2.1.1).

V. vinifera silvestris, like other wild *Vitis* species is mostly dioecious—having male flowers on some plants (“staminate” plants) and female flowers on others (“pistillate” plants). Thus in the wild, staminate plants are barren, while pistillate plants will produce fruit only if their flowers are pollinated by nearby staminate plants. However, during the course of time, natural mutation produced self-pollinating bisexual plants here and there within local wild populations. These latter plants, with “perfect” or hermaphroditic flowers (Fig. 1-3) were generally more fruitful than the
pistillate dioecious plants (the majority) and so were preferentially selected by the earliest farmers for cultivation and propagation because of their consistently greater yield of fruit. Today, the big majority of cultivated vine varieties are self-pollinating, although in the southern USA, the female (pistillate) forms of many dioecious Muscadine varieties are cultivated amongst self-pollinating varieties, and dioecy is still prevalent in wild vine populations of all species.

Figure 1-3 Typical vine flowers. (a)-(c) Bisexual flower, containing both male (4 and 5) and female parts (6-9), allowing self-pollination: (a) Unopened (b) Opening; calyptra separating (c) Opened. (d) Male (stamenate) flower. (e) Female (pistillate) flower. Key: 1 Pedical; 2 Corolla; 3 Calyptra (cap); 4 Anther; 5 Filament; 6 Stigma; 7 Style; 8 Ovary; 9 Nectary. Pistil is the whole female flower part (6, 7 and 8).

Grapevines, like other plants, can reproduce (propagate) asexually or sexually. The former is characterized by the growing of new green shoots and roots from part of an established vine (hardwood or green) in the right conditions (if inserted into soil or some nutrient-rich medium); it gives clones, new plants that are genetically identical and so have the same physiological character as the old vine. Sexual reproduction occurs via pollination of the female part of the flower (pistil) by pollen grains from
male part (stamens), either on the same flower or involving different flowers, as explained above. The fruit that develops from the pollination grows, ripens and eventually disintegrates or is eaten by birds or other animals, whereupon the seeds are dropped to the ground (locally or distant from the mother plant) and, under the right conditions, some of them germinate to produce a new plant. This time, however, the new vine is genetically different to either parent, and hence is noticeably different in physiology; it is in fact a new variety. Hence sexual reproduction of grapevines is used by mankind to make completely new varieties with certain advantageous traits (although it will be seen in Chapter 2.1.3 that this is no simple task), whereas asexual reproduction is used to propagate favoured clones of particular varieties (see Chapters 2.2.2 and 2.2.3).

It is likely that vines were first propagated in the earliest vineyards by “layering”, burying a fruiting shoot of the previous season from an established plant in vacant soil adjacent to the plant (see Fig. 2-3 in Chapter 2.2.2). This method, although no longer widely used, was popular in certain wine regions, like Burgundy, even up to the mid 19th century. Propagation by use of hardwood cuttings is now the major method, but it too was probably known in ancient times and used especially for generating new vineyards in distant places by planting the same varieties. Even in the earliest days, new varieties would be produced randomly from time to time, from germinating seeds of fruit that were the result of natural intraspecific cross-pollination (between the same species). When people were able to travel more easily between continents, taking with them species of Vitis that were foreign to the local species, natural interspecific cross-pollination became more common. By the early 19th century, new
varieties were being deliberately raised from seed. In a few favourable cases, the new varieties were cultivated and propagated. Perhaps the best-known of the early examples are Catawba, an interspecific cross (hybrid) of *V. labrusca* and *V. vinifera* (possibly Sémillon) and Concord, a hybrid of Catawba and a *V. vinifera* variety; the former was first raised in North Carolina/Maryland, the latter in Massachusetts.

1.2 Development and Progress

Archeological evidence so far suggests that the earliest known sites of *V. vinifera* cultivation and probable wine production were in Georgia, around 6000 BC. Other early sites are located in northern Iran (~5500 BC) and China (~6000 BC), although in the latter case, the vines would have been one or more of the many indigenous *Vitis* species of China; since documentary evidence indicates that *V. vinifera* was not introduced into China before 1000 BC. The earliest known winery (~4000 BC) as such, complete with primitive press, vats, cups and grape pips, is at Areni, in Armenia, although grape seeds and red juice or wine stains have been found inside earthenware vessels at numerous other sites. By the time of the great Mediterranean civilizations of Egypt, Phoenicia (both ~3000 BC) and later, Greece and Rome, viticulture and winemaking were very well established. Moreover, by these times, after at least 3,000 years of cultivation, many natural mutations would have occurred and favourable mutants would have been selected by farmers and propagated, so that even in these early years it is likely that numerous varieties were used for eating, drying (raisin production) and winemaking.
The ripe fruit of wild *Vitis* species, today, as well as of old, have pigmented (usually dark) skins. Probably a most important mutation was noticed during these early years; an occasional plant (or parts of a plant) with pale fruit would be discovered in a vineyard full of black-fruited vines. We now know this mutation involves the VvmybA1 gene, a transcriptional regulator of anthocyanin biosynthesis that conveys black grape skin pigmentation. Deletion of the functional VvmybA1c allele gives mutants whose fruit have pale or even “white” (in reality, green or golden) skins. So it is likely that pale-fruited varieties like Muscat-à-Petits-Grains were already being cultivated around 3000 BC.

After about 3000 BC, wine culture was spread to other parts of the world by seafaring traders, notably the Phoenicians, to North Africa and southern Europe. This was extended later by the Greeks and especially by the Romans, who took a number of varieties of *V. vinifera* to inland Europe and established many vineyards, even as far north and west as Britain. In doing so, the Mediterranean/western Asian varieties would have plenty of time (several centuries) in their new environments to cross-pollinate with each other or with local *V. vinifera* varieties or even wild vines to produce new cross-bred plants, which if favourable, would be later propagated. Hence it is likely that during this period (~1000 BC to ~300 AD and onwards), the gene pool was considerably enlarged and the number of cultivated varieties significantly expanded.

For a variety of reasons, the taste of these early wines may not have suited most modern palates. Firstly, the use of pine resin was common in some Mediterranean countries. This may have been first used on the internal surfaces of porous earthenware jars as a sealant, but soon became
a popular addition to wine because its strong flavour masked unpleasant
flavours due to oxidation, which would have been the norm in those days.
“Resinated” wines, like Retsina of Greece and Cyprus, are still produced
today. Pine resin gives the wine a distinct non-vinous flavour that is loved
by some but hated by others. Secondly, the Romans were fond of
sweetening their wines with concentrated (“cooked”) grape juice (“must”),
thus producing wines altogether too sweet for most modern tastes. Modern
equivalents of this; “color”, “musto cotto” and others are still used to
sweeten and darken otherwise pale dry fortified wines, such as Madeira,
Málaga, Marsala and Sherry. Thirdly, both the Greeks and Romans were
often known to dilute their wines with water (sometimes seawater) before
drinking. However, once wooden casks had become widely established
(from about 300 AD), most wines would have tasted broadly similar to
modern wines, but would have been generally less well rounded, coarser,
more oxidized and much more variable in quality. Moreover, most wines
(especially white) would be preferentially consumed by the autumn
following the vintage, while they were still fresh and fruity, and before
oxidation and spoilage really got under way. They would mostly be served
straight from the cask and consumed over a short period of time, unless the
cask was topped up with new wine. In order to delay oxidation, some
winegrowers covered the wine surface in the cask with a layer of olive oil,
a practice that survived from the early Roman era.

Originally vines were trained as low bushes or on tree supports, often
growing alongside other crops. Later, training of individual vines on
wooden stakes or on vertical wooden trellises or pergolas (Fig. 1-4)
became popular. Although most modern vine training systems (Chapter