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FOREWORD 
 
 
 

The book “Compound Systems in Nonextensive Statistical Mechanics and 
Manganites”, by F. A. R. Navarro is a material that was actually missing in 
the literature that treats the interesting field of Nonextensive Statistical 
Mechanics, as first introduced by C. Tsallis. The subject is extremely rich 
and has, by now, a vast spectrum of works that cover the area. However, the 
specific application to compound materials—in this case manganites— 
opens up new possibilities of learning the topic while considering a relevant 
category of structures. It is non-trivial application. 

The introduction is very well presented and sets up the necessary 
backgrounds for a pleasant and fluent reading. Navarro is able to pick up 
the truly relevant points and he presents them with the ability of a long 
experience in thinking about and teaching the material. It is really a very 
helpful introduction to fix up the pre-requisites to dive into the interesting 
chapters that follow up. 

The next chapters are more specific, but clear and complete, with the 
ideas, calculations and discussions presented with remarkable explanations. 
No doubt that beginners and those who wish to enter the field shall benefit 
a great deal from the material covered by Navarro’s book. The chapter with 
the applications is very up-to-date and may provide tools and inspiration for 
further research. 

The Bibliography is good and allows the reader to easily grasp the state-
of-art of the research field. Students, young researchers, and more 
experienced professional may find in the book material that may enrich 
seminars, lectures, and thesis work. 

I deeply recommend Navarro’s book for the high quality of its text, for 
the outstanding balance of the contents of each chapter and for bringing to 
light a non-trivial and very appealing framework to apply Tsallis’ nonextensive 
statistical mechanics. 
 

J. A. Helayël-Neto,  
Brazilian Center for Research in Physics 

(CBPF). 
November 2020. 

 



PREFACE 
 
 
 

By this book, I want to divulge two matters, manganites and nonextensive 
statistical mechanics. They have been my research aims for many years in 
both the Federative Republic of Brazil and the Republic of Peru. In the 
former, in the early 2000s, I started a Ph.D. degree in Physical Sciences at 
the Brazilian Center for Research in Physics, which is located in the 
Marvelous City of Rio de Janeiro. In the latter, nowadays, I am a tenured 
professor at the National University of San Marcos in the city of Lima. For 
many years I wished to write a book on physics; however, because of the 
duties of everyday life, I postponed that longing. 

Before writing this book, I had focused on publishing only scientific 
papers. Certainly, after obtaining a scientific result, a manuscript requires 
less time and fewer pages than a regular book does. But now, finally, I have 
spent my idle hours ordering and updating information about the two 
aforementioned matters. 

Indeed, organizing this book has been a wonderful personal experience. 
I always liked too much link ideas and words. After reading this book, I 
hope you, dear reader, will be interested in delving into the issues introduced 
herein. 

Finally, my thanks and gratitude to all who encourage me to move 
forward with my life as a physicist. 
 

Felipe Américo Reyes Navarro,  
Doctor in Physical Sciences,  

Lima, Republic of Peru, 
August 2021. 

 



 



INTRODUCTION 
 
 
 
This book deals with the application of nonextensive statistical mechanics 
in compound systems. In particular, the focus is on magnetism and 
manganese oxides, because these last materials have several important 
features that enable the application of nonextensive statistical mechanics; 
in physics, manganese oxides are also named manganites. Nonextensive 
statistical mechanics, also known as Tsallis statistics, can address the 
complex problem of manganites in a phenomenological way. Thus, in this 
book, we will mainly study compound magnetic systems A + B. This is 
motivated because manganites have magnetic manganese presenting two 
important valence states, Mn3+ and Mn4+, that is, forming two magnetic 
sublattices. 

Besides, we will learn nonextensive quasi-probability distributions, 
which originate from the relaxation of the Tsallis cutoff. These distributions 
describe well the fall of the magnetization of the Pr1-xCaxMnO3 manganite 
series, i.e., the metastable metal-ferromagnetic phase (at low temperatures 
with concentration x = 0.30–0.50). Similarly, an interesting problem and 
its solution will be introduced; it is concerning the calculation of mean 
values of compound systems, in different Hilbert spaces.  

Currently, there is rich and varied experimental evidence, as well as 
excellent approaches in various branches of science, indicating that a 
nonextensive statistical theory, with a power-law type distribution, 
provides a solution to several anomalous problems in which 
Boltzmann-Gibbs-Shannon statistical mechanics fails. Nonextensive 
statistical mechanics has applications in, e.g., cosmology and gravitation, 
digital image processing, magnetism, complex systems theory, etc.; the 
number of publications concerning it is huge. There are more than 8000 
publications that study or reference the usually called Tsallis statistics 
(Website 1, 2022). 

Herein, in Part I, Chapter One, a general introduction to the physics of 
manganites is made, especially for the Pr1-xCaxMnO3 series. Thus, the 
main theories that explain the exotic behavior of these manganese oxides 
are summarized. We have, for example, the double-exchange model (the 
original and the current one), the model of polarons, the Anderson 
localization model, and the phase separation scenario in a percolative 
process. Likewise, we will find a summary of some models for manganites 
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from first principles as well as a current overview of nanostructured 
manganites. 

In Part II, in Chapter Two, before the formalism of nonextensive 
statistical mechanics is introduced, we will review a historical evolution of 
the ideas that led to the foundation of the statistical concepts and, 
especially, to the construction of statistical mechanics. Likewise, it is 
introduced some entropies successfully applied in different areas of 
science. Afterward, we will deal with nonextensive statistical mechanics; 
we will learn the following topics: how Tsallis entropy is postulated, the 
link between Renyi entropy and Tsallis entropy, pseudo-additivity for 
Tsallis entropy, escort entropies, generalized mean values, three 
definitions of temperature in that statistical theory, etc. Furthermore, in 
Chapter Three, we will learn about an alternative method to calculate the 
mean values for a compound quantum system A + B; this method is 
applicable to any theory using a power law, including obviously 
nonextensive statistical mechanics. Specifically, only for didactic reasons, 
a two spin-½ system is studied; the same study can be made for spins 2 
and 3/2, Mn3+ and Mn4+ spins, respectively. Then, two procedures are 
utilized to calculate the mean values of the two spin-½ system: The usual 
method of partial matrices raised to the entropic index 𝑞, 𝜌  and 𝜌 , and 
an alternative method in agreement with the partial trace quantum 
operation. 

In Part III, applications of the topics discussed are explained. Thus, in 
Chapter Four, for Pr1-xCaxMnO3 with x = 0.30–0.50, it is introduced a 
phenomenological and specific model by using the alternative method 
along with the mean-field approximation. This model works well in 
studying specific aspects of manganites. Chapter Five summarizes the 
matters we will deal with.  

Furthermore, it is introduced three appendices. In Appendix A, 
magnetoresistance and the magnetocaloric effect and their applications 
will be explained. In Appendix B, we will establish several properties of 
the 𝑞-logarithm function (for 𝑞 = 1, we recover the natural logarithm 
function). Finally, in Appendix C, we will find out several properties of 
the 𝑞-operations (𝑞-sum, 𝑞-difference, 𝑞-multiplication, and 𝑞-division). 
Likewise, we will discover how to obtain the skewness and kurtosis for 
both the standard Gaussian distribution and the 𝑞-Gaussian distribution. 
 



 

PART I 

MANGANITES 
  



CHAPTER ONE 

INTRODUCTION TO THE PHYSICS  
OF MANGANITES 

 
 
 
Manganites are materials that are currently being intensively investigated 
by the scientific community; special attention is given to perovskite 
manganites, which have rich and complex physics at the same time. This is 
due to the electron-lattice and electron-electron interactions as well as the 
mixed valence of the manganese ions (Mn3+ and Mn4+). These features 
allow the structural, magnetic and transport properties to be intrinsically 
related to each other.  

Another characteristic, important and unusual, that distinguishes these 
materials: For certain compositions, in the vicinity of a metal-insulator 
transition, they present magnetoresistance with very large negative values 
(it is named colossal magnetoresistance, CMR). Certainly, nanostructures 
are at the heart of CMR; there are also studies of compounds in which 
similar nanostructures have not been fully understood, for example, 
high-temperature superconductors and Eu-based semiconductors. In 
addition to colossal magnetoresistance, manganites have metallic phases 
with a conduction band having polarized spin (semi-metallic behavior); 
this last fact is promising for potential technological applications. 

A Brief Historical Outlook 

Historically, for the first time, the perovskite manganites La1-xMxMnO3 (M = Ca, Sr, Ba) were studied in the 50s. Because of their experimental 
studies, using polycrystalline samples, G. H. Jonker and J. H. Van Santen 
as well as E. O. Wollan and W. C. Koehler are renowned researchers. 
However, we also have relevant theoretical investigations from C. Zener, 
P. W. Anderson, and H. Hasegawa as well as P. G. de Gennes. These last 
researchers developed the double-exchange model to explain the 
antiferromagnetic-insulator and metal-ferromagnetic states at certain 
concentrations x. Yet investigations about manganites only boosted with 
the discovery of colossal magnetoresistance in the middle of the 70s. If we 
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use the parameter 𝑀𝑅 =  , we can find magnetoresistance values 

of 127 000 % at 77 K (𝑅  is the zero-field resistance, and 𝑅  is the 
resistance having an external field). Besides, if magnetoresistance is 
expressed via the alternative parameter 𝑚𝑟 = , it is about 99 %. In 

the Nd0.7Sr0.3MnOδ thin films, we can find values of 106 %. 

General Formula 

The most interesting perovskite manganites have the general formula 
R1-xMxMnO3, where R is a rare earth metal, trivalent, and M is an alkaline 
earth metal, divalent, which can be Ca, Sr, Ba, or Pb. The last formula is 
usually used when we have electron-hole doping. For instance, LaMnO , 
the mother compound of manganites, has x =0 (no doping) and 100 % of 
Mn3+; the calcium doping, La1-xCaxMnO3, provokes the pairing of the 
Mn4+ ions, that is, x is associated with divalent cations.  

Similarly, if we make an electron doping, we will use R M MnO ; 
for example, CaMnO  has x = 0 (no doping) and 100 % of Mn4+. The 
lanthanum doping, LaxCa1-xMnO3, causes the pairing of the Mn3+ions, i.e., 
x is now associated with trivalent cations. An alternative notation for the 
general formula, with hole doping, is R M Mn Mn O . Besides, 
electron doping can be performed on LaMnO3, using tetravalent cations 
like Ce, Sn, and others; so, the construction of diode-type structures 
p-La⅔Ca⅓MnO3/n-La⅔Ce⅓MnO3, promising in spintronics, would be 
feasible. 

Crystal Structure 

The crystal structure of manganites resembles cubic perovskite, which are 
mixed oxides with stoichiometry ABO3. The perfect cubic perovskite has a 
formula per unit cell (5 atoms); one feature of these materials is the wide 
variety of substitutions accepted by its crystal structure. The site A can be 
occupied by almost 25 chemical elements and the site B by almost 50 (but 
not all perovskites are oxides: F, Cl, or Br can also take the place of O in 
the structure).  
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Figure 1.1. Cubic perovskite structure ABO3. The gray spheres at the corners 
represent either rare earth or alkaline earth (A); the black sphere in the body center, 
a manganese atom (B); and each gray sphere in the middle of each cube face, an 
oxygen atom (O). This figure was modified from Website 2 (2022). 
 

Figure 1.1 shows the perfect cubic-perovskite structure; concerning 
oxygen (O), a cation A has dodecahedral coordination, whereas the cation 
B, octahedral coordination. In this structure, the cation B is surrounded by 
six oxygen anions, forming the BO6 regular octahedra so that the B–O–B 
bond angle is 180o. The deviation from the B–O–B bond angle, for Mn, 
results in an octahedral tilting as well as a minor overlapping between 
orbitals; this causes the system to lose its metallic characteristics. 

Below a given temperature, compounds ABO3 have structural transitions 
reducing their symmetry. In general, perovskites ABO3 have three types of 
fundamental distortions: 1) Displacements of the cations from their 
equilibrium positions. 2) The BO6 octahedral distortion due to, e.g., the 
presence of a Jahn-Teller ion, such as Mn3+; what is provoked by the 
Jahn-Teller effect—named after Emil Jahn and Edward Teller by the 1937 
theorem—which can be static or dynamical. The former Jahn-Teller effect 
occurs when distortion is large, and permanently affects the molecular 
geometry; in the latter Jahn-Teller effect, distortions are generally smaller. 
Two possible distortions are associated with the Jahn-Teller effect: Q2 is 
an orthorhombic distortion and Q3, tetragonal. The change of distances for 



Introduction to the Physics of Manganites 
 

7 

the Mn–O bond is the main result of such distortions. 3) Cooperative 
rotation of the BO6 octahedra, because of the reduced size of the cation A. 
The BO6 octahedral rotation is known as the GdFeO3 rotation; it has the 
space group Pnma. 

In the formation of perovskites, a prerequisite is that the cations A and 
B have the coordination structures already mentioned. Concerning oxides, 
this precondition sets lower limits for the radii of these cations [A (0.90 Å) 
and B (0.51 Å)]. Thus, a parameter that governs the crystallography of 
manganites can be defined, which was done by Goldschmidt et al. in 1926 
in a German journal. They expressed their experimental observations in 
the famous formula of the tolerance factor 𝑡, which has the following 
expression: 𝑡 = 1√2 𝑟 + 𝑟𝑟 + 𝑟  ,                                 1.1  

where 𝑟 , 𝑟  and 𝑟  are the ionic radii of the respective elements. Then, 𝑡 = 1 corresponds to a maximum, perfect closely-packed cubic structure. 
For 𝑡 ≠ 1, at low temperatures, manganites have either a rhombohedral 
symmetry (with space group 𝐷 ) or orthorhombic symmetry (with space 
group 𝐷 ). 

Pyrochlore Manganites 

Nowadays, the most studied manganites are the ones with a perovskite 
structure. However, there are also other crystal structures for them. A 
well-known example is manganites with general formula X2Mn2O7 (X = 
Tl, In, Y). They have a pyrochlore-type crystal structure (with space group 𝑂 ,𝐹𝑑3𝑚). This type of arrangement consists of two sublattices, which 
respectively have two types of crystallographically different oxygen. 
Below, the symbol O(1) will indicate the oxygen in the sublattice (1); 
similarly O(2). Thus, the first sublattice is MnO(1)6/2, which forms 
octahedrons of oxygen, with manganese in the center, the same as in 
perovskites, connected to each other in the form of rings. The second 
sublattice is X2O(2), which passes between the rings formed by the 
MnO(1)6/2 sublattice. These structures have a global cubic symmetry. 

The Tl2Mn2O7 manganite is important, as it presents colossal 
magnetoresistance around the FM-PM transition temperature, 𝑇 ∼ 120 K. 
Finally, a well-known fact in the scientific literature: Many pyrochlore 
manganites have a high geometric-magnetic frustration. 
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Electronic Structure 

For an isolated 3d-transition metal, five degenerate orbital states are 
available for the 3d electrons with l = 2 (the energy levels of the Mn3+ 

orbitals are shown in Figure 1.2). The presence of an oxygen octahedron 
removes this degeneracy. The five d orbitals are shifted into two 
degenerate groups: triply degenerate t  orbitals (d , d , and d ) and 
doubly degenerate e  orbitals (d  and d ). However, the Mn ion 
is immersed in a non-cubic crystal field, which removes the degeneracy of 
the t  and e  orbitals. The t   electrons have a localized character and 
the e  electrons, an itinerant character; after an explanation of the 
double-exchange phenomenon, this will be clearer. For the Mn3+ and Mn4+ 

ions, the atomic correlations guarantee a parallel alignment of spins 
(Hund's first rule). The Mn3+ ion presents the electron configuration 3d , t ↑e↑  with S = 2 (everywhere in this book, S stands for spin and 𝑆, 
entropy). According to Hund's rule, this cation can accept the fourth 
electron as being antiparallel to the other three t ↑  electrons. But because 
the exchange energy is around 2.5 eV, which is higher than the crystal 
field splitting 𝛿~1.5 eV, the fourth electron aligns parallel to the t ↑  
electron, in the e  orbital (in the lanthanum cobaltite LaCoO3, Co3+ has six 
3d-electrons in the t ↑, ↓ orbital). The Mn4+ ion presents 3d t ↑  with 
S=3/2. 

Main Theories Seeking to Unravel the Physics  
of Manganites 

In the scientific literature, there are several theories that explain the 
physical properties of manganites. Then, summarizing the best known, we 
have the following ones: the original model of double exchange, the 
current model of double exchange, the model of polarons, and the 
Anderson localization model. In the next section, we will introduce an 
important model appearing in the scientific literature: the phase separation 
scenario. In Figure 1.3, we have a conceptual diagram about these 
theories.  

We begin with an introduction to the original model of double 
exchange, wherein the magnetic properties are dominated by short-range 
exchange interactions between the spins of Mn—in 1996, E. L. Nagaev 
proposed a completely different theory, i.e., the charge carriers are holes in 
the p-band of oxygen.  
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Figure 1.2. Energy Levels of Mn3+. On the left side, we have the case of a free ion; 
at the center, the levels in the presence of an oxygen octahedron (cubic crystal 
field); and on the right side, the levels in the presence of a tetragonal crystal field. 
 

 
 
Figure 1.3. Conceptual diagram showing the main theories that explain the 
properties of manganites. 

 
Such properties are relevant between two spins of manganese separated 

by an oxygen atom, and they are controlled by the overlapping between 
manganese's d-orbitals and oxygen's p-orbitals. An interesting case is 
Mn3+–O–Mn4+ in which the Mn ions can exchange their valence, through a 
jump of the e  electron of Mn3+ into the p-orbital of O, and, simultaneously, 
another jump of an electron from O to the empty e  orbital of Mn4+. This 
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mechanism, called double exchange, was proposed for the first time by the 
American physicist Clarence Melvin Zener in 1951; it ensures a strong 
ferromagnetic-type interaction.  

Later, in 1955, the American and Nobel Prize in Physics Philip Warren 
Anderson and the Japanese researcher H. Hasegawa enhanced the ideas of 
C. M. Zener by introducing the probability of the e  electron to be 
transferred from Mn3+ to its neighbor Mn4+. Thus, we have the electron 
mobility formula: 𝑇 =  𝑇 𝐜𝐨𝐬(ϴ/2), where 𝑇  symbolizes the hopping 
integral, and ϴ represents the angle between spins of localized t  
electrons. ϴ = 0 corresponds to a ferromagnetic arrangement, with 
maximum electron mobility, i.e., the probability of the jumps is maximum 
in ϴ = 0; it is obtained, therefore, a metal ferromagnetic behavior. 
Likewise, ϴ = π corresponds to an antiferromagnetic arrangement; in this 
case, the conduction e -electrons mobility is canceled, that is, we have an 
antiferromagnetic insulator behavior.  

The quantum model analogous to the earlier semiclassical vision was 
presented in 1972 by the Japanese researchers Kenn Kubo and Nagao 
Ohata. The competition between the double-exchange ferromagnetism and 
the superexchange antiferromagnetism gives rise to complex magnetic 
phase diagrams (superexchange is an indirect exchange interaction in 
which the separation between ions is greater than, for example, the double 
exchange). That double-exchange model has been utilized to explain the 
colossal magnetoresistance phenomenon (however, some authors claim 
that certain materials—such as pyrochlore manganites and chromium 
spinels—present colossal magnetoresistance, but not double exchange). 
For example, the Japanese Nobou Furukawa in 1995, using double 
exchange, has shown that there is a relationship between resistivity, 𝜌, and 
magnetization, 𝑀, with a small 𝑀/𝑀 .: 𝜌𝜌 = 1 − C 𝑀𝑀 . ,                              (1.2) 

where 𝜌  is the resistivity without application of a magnetic field; C, a 
constant; and 𝑀 ., the saturation magnetization. 

At present, there are modern models of double exchange. The original 
meaning of the term double exchange has been, in some way, distorted 
because many scientific studies do not consider the degrees of freedom for 
oxygen, which exerts a bond between the manganese ions; they consider 
only manganese Hamiltonians, which can give origin to ferromagnetic 
phases. Similar models disregarding oxygen are also called double 
exchange. Usually, in this model, it is indicated that the e  electron jumps 
from Mn3+ to Mn4+ with the extraordinary fact that the electron memorizes 
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what its value of spin is. The e -electron transfer, from Mn3+ to Mn4+ due 
to the double exchange, is the basic mechanism of electrical conductivity. 
In those manganites with a strong double exchange, the e electrons are in 
a ferromagnetic phase, being 𝑥 ~ ⅓ (concerning R1−xMxMnO3). Meanwhile, 
the double-exchange model is known to be incomplete in explaining the 
complex behavior present in the manganese oxides. However, in 2001, by 
using computer calculations for the double-exchange model, Atsuo Satou 
and Masanori Yamanaka succeeded to show that the ground state of 
manganites spontaneously exhibits a self-similarity, that is, a fractal shape; 
specifically, they found the Cantor set. 

The model of polarons is another much-studied model; there is 
evidence for the existence of polarons in La1-xSrxMnO3 with x = 0.3 and 
0.4. It has been observed a strong and reversible change of the electronic 
structure above the Curie temperature. The localization of the charge and 
an increase in the Mn magnetic moment, as well as Jahn-Teller distortions, 
are evidence for the formation of the Jahn-Teller polarons. This 
phenomenon only appears when the sample is heated above the Curie 
temperature 𝑇 . Those polarons are consistent with a phase separation 
scenario. However, according to some investigators, the fact that polaron 
theoretical models are valid at high temperatures—outside the temperature 
range in which the colossal magnetoresistance occurs—greatly limits these 
models (Dagotto 2005). Even the complex and small clusters with 
CE-phases could not be interpreted as a gas of polarons; a CE-phase is the 
one with charge ordering and mixture of the C- and E- type 
antiferromagnetism in the insulating state.  

Finally, we have the Anderson localization model, which was utilized 
to explain the insulating state above 𝑇 ; however, the enormous disorder, 
necessary to obtain the localization in the major densities, is an obstacle to 
the success of the theory. Moreover, this model does not consider phase 
competition, a mechanism apparently necessary to explain colossal 
magnetoresistance. Furthermore, for illustrative purposes, it must be 
mentioned that this model emerged in 1961 to study a magnetic impurity 
immersed in a metal matrix. Five years later, John Robert Schrieffer and 
Peter Adalbert Wolff showed that the Kondo Hamiltonian could be 
derived from the Anderson model within an appropriate limit. The Kondo 
model is named after the Japanese theoretical physicist Jun Kondo, who 
also has studied two-band superconductors and the anomalous Hall effect. 
Even more, in general, J. Kondo has contributed to understanding the 
physics of many-body systems and, especially, he has shed light on the 
study of magnetic phenomena within solid state physics.  
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Phase Separation Scenario 

This scenario has been proposed to explain the complex behavior of 
manganites. There are dozens of experiments supporting this scenario (by 
using techniques like electron microscopy, electron transport, nuclear 
magnetic resonance, neutron diffraction, synchrotron X-ray diffraction, 
etc.). Thus, there have been observed phases' competition and coexistence. 
Specifically, it has been reported some mixtures of the following phases: 
metal and insulator (electronic); ferromagnetic, antiferromagnetic, and 
paramagnetic (magnetic); and charge and orbital orderings. Phases' 
competition and coexistence would also arise in superconducting cuprates. 
There is evidence for the competition between a superconducting phase 
and a mixture of charge-stripe ordering in La1.6-xNd0.4SrxCuO4. 

Even so, some researchers are cautious about the success of this 
scenario and suggest additional research concerning it; that prudence is 
due to all basic characteristics of the phase separation are not known 
currently, for example, the dynamical behavior. Consequently, we have at 
least three models concerning what the origin of this phase separation is: 
1) electronic-driven phase separation scenario, 2) phase separation 
scenario induced by disorder, that is, in a concomitant percolative process, 
and 3) strain-driven phase separation scenario.  

In respect of the first model, there is theoretical research showing the 
existence of phase separation between regions rich and poor in the content 
of charge carriers, that is, with different electron densities. For example, in 
this context, the one-orbital model and the two-orbital model can be used 
to study phase separation. The calculation of the e -electron density, as a 
function of the chemical potential, results in discontinuities in the electron 
density for some values of the chemical potential. This fact is interpreted 
as the existence of inhomogeneous ground states, separated into regions 
with different charge densities. Meanwhile, there is also another phase 
separation scenario in which the electron densities are equal. 

With respect to the second model, in a first-order transition in the 
absence of disorder, the system gets confused and does not know if it is 
insulating or metallic. However, when the disorder is dominant, fine 
clusters of the two phases are formed. The competition of the two phases, 
in the presence of disorder, will finish in larger clusters with equal density. 
In this second model, the metal-insulator transition and the associated 
colossal magnetoresistance occur in a percolative and concomitant process 
of the metal ferromagnetic domains. The aforementioned first-order 
transition is caused by different charge and magnetic orderings of the 
phases in competition. Furthermore, the coexistence of metal clusters and 
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charge-ordered clusters has been experimentally verified; the value of the 
applied magnetic field determines the size and structure of the previously 
mentioned clusters. 

Concerning the third model, strain is assumed to be the driving force of 
the phase separation.  In this model, lattice distortions are important for 
manganese oxides. The elementary assumptions in the model are (a) the 
system is metallic when strain is absent, and the same system is insulating 
when strain is present; (b) the system has Jahn-Teller lattice distortions 
modifying the elastic energy of the system. 

Consequently, we can affirm that, nowadays, phase separation is an 
important process in the physics of manganites. Inherent defects in the 
sample manufacturing process, such as variations in the oxygen content as 
well as twinning, could be also behind this phenomenon of phase 
separation. However, though the phase separation scenario can be 
separated into disorder-driven or intrinsic electronic, the truth is probably 
a mixture of both. Therefore, whatever the cause that triggers the 
formation of clusters and percolation, phases' competition and coexistence 
constitute the fundamental theory behind (I thank Prof. Elbio Dagotto for 
his comments that helped me improve this paragraph). 

On the other hand, La⅝-yPryCa⅜MnO3 is considered a prototype 
material to study the phase separation; for y = 0, we have La⅝Ca⅜MnO3, 
which has a ferromagnetic metal state at low temperatures. For y = ⅝, we 
have Pr⅝Ca⅜MnO3, which has an insulating state with charge ordering. 
Likewise, typical characteristics of the spin-glass state have been found in 
manganites with phase separation (however, in the Eu0.5Ba0.5MnO3 single 
crystals, we have a spin-glass state with orbital ordering but without phase 
separation). In the (La0.25Nd0.75)0.7Ca0.3MnO3 ceramic, the origin of 
magnetic frustration and the spin-glass behavior in the phase separation 
are very complex; the coupling of a set of interacting magnetic clusters 
would be sufficient to explain the spin-glass behavior. This behavior can 
also be attributed to the interaction of clusters within the separate phase 
state.  

Besides, it is also convenient to report upon the model that considers 
colossal magnetoresistance as a Griffiths singularity. Then, the magnetic 
transition provokes colossal magnetoresistance; this transition can be 
considered as some kind of percolation, but these ideas have to be seen 
within the context of the Griffiths phase, which is a peculiar phenomenon 
of the disordered systems. Specifically, the Griffiths singularities can be 
used to explain anomalous aspects of susceptibility and specific heat in the 
La0.7Ca0.3MnO3 single crystal. In classical statistical mechanics, the 
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Griffiths singularities are considered essential singularities and, therefore, 
they have no effect on the static properties of the system. 

Furthermore, there are two types of colossal magnetoresistance at 
different temperature intervals. In addition to the standard colossal 
magnetoresistance, next to 𝑇 , there is another colossal magnetoresistance 
at low temperatures. Besides, manganites (Nd1-ySmy)0.5Sr0.5MnO3 and 
Pr0.70Ca0.30MnO3 have been experimentally used to provide evidence in 
this regard. Likewise, the neutron diffraction technique, with inelastic 
scattering, can be used to show the discontinuous nature of the 
metal-insulator transition induced by an external field. Thereupon, Monte 
Carlo simulations can be also used to study half-doped manganites. 

Charge-Ordering Phase Transition  

This one has been known since 1939, when the Dutch chemist Evert 
Johannes Willem Verwey described, in ferrous ferrite (Fe3O4 with spinel 
structure), the transition from a state with charge ordering to a disordered 
state, upon exceeding a particular temperature. Verwey assumed that the 
Fe2+ and Fe3+ cations are alternately arranged. In the scientific literature, 
such a transition is known as the Verwey transition. In some 
transition-metal oxides, this system has also been reported; however, it is 
in manganites that it has attracted the attention of researchers. 

The charge ordering in manganites was observed for the first time in 
1955, by E. O. Wollan and W. C. Koehler, who used neutron diffraction in 
La1-xCaxMnO3 with 0 < x < 1. In 1985, the charge ordering has been also 
studied by Jirak et al. by using neutron diffraction in Pr1-xCaxMnO3 with 0 < x < 1. This phase transition in manganites could be due to the 
Coulombic interaction, which prevails over the kinetic energy; 
nonetheless, there is also evidence for the influence of the electron-phonon 
interaction. The insulating state presents antiferromagnetic stripes of static 
charges; in La1-xCaxMnO3 (with x = 1/2, 2/3, 3/4, and 4/5), it has been 
discovered pairs of octahedral stripes Mn3+O6 separated by octahedral 
stripes Mn4+O6.  

Next, as a didactic example, we can mention La0.5Ca0.5MnO3, for 
which it is possible to obtain the Mn3+ and Mn4+ charge ordering below the 
critical temperature 𝑇 = 150 K (therefore, it has a crystal structure with 
two classes of the MnO6 octahedra). In other words, there is a phase 
transition below 𝑇 , known as Wigner crystallization or Verwey 
transition. Below 𝑇 , the extra electron of Mn3+ orders alternately onto 
the Mn4+ ions (forming a rock salt-type arrangement); besides, above 𝑇 , 
the sizes of the MnO6 octahedra are equal, with a manganese valence state 


