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PREFACE 
 
 

This book provides a thorough introduction to Einstein’s special and general 
relativity theories and modified theories of gravitation and their applications 
to cosmology. It is intended for undergraduate and postgraduate students of 
Physics and Applied Mathematics and is also helpful as a reference book 
for general relativity and cosmology researchers. This book is designed so 
that a student with little knowledge of relativity theories but with a sound 
mathematical background can understand the new developments in the subject 
and can effectively pursue advanced research. Tensor methods, Einstein’s 
special and general relativity theories, cosmological models of the universe, 
and the alternative theories of gravitation presented here are fascinating and 
famous topics for any mathematician or physicist. 

The book comprises five chapters. Chapter 1 contains some essential 
concepts of the special theory of relativity, which are necessary for further 
understanding general relativity and cosmology. Special relativity takes 
care of uniform translatory motion in a region of free space where 
gravitational effects are neglected. Hence a detailed discussion of it has not 
been taken up in this book. In chapter 2, we have incorporated the basic 
concepts and main results of the tensor analysis, which play a vital role in 
formulating Einstein’s general theory of relativity, which explains the 
relativity of all kinds of motion and takes care of all kinds of motion 
gravitational effects of four-dimensional space-time. The results presented 
will help provide a thorough understanding of general relativity and 
cosmology. Chapter 3 gives a lucid introduction to the concepts of general 
relativity and the derivation of Einstein’s field equations and their 
applications. It also discusses the derivation of the Schwarzschild and 
Reissner-Nordstrom solutions. In chapter 4, a detailed discussion of 
cosmology and the cosmological models of the universe and their physical 
properties has been given. We have also presented a special discussion of 
anisotropic cosmological models, which play a significant role in discussing 
the early stages of the evolution of the universe. Finally, in chapter 5, we 
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have included a brief discussion of alternative or modified theories of 
gravitation, namely the Brans-Dicke and Saez-Ballester scalar-tensor 
theories of gravitation and modified theories like 𝑓(𝑅) and 𝑓(𝑅,𝑇) (𝑅 is 
Ricci tensor and 𝑇 is the trace of the energy-momentum tensor of matter) 
which have been the subjects of recent investigations in modern cosmology. 
These last two chapters are very much rooted in the current research work 
that is going on around the globe. 

The concepts in the book have been explained explicitly, and the 
presentation of the material is so that either the beginner or the expert of the 
subject can easily understand and appreciate what is being discussed. This 
book also gives an introduction to and motivation for every topic covered 
in the textbook. Many exercises and solved examples have been included in 
each chapter to enable students to understand the ideas and derivations more 
easily. We are confident that this book will be helpful to students and will 
be appreciated by the scholars of this great subject.  

It may be said that writing a textbook and bringing it into this final form is 
an excellent but strenuous job. In this task, several well-wishers have helped 
us directly or indirectly.  

At the outset, we are grateful to Helen Edwards, the commissioning editor, 
and her efficient team at Cambridge Scholars Publishing, who were kind 
enough to bring this book into this beautiful final form.  

D.R.K. Reddy finds pleasure in expressing his love to his wife D. 
Saraswathi and family members who have showered pleasant facilities 
while writing this book. He cannot forget the inspiration given to him by his 
great friend Sanagala Srinivas and his family members. He is also greatly 
indebted to the Almighty, who has given him health and strength while 
writing this book. He is also thankful to his students Dr. V. Uma Maheswara 
Rao and Dr. R. Lakshun Naidu, for their support. Last but not least, he is 
grateful to Dr. T. M. Karade and many other relativity friends of Nagpur 
and Amravathi for their interest.  

Y. Aditya owes an enormous debt of gratitude to his mentor D.R.K. Reddy 
for not giving up on his dream of writing a textbook on Relativity and 
Cosmology and making him a part of his dream project. He is very much 
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thankful to his Gurus, Prof. V. Uma Maheswara Rao, and Prof. M. Vijaya 
Santhi, for their support. He is grateful to his awesome wife, Dr. U.Y. Divya 
Prasanthi, for inspiring him and helping with the manuscript's LaTeX 
typing. Most importantly, he owes a great debt of gratitude to his beloved 
parents and family members for their continuous love and support. Last but 
not least, he is highly thankful to Dr. J. Girish, Director Education, GMR 
Varalaxmi Foundation, and Prof. CLVRSV Prasad, Principal and the 
management of GMR Institute of Technology, Rajam, for their cooperation 
and support. 

Healthy criticism and constructive suggestions to improve the quality of the 
book are always welcome. 

 D.R.K. Reddy 
Y. Aditya 

 
 
 
 



 



CHAPTER 1 

THE SPECIAL THEORY OF RELATIVITY  
AND ITS CONSEQUENCES 

 
 
 

1.1 General Introduction 

It is well known that the fundamental concept in the physical world is the 
motion of bodies, and either applied forces or central forces cause it. 
Classical mechanics was developed based on the notion of absolute motion 
governed by Newton’s three laws of motion. Subsequently, the null result of 
the Michelson - Morley experiment ruled out the possibility of absolute 
motion. At this juncture, Einstein entered the scene and formulated his 
special theory of relativity in 1905. However, it has been said that the 
special theory of relativity originated not in certain thoughts in Einstein’s 
mind when he was very young, but was due to Poincare and Lorentz. 
 
This book aims not to go into these arguments but to present some basic 
principles of the special theory of relativity and briefly mention the 
significant physical consequences of the theory. It is now a fact that this 
theory has thoroughly revolutionized our ideas about physics in general and 
classical mechanics in particular. 
 
This chapter is mainly devoted to a brief discussion of the postulates of the 
special theory of relativity, their applications, and consequences in classical 
mechanics and electromagnetic phenomena. Detailed discussions and 
derivations are not considered. Thus, this chapter provides a bird’s eye view 
of the special theory of relativity. 
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1.2 Postulates of the Special Theory of Relativity 

This section presents the basic principles or postulates of the special theory 
of relativity and its consequences.  
 
Postulates: 
If 𝑆𝑆 and 𝑆𝑆′ are two inertial systems (Fig. 1-1, coordinate systems which 
are in uniform translatory motion in which Newton’s first law is valid), then   
i. The principle of relativity: All the laws of physics are identical in all 

inertial systems.  
ii. The speed of light is invariant: The velocity of light is constant in 

empty space and is independent of the motion and position of the 
observer and light source. The velocity of light is usually denoted by 
𝑐𝑐 and is equal to 3 × 1010𝑐𝑐𝑐𝑐𝑐𝑐/𝑐𝑐𝑠𝑠𝑐𝑐.   

iii. Uniform motion is invariant: A particle at rest or in constant velocity 
in one inertial frame will be at rest or in constant velocity in all inertial 
frames.  

 
Remark: It may be noted that the above postulates are valid for uniform 
translatory motions only. However, in nature, this concept of motion is only 
hypothetical. The effects of gravity are not considered here. 
 

 
Figure 1-1: Two frames in standard configuration. Frame 𝑆𝑆′  moves at 
velocity 𝑣𝑣 relative to the frame 𝑆𝑆 along the 𝑥𝑥-axis. 
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Consequences: 
The immediate consequence of the special theory of relativity is the special 
Lorentz transformations. Using the Lorentz transformations, we write down 
the other consequences.   
i. Lorentz transformation equations: If 𝑆𝑆  and 𝑆𝑆′  are two systems in 

uniform, relative and translatory motion and if 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡 and 𝑥𝑥′, 𝑦𝑦′, 
𝑧𝑧′, 𝑡𝑡′ are the coordinates of the observer in the two systems (Fig. 1-1), 
then  

𝑥𝑥′ = 𝛽𝛽(𝑥𝑥 − 𝑣𝑣𝑡𝑡), 𝑦𝑦′ = 𝑦𝑦, 𝑧𝑧′ = 𝑧𝑧, and 𝑡𝑡′ = 𝛽𝛽 �𝑡𝑡 − 𝑥𝑥𝑥𝑥
𝑐𝑐2
�      (1.1) 

 where 𝑣𝑣  is the uniform relative velocity of two systems, 𝛽𝛽 =

�1 − 𝑥𝑥2

𝑐𝑐2
�
−1

 and 𝑐𝑐 is the velocity of light.  
 

If we have two point events, each of them can be represented by its 
space-time coordinates in 𝑆𝑆 and /or 𝑆𝑆′. For one space dimension, we can 
draw an 𝑥𝑥 − 𝑡𝑡 graph and mark the individual point events as in Fig. 1-1. 
We have: 
Event 1:  
 𝑥𝑥1′ = 𝛽𝛽(𝑥𝑥1 − 𝑣𝑣𝑡𝑡1);   𝑥𝑥1 = 𝛽𝛽(𝑥𝑥1′ + 𝑣𝑣𝑡𝑡1′) 

 𝑡𝑡1′ = 𝛽𝛽 �𝑡𝑡1 − 𝑣𝑣 𝑥𝑥1
𝑐𝑐2
� ;    𝑡𝑡1 = 𝛽𝛽(𝑡𝑡1′ + 𝑣𝑣 𝑥𝑥1′

𝑐𝑐2
). 

Event 2: 
 𝑥𝑥2′ = 𝛽𝛽(𝑥𝑥2 − 𝑣𝑣𝑡𝑡2);   𝑥𝑥2 = 𝛽𝛽(𝑥𝑥2′ + 𝑣𝑣𝑡𝑡2′ ) 

 𝑡𝑡2′ = 𝛽𝛽 �𝑡𝑡2 − 𝑣𝑣 𝑥𝑥2
𝑐𝑐2
� ;    𝑡𝑡2 = 𝛽𝛽(𝑡𝑡2′ + 𝑣𝑣 𝑥𝑥2′

𝑐𝑐2
). 

We can then evaluate the separation of the events in space and time in either 
frame. Thus  
 𝑥𝑥2′ − 𝑥𝑥1′ = 𝛽𝛽[(𝑥𝑥2 − 𝑥𝑥1) − 𝑣𝑣(𝑡𝑡2 − 𝑡𝑡1)] 
 𝑡𝑡2′ − 𝑡𝑡1′ = 𝛽𝛽 �(𝑡𝑡2 − 𝑡𝑡1) − 𝑥𝑥(𝑥𝑥2−𝑥𝑥1)

𝑐𝑐2
�.   (1.2) 
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Figure 1-2: Two different point events, each describable in either 𝑆𝑆 or 𝑆𝑆′. 
 
Example 1-1 Frame 𝑆𝑆′ has a speed 𝑣𝑣 = 0.6 𝑐𝑐 relative to 𝑆𝑆. Clocks are 
adjusted so that 𝑡𝑡 = 𝑡𝑡′ = 0 at 𝑥𝑥 = 𝑥𝑥′ = 0. Two events occur. Event 1 
occurs at 𝑥𝑥1 = 10 𝑐𝑐, 𝑡𝑡1 = 2 × 10−7 𝑐𝑐𝑠𝑠𝑐𝑐. Event 2 occurs at 𝑥𝑥2 = 50 𝑐𝑐, 
𝑡𝑡2 = 3 × 10−7 𝑐𝑐𝑠𝑠𝑐𝑐. What is the distance between the events and the time 
difference as measured in 𝑆𝑆′? 
Sol.: First, we have  

 𝑥𝑥2

𝑐𝑐2
= 9

25
 

 and hence  

 𝛽𝛽 = �1 − 𝑥𝑥2

𝑐𝑐2
�
−12 = 5

4
. 

 Then we have  
 𝑥𝑥2′ − 𝑥𝑥1′ = 𝛽𝛽[(𝑥𝑥2 − 𝑥𝑥1) − 𝑣𝑣(𝑡𝑡2 − 𝑡𝑡1)] 
 = 5

4
[(50 − 10) − 3

5
(3 × 108)(3 − 2)10−7] 

 = 27.5 𝑐𝑐. 
 𝑡𝑡2′ − 𝑡𝑡1′ = 𝛽𝛽 �(𝑡𝑡2 − 𝑡𝑡1) − 𝑥𝑥(𝑥𝑥2−𝑥𝑥1)

𝑐𝑐2
� 

 = 5
4
�(3 − 2)10−7 − 3

5
�50−10
3×108

�� 
 = 2.5 × 10−8𝑐𝑐𝑠𝑠𝑐𝑐. 
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Remark: Eqns. (1.1), usually known as the special Lorentz transformation 
equations, can be uniquely derived using the two postulates of relativity and 
assuming Euclidean geometry and the homogeneity of space and time. If the 
relative velocity between the systems is small compared to that of light, then 
we obtain the well-known Galilean transformation equations  
 𝑥𝑥′ = 𝑥𝑥 − 𝑣𝑣𝑡𝑡, 𝑦𝑦′ = 𝑦𝑦, 𝑧𝑧′ = 𝑧𝑧, 𝑡𝑡′ = 𝑡𝑡  (1.3) 
It may also be remarked that the set of all Lorentz transformations form a 
group.  
 
Consequences of Lorentz Transformation equations: 
 
With the help of the Lorentz transformation equations given by Eqn. (1.1) 
we can obtain the following:   
i. Length contraction: If 𝑙𝑙 and 𝑙𝑙′ are lengths of rods measured by two 

observers in relative uniform translatory motion in two systems 𝑆𝑆 and 
𝑆𝑆′, then we have  

 𝑙𝑙′ = 𝑙𝑙 �1 − 𝑥𝑥2

𝑐𝑐2
�
1
2 < 𝑙𝑙    (1.4) 

 ∴ 𝑙𝑙′ < 𝑙𝑙 
This contraction is usually called an apparent Lorentz-Fitzgerald length 
contraction.  

ii. Time dilation: If 𝑆𝑆 and 𝑆𝑆′ are two systems in uniform, relative and 
translatory motion, then the time interval between two events is given by  

 𝑑𝑑𝑡𝑡′ = 𝛽𝛽𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑑𝑑

�1−𝑣𝑣
2

𝑐𝑐2

    (1.5) 

where 𝑑𝑑𝑡𝑡 and 𝑑𝑑𝑡𝑡′ are the time intervals between two events measured 
in the systems 𝑆𝑆 and 𝑆𝑆′ respectively.  

 
Transformation Equations for Velocity: 
 
Using the Lorentz transformations, we can transform the velocities 
measured from one system of coordinates to the other by the following 
formulae:  
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 𝑢𝑢𝑥𝑥′ = 𝑢𝑢𝑥𝑥−𝑥𝑥
1−𝑢𝑢𝑥𝑥𝑣𝑣

𝑐𝑐2
, 

 𝑢𝑢𝑦𝑦′ =
𝑢𝑢𝑦𝑦�1−

𝑣𝑣2

𝑐𝑐2

1−𝑢𝑢𝑥𝑥𝑣𝑣
𝑐𝑐2

     (1.6) 

 𝑢𝑢𝑧𝑧′ =
𝑢𝑢𝑧𝑧�1−

𝑣𝑣2

𝑐𝑐2

1−𝑢𝑢𝑥𝑥𝑣𝑣
𝑐𝑐2

 

 where 𝑢𝑢𝑥𝑥 = 𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑

, 𝑢𝑢𝑦𝑦 = 𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

, 𝑢𝑢𝑧𝑧 = 𝑑𝑑𝑧𝑧
𝑑𝑑𝑑𝑑

 and 𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, 𝑢𝑢𝑧𝑧 and 𝑢𝑢𝑥𝑥′, 𝑢𝑢𝑦𝑦′, 𝑢𝑢𝑧𝑧′ are 
the velocity components in the systems 𝑆𝑆 and 𝑆𝑆′ respectively. 
 
Remark: From Eqn. (1.6) we obtain the reciprocal equations for the 
transformation as  
 𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑥𝑥′+𝑥𝑥

1+𝑢𝑢𝑥𝑥′𝑣𝑣
𝑐𝑐2

, 

 𝑢𝑢𝑦𝑦 =
𝑢𝑢𝑦𝑦′�1−

𝑣𝑣2

𝑐𝑐2

1+𝑢𝑢𝑥𝑥′𝑣𝑣
𝑐𝑐2

     (1.7) 

 𝑢𝑢𝑧𝑧 =
𝑢𝑢𝑧𝑧′�1−

𝑣𝑣2

𝑐𝑐2

1+𝑢𝑢𝑥𝑥′𝑣𝑣
𝑐𝑐2

 

 
Note: If we put 𝑢𝑢𝑥𝑥′ = 𝑐𝑐, 𝑣𝑣 = 𝑐𝑐, we obtain from Eqn. (1.7) 𝑢𝑢𝑥𝑥 = 𝑐𝑐+𝑐𝑐

1+𝑐𝑐
2

𝑐𝑐2

= 𝑐𝑐, 

which shows that the velocity of light is considered to be an upper limit. 
 
Composition of velocities: 
Imagine three frames of reference in the standard configuration. 𝑆𝑆′  the 
frame moves with velocity 𝑣𝑣1 with respect to (w.r.t) frame 𝑆𝑆, and frame 
𝑆𝑆′′ moves with velocity 𝑣𝑣2 w.r.t. frame 𝑆𝑆′. Newtonian physics gives us 
that frame 𝑆𝑆′′ moves with velocity 𝑣𝑣3 = 𝑣𝑣1 + 𝑣𝑣2 w.r.t. frame 𝑆𝑆, a simple 
velocity addition law. However, this relation does not hold if the velocities 
are a significant light fraction of light’s speed. To get the correct relation, 
we simply construct two Lorentz transformations.  
 
Example 1-2 Derive the relativistic velocity composition law. 
Solution: Using 𝛽𝛽 = 𝑥𝑥

𝑐𝑐
, the matrix representation of a Lorentz transformation 

between the frames 𝑆𝑆 and 𝑆𝑆′ is  
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 𝐿𝐿1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

�1−𝛽𝛽12

−𝛽𝛽1

�1−𝛽𝛽12
0 0

−𝛽𝛽1

�1−𝛽𝛽12

1

�1−𝛽𝛽12
0 0

0 0 1 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

Similarly, the transformation between 𝑆𝑆′ and 𝑆𝑆′′ is  

 𝐿𝐿2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

�1−𝛽𝛽22

−𝛽𝛽2

�1−𝛽𝛽22
0 0

−𝛽𝛽2

�1−𝛽𝛽22

1

�1−𝛽𝛽22
0 0

0 0 1 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

Now, we can get the Lorentz transformation between frames 𝑆𝑆 and 𝑆𝑆′′ by 
computing the product of 𝐿𝐿2 and 𝐿𝐿1 which are given above. We find 

 𝐿𝐿2𝐿𝐿1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1+𝛽𝛽1𝛽𝛽2

(�1−𝛽𝛽22)(�1−𝛽𝛽22)

−(𝛽𝛽1+𝛽𝛽2)

(�1−𝛽𝛽22)(�1−𝛽𝛽22)
0 0

−(𝛽𝛽1+𝛽𝛽2)

(�1−𝛽𝛽22)(�1−𝛽𝛽22)

1+𝛽𝛽1𝛽𝛽2

(�1−𝛽𝛽22)(�1−𝛽𝛽22)
0 0

0 0 1 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

= 𝐿𝐿3 (𝑐𝑐𝑠𝑠𝑦𝑦). 

The above matrix is itself a Lorentz transformation, and so it must have the 
form  

 𝐿𝐿3 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

�1−𝛽𝛽32

−𝛽𝛽3

�1−𝛽𝛽32
0 0

−𝛽𝛽3

�1−𝛽𝛽32

1

�1−𝛽𝛽32
0 0

0 0 1 0
0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

We can find the value of 𝛽𝛽3 by equating the related terms. Let us pick the 
terms in the upper left corner of each matrix  
 1

�1−𝛽𝛽32
= 1+𝛽𝛽1𝛽𝛽2

(�1−𝛽𝛽22)(�1−𝛽𝛽22)
    (1.8) 

 After some simple mathematical calculations, we get  
 𝛽𝛽3 = 𝛽𝛽1+𝛽𝛽2

1+𝛽𝛽1𝛽𝛽2
     (1.9) 
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 Given 𝛽𝛽 = 𝑥𝑥
𝑐𝑐
, from Eqn. (1.9), we get  

 𝑣𝑣3 = 𝑥𝑥1+𝑥𝑥2
1+(𝑥𝑥1𝑥𝑥2)/𝑐𝑐2

     (1.10) 

1.3 Four-Dimensional Space-Time Continuum - 
Minkowski Space 

Before we move into the presentation of the consequences of special 
relativity in mechanics it is worthwhile to discuss the concept of the 
four-dimensional space-time continuum and Minkowski space. It is evident 
from the consequences of the special theory of relativity that the spatial and 
temporal (time) coordinates (measurements) are intimately connected. This 
leads us to believe that we no longer live in the world of points but in a 
world of events characterized by the coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡), representing the 
location of a single point in the four-dimensional continuum. The 
space-time represented is usually called Minkowski space.  

 
Figure 1-3: The division of space-time into past and future regions. Light 
rays move on both lines 𝑡𝑡 = ±𝑥𝑥. These lines give the light cone and the 
origin is some event 𝐸𝐸 in space-time. The inside region of the lower half of 
the light cone is the past of 𝐸𝐸, where we find all events in the past that could 
affect 𝐸𝐸. Inside, the light cone defined in the upper half-plane represents the 
future of 𝐸𝐸, and these events are affected by 𝐸𝐸. Regions outside the light 
cone are called space-like. 
 
In this continuum, spatial coordinates can be represented by three mutually 
perpendicular axes. In contrast, the temporal coordinate cannot be shown on 
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the real axis; it remains as an imaginary coordinate and the time axis 
becomes imaginary. 
Hence the interval between two events in Minkowski space is given by  
 𝑑𝑑𝑐𝑐2 = 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 + (𝑖𝑖𝑐𝑐𝑑𝑑𝑡𝑡)2 
 𝑖𝑖. 𝑠𝑠., 𝑑𝑑𝑐𝑐2 = 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 − (𝑐𝑐𝑑𝑑𝑡𝑡)2.  (1.11) 
 It may be remarked that this interval is invariant under Lorentz 
transformation. Thus, the geometry of the space-time continuum is 
characterized by Eqns. (1.11) interval (line element).  
 
Remark: Since the time coordinate, here, is not just a fourth dimension but 
a unique one, we call the continuum (3 + 1) dimensional space-time.  
Signature of the line element: 
 
If we observe the line element (1.11), the quadratic form 𝑑𝑑𝑐𝑐2  is 
characterized by the positive signs of 𝑑𝑑𝑥𝑥2, 𝑑𝑑𝑦𝑦2, 𝑑𝑑𝑧𝑧2 and a negative sign 
of 2dt . The sum of the positive and negative signs is called the signature 
of the line element, i.e., +2. If the line element is written as  
 𝑑𝑑𝑐𝑐2 = −𝑑𝑑𝑥𝑥2 − 𝑑𝑑𝑦𝑦2 − 𝑑𝑑𝑧𝑧2 + 𝑐𝑐2𝑑𝑑𝑡𝑡2  (1.12) 
then the signature is −2, and the signatures of the line element are usually 
represented by (+, +, +,−) or (−,−,−, +). 
 
 Remark: Here, we usually call the line element (1.12) 
 Space-like if 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 > 𝑐𝑐2𝑑𝑑𝑡𝑡2 
 Time-like if 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 < 𝑐𝑐2𝑑𝑑𝑡𝑡2 
 Singular (null) if 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2. 
 
Thus the path of light rays from the event lies on the null cone. If the interval 
is space-like, we can always find proper coordinates in which the time 
component is zero and if the interval is time-like, space coordinates will be 
zero in proper coordinates.  
 
Example 1-3 If (𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1, 𝑡𝑡1) and (𝑥𝑥2,𝑦𝑦2, 𝑧𝑧3, 𝑡𝑡) are two events such that 
𝑡𝑡1 < 𝑡𝑡2 does it follow that the first event precedes the second in an absolute 
sense? 
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Sol.: From the Lorentz transformation Eqns. (1.2), we have  
 𝑥𝑥2′ − 𝑥𝑥1′ = 𝛽𝛽[(𝑥𝑥2 − 𝑥𝑥1) − 𝑣𝑣(𝑡𝑡2 − 𝑡𝑡1)] 
 𝑡𝑡2′ − 𝑡𝑡1′ = 𝛽𝛽 �(𝑡𝑡2 − 𝑡𝑡1) − 𝑥𝑥(𝑥𝑥2−𝑥𝑥1)

𝑐𝑐2
�.   (1.13) 

If the interval is space-like then (𝑥𝑥2 − 𝑥𝑥1) > 𝑖𝑖𝑐𝑐(𝑡𝑡2 − 𝑡𝑡1). 
Now 𝑥𝑥2′ > 𝑥𝑥1′  if (𝑥𝑥2 − 𝑥𝑥1) > 𝑣𝑣(𝑡𝑡2 − 𝑡𝑡1) which immediately follows from 
the inequality since 𝑣𝑣 < 𝑐𝑐.  
 𝑡𝑡2′ > 𝑡𝑡1′  
 if  

 𝑡𝑡2 − 𝑡𝑡1 > 𝑥𝑥
𝑐𝑐2

(𝑥𝑥2 − 𝑥𝑥1) > 𝑥𝑥2

𝑐𝑐2
(𝑡𝑡2 − 𝑡𝑡1) 

since 𝑡𝑡2 > 𝑡𝑡1, and therefore it gives 𝑐𝑐 > 𝑣𝑣 which is true. 
 
Thus, for the Lorentz transformation when 𝑡𝑡2 < 𝑡𝑡1, 𝑡𝑡2′  is also > 𝑡𝑡1′ . 
If we take 𝑣𝑣 = 𝑐𝑐, then  
 𝑥𝑥2′ − 𝑥𝑥1′ = 𝑥𝑥2−𝑥𝑥1−𝑐𝑐(𝑑𝑑2−𝑑𝑑1)

�1−𝑣𝑣
2

𝑐𝑐2

≈ ∞ 

 since (𝑥𝑥2 − 𝑥𝑥1) > 𝑐𝑐(𝑡𝑡2 − 𝑡𝑡1) and  

 𝑡𝑡2′ − 𝑡𝑡1′ =
(𝑑𝑑2−𝑑𝑑1)−1𝑐𝑐(𝑥𝑥2−𝑥𝑥1)

�1−𝑣𝑣
2

𝑐𝑐2

≈ −∞ 

Similarly, when 𝑣𝑣 = −𝑐𝑐,  
 𝑥𝑥2′ − 𝑥𝑥1′ ≈ ∞ 
 but  𝑡𝑡2′ − 𝑡𝑡1′ ≈ +∞. 
Thus, there is a coordinate system in which (𝑡𝑡2′ − 𝑡𝑡1′) can have any value 
from −∞  to +∞  - hence the temporal sequence of the events is not 
absolute.   
 
Proper time 
Suppose a particle is moving with a velocity 𝑉𝑉  concerning an inertial 
system 𝑆𝑆 and if 𝑆𝑆′ and 𝑆𝑆 are in uniform relative translatory motion, then 
the particle is at rest for 𝑆𝑆′. The time measured by a clock fixed in 𝑆𝑆′ is 
called proper time. Also, if  
 𝑑𝑑𝑐𝑐2 = 𝑐𝑐2𝑑𝑑𝑡𝑡2 − 𝑑𝑑𝑥𝑥2 − 𝑑𝑑𝑦𝑦2 − 𝑑𝑑𝑧𝑧2 
is the interval between two events, then the proper time 𝑑𝑑𝑑𝑑 is given by 

 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
𝑐𝑐

= �1 − {�𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑
�
2

+ �𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑
�
2

+ �𝑑𝑑𝑥𝑥
𝑑𝑑𝑑𝑑
�
2

}𝑑𝑑𝑡𝑡 
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 = �1 − 𝑉𝑉2

𝑐𝑐2
     (1.14) 

 
Remark: The concepts of absolute time interval 𝑑𝑑𝑡𝑡  and proper time 
interval 𝑑𝑑𝑑𝑑 are related by the Eqn. (1.14).  
 
World lines 
We know that in Minkowski space, every event is denoted by a world point. 
The curve joining all the world points is called the world line and is usually 
written as  
 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖(𝑢𝑢)     (1.15) 
where 𝑢𝑢 is a parameter of the curve and 𝑖𝑖 = 1,2,3, . . .𝑛𝑛.  
 
 
Light cone 
It is well known that the interval between two events given by  
 𝑑𝑑𝑐𝑐2 = 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 − 𝑐𝑐2𝑑𝑑𝑡𝑡2 
is invariant under Lorentz transformation. If 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑦𝑦2 + 𝑑𝑑𝑧𝑧2 = 0 , it 
forms a surface which is called a light cone. A light signal which starts at the 
origin (0,0,0,0) of the system reaches every world point sooner or later, and 
hence the surface formed is a light cone. It divides Minkowski's space into 
two domains, with 𝑑𝑑𝑐𝑐2 > 0 the future and 𝑑𝑑𝑐𝑐2 < 0 the past.  

1.4 Concepts of Relativistic Mechanics 

Introduction: The postulates of the special theory of relativity and their 
consequences make it necessary to revise the concepts of classical 
mechanics. Newtonian mechanics developed on the idea of a body's motion 
depending on mass, velocity, acceleration, force, and time. Also in 
Newtonian mechanics, the basic principles of the conservation of mass and 
the conservation of momentum are valid with mass being constant. If the 
special theory of relativity and the conservation principles, namely  
 ∑ 𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡 
 𝑠𝑠𝑛𝑛𝑑𝑑 ∑ 𝑐𝑐𝑢𝑢�⃗ = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡,    (1.16) 
 are to be valid simultaneously, then our concepts of mass, momentum, 
energy, and force must be redefined, and the results are as follows:  
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Results in Relativistic Mechanics. 
 
The mass of a moving particle: If 𝑆𝑆 and 𝑆𝑆′ are two systems which are in 
a relative translatory motion and if 𝑐𝑐 is the mass of a body moving with a 
velocity 𝑢𝑢, then we should have  
 𝑐𝑐 = 𝑚𝑚0

�1−𝑢𝑢
2

𝑐𝑐2

     (1.17) 

 where 𝑐𝑐0 is the rest mass of the body or particle. 
 
Remark: If 𝑢𝑢 = 0, then 𝑐𝑐 = 𝑐𝑐0, which is called the rest mass or proper 
mass of the body. Also, if 𝑢𝑢 is minimal compared to the velocity of light 𝑐𝑐, 
then 𝑐𝑐 = 𝑐𝑐0. 
 
The principle of mass-energy equivalence (𝑬𝑬 = 𝒎𝒎𝒄𝒄𝟐𝟐): If 𝑆𝑆 and 𝑆𝑆′ are in 
uniform, relative translatory motion and if a particle of mass 𝑐𝑐 is also 
moving with velocity 𝑣𝑣, then we have the total energy as  
 𝐸𝐸 = 𝑇𝑇 + 𝑐𝑐0𝑐𝑐2 = 𝑐𝑐𝑐𝑐2    (1.18) 
 where 𝑇𝑇 is the kinetic energy of the moving particle and 𝑐𝑐0𝑐𝑐2 is the rest 
energy of the particle or the internal energy. 
 
Remarks: From Eqn. (1.18) we have the following results   
i. If 𝑣𝑣 << 𝑐𝑐, then we have  

 𝑇𝑇 = 1
2
𝑐𝑐0𝑣𝑣2     (1.19) 

which is the Newtonian limit of the result for Eqn. (1.18). 
ii. 𝑇𝑇 = (𝑐𝑐 −𝑐𝑐0)𝑐𝑐2     (1.20) 
i.e., a change in inertial mass is equal to a change in kinetic energy.  
iii. From Eqn. (1.18) we have  

 𝑇𝑇 = 𝑐𝑐0𝑐𝑐2 �
1

�1−𝑣𝑣
2

𝑐𝑐2

− 1�.    (1.21) 

Now, if 𝑣𝑣 → 𝑐𝑐, then 𝑇𝑇 → ∞, which means that an infinite amount of energy 
is needed to increase the velocity of a particle to that of the velocity of light.  
 
Transformation equations for mass: Suppose 𝑆𝑆 and 𝑆𝑆′ are two systems 
which are in relative translatory uniform motion with velocity 𝑣𝑣 and if 𝑐𝑐 
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is the mass of the moving body with velocities 𝑢𝑢 and 𝑢𝑢1 in 𝑆𝑆 and 𝑆𝑆′, then 
we have  

 𝑐𝑐1 = 𝑐𝑐
�1−𝑣𝑣𝑢𝑢𝑥𝑥

𝑐𝑐2
�

�1−𝑣𝑣
2

𝑐𝑐2

     (1.22) 

 where 𝑐𝑐 = 𝑚𝑚0

�1−𝑣𝑣
2

𝑐𝑐2

. If 𝑢𝑢𝑥𝑥 = 0, then  

 𝑐𝑐1 = 𝑚𝑚0

�1−𝑣𝑣
2

𝑐𝑐2

.     (1.23) 

 
Transformation formulae for momentum and energy: If 𝑐𝑐 and 𝑐𝑐1 are 
the masses of a body in the inertial systems 𝑆𝑆 and 𝑆𝑆′, 𝑢𝑢, and 𝑢𝑢′ are the 
velocities, such that  
𝑢𝑢 = (𝑢𝑢𝑥𝑥,𝑢𝑢𝑦𝑦,𝑢𝑢𝑧𝑧), 𝑢𝑢′ = (𝑢𝑢𝑥𝑥′,𝑢𝑢𝑦𝑦′,𝑢𝑢𝑧𝑧′)  
and if the momentums 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧 are 
 𝑝𝑝𝑥𝑥 = 𝑐𝑐𝑢𝑢𝑥𝑥, 𝑝𝑝𝑦𝑦 = 𝑐𝑐𝑢𝑢𝑦𝑦, 𝑝𝑝𝑧𝑧 = 𝑐𝑐𝑢𝑢𝑧𝑧  
and 𝐸𝐸 and 𝐸𝐸′ are the energies in the systems 𝑆𝑆 and 𝑆𝑆′ respectively, then 
we have  

𝑝𝑝𝑥𝑥′ = 𝛽𝛽 �𝑝𝑝𝑥𝑥 −
𝑣𝑣𝐸𝐸
𝑐𝑐2
� , 𝑝𝑝𝑦𝑦′ = 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧′ = 𝑝𝑝𝑧𝑧 

 and  
𝐸𝐸′ = 𝛽𝛽(𝐸𝐸 − 𝑣𝑣𝑝𝑝𝑥𝑥)    (1.24) 

 where 𝛽𝛽 = �1 − 𝑥𝑥2

𝑐𝑐2
�
−1
2 . 

 
Remark: From Eqns. (1.24) it is a simple matter to deduce the following 
results:  
i. We can observe that in the Lorentz transformation equations given by 

(1.1), if we replace 𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡 by 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, 𝑝𝑝𝑧𝑧, 𝐸𝐸/𝑐𝑐2, respectively, we 
obtain the transformation equations for momentum and energy given 
by Eqns. (1.24).  

ii. It is also a simple matter to see, using (1.18) and (1.24), that 𝑝𝑝2 − 𝐸𝐸2

𝑐𝑐2
 is 

Lorentz invariant, i.e.,  

𝑝𝑝′2 − 𝐸𝐸′2

𝑐𝑐2
= 𝑝𝑝2 − 𝐸𝐸2

𝑐𝑐2
,   (1.25) 

which is equal to  
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𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2 + 𝑝𝑝𝑧𝑧2 −
𝐸𝐸2

𝑐𝑐2
= 𝑐𝑐2(𝑢𝑢𝑥𝑥2 + 𝑢𝑢𝑦𝑦2 + 𝑢𝑢𝑧𝑧2) −

𝑐𝑐2𝑐𝑐4

𝑐𝑐2
 

= 𝑐𝑐2𝑢𝑢2 − 𝑐𝑐2𝑐𝑐2 

=
𝑐𝑐0
2(𝑢𝑢2 − 𝑐𝑐2)

1 − 𝑢𝑢2

𝑐𝑐2

 

= −𝑐𝑐0
2𝑐𝑐2 

 
∴ 𝐸𝐸2 = 𝑐𝑐2(𝑐𝑐0

2 + 𝑝𝑝2)   (1.26) 
 
Example 1-4 If a body of mass 𝑐𝑐 disintegrates while at rest into two parts 
of rest masses 𝑐𝑐1 and 𝑐𝑐2, show that the energies 𝐸𝐸1 and 𝐸𝐸2 of the parts 

are given by 𝐸𝐸1 = 𝑐𝑐2(𝑚𝑚2+𝑚𝑚1
2−𝑚𝑚2

2)
2𝑚𝑚

, 𝐸𝐸2 = 𝑐𝑐2(𝑚𝑚2−𝑚𝑚1
2+𝑚𝑚2

2)
2𝑚𝑚

. 
Sol.: We know that  

𝐸𝐸1 + 𝐸𝐸2 = 𝑡𝑡𝑐𝑐𝑡𝑡𝑠𝑠𝑙𝑙 𝑠𝑠𝑛𝑛𝑠𝑠𝑒𝑒𝑒𝑒𝑦𝑦 = 𝑐𝑐𝑐𝑐2.  (1.27) 
Just after disintegration, the masses 𝑐𝑐1  and 𝑐𝑐2  move off in opposite 
directions with equal momenta, i.e., if 𝑐𝑐1 moves with momentum 𝑝𝑝, 𝑐𝑐2 
will move with momentum (−𝑝𝑝). 
Hence from (1.26)  

𝐸𝐸12 = 𝑐𝑐2(𝑐𝑐1
2𝑐𝑐2 + 𝑝𝑝2) 

𝐸𝐸22 = 𝑐𝑐2(𝑐𝑐2
2𝑐𝑐2 + 𝑝𝑝2) 

∴ 𝐸𝐸12 − 𝐸𝐸22 = (𝑐𝑐1
2 −𝑐𝑐2

2)𝑐𝑐4      (1.28) 
 
 Hence dividing (1.28) by (1.27), we obtain  

  𝐸𝐸1 − 𝐸𝐸2 = 𝑚𝑚1
2−𝑚𝑚2

2

𝑚𝑚
𝑐𝑐2.       (1.29) 

 Hence 𝐸𝐸1 and 𝐸𝐸2 can be obtained from (1.27) and (1.29).  
 
Example 1-5 A particle of mass 𝑀𝑀 , at rest, decays into two smaller 
particles of masses 𝑐𝑐1 and 𝑐𝑐2. What are their energies and momenta?. 
Sol.: Before decay, four-momentum is (𝐸𝐸/𝑐𝑐,𝑝𝑝) = (𝑀𝑀𝑐𝑐, 0). After the decay 
the two particles must have equal and opposite three-momenta 𝑝𝑝1 and 𝑝𝑝2 
to conserve three-momentum. Define 𝑝𝑝 = |𝑝𝑝1| = |𝑝𝑝1|; to conserve energy 
𝐸𝐸1 + 𝐸𝐸2 = 𝐸𝐸 = 𝑀𝑀𝑐𝑐2 or  
 �𝑝𝑝2 + 𝑐𝑐1

2𝑐𝑐2 + �𝑝𝑝2 + 𝑐𝑐2
2𝑐𝑐2 = 𝑀𝑀𝑐𝑐 

 This quadratic equation can be solved numerically for 𝑝𝑝 and then 𝐸𝐸1 =
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�𝑐𝑐1
2𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2 and 𝐸𝐸2 = �𝑐𝑐2

2𝑐𝑐4 + 𝑝𝑝2𝑐𝑐2.  
 Solve the above problem again for the case 𝑐𝑐2 = 0. Solve the equations 
for 𝑝𝑝 and 𝐸𝐸1 and then take the limit 𝑐𝑐1 → 0. (This is left to the reader as 
an exercise).  
 
Transformation equations for force: Let 𝑆𝑆 and 𝑆𝑆′ be uniformly moving 
systems with relative velocity along the 𝑥𝑥-direction, and let 𝑐𝑐 and 𝑐𝑐′ be 
the masses of a body referred to 𝑆𝑆 and 𝑆𝑆′ respectively which are moving 
with velocities 𝑢𝑢 and 𝑢𝑢′. Also, let �⃖�𝐹 be a force on a body of  mass 𝑐𝑐 and 
velocity 𝑢𝑢, then the transformation formulae for force components are  

 𝐹𝐹𝑥𝑥′ = 𝐹𝐹𝑥𝑥 −
𝑥𝑥/𝑐𝑐2

�1−𝑣𝑣𝑢𝑢𝑥𝑥
𝑐𝑐2

�
(𝑢𝑢𝑦𝑦𝐹𝐹𝑦𝑦 + 𝑢𝑢𝑧𝑧𝐹𝐹𝑧𝑧), 

 𝐹𝐹𝑦𝑦′ = �1−𝑥𝑥/𝑐𝑐2

�1−𝑣𝑣𝑢𝑢𝑥𝑥
𝑐𝑐2

�
𝐹𝐹𝑦𝑦,     (1.30) 

 𝐹𝐹𝑧𝑧′ = �1−𝑥𝑥/𝑐𝑐2

�1−𝑣𝑣𝑢𝑢𝑥𝑥
𝑐𝑐2

�
𝐹𝐹𝑧𝑧. 

 
The relativistic formula for density: If 𝑆𝑆 and 𝑆𝑆′ are two systems which 
are in a relative translatory uniform motion with velocity 𝑣𝑣, then we have  
 𝜌𝜌′ = 𝜌𝜌0

(1−𝑣𝑣
2

𝑐𝑐2
)
.     (1.31) 

where 𝜌𝜌  and 𝜌𝜌′  are densities in 𝑆𝑆  and 'S  and 𝜌𝜌0  is the rest energy 
density. 

1.5 Four-dimensional language of relativistic mechanics 

Introduction: With the advent of the special theory of relativity, we have 
seen that the concepts of Newtonian mechanics have been re-defined. We 
have also seen that we live in a four-dimensional continuum. Given the 
above, we write down four-dimensional expressions for force and equations 
of motion. For this purpose, we take  

 𝑑𝑑𝑐𝑐2 = 22222 dtcdzdydx −++    (1.32) 
which describes the four-dimensional continuum with the Galilean 
coordinates  

 1x = 𝑥𝑥, 𝑥𝑥2 = 𝑦𝑦, 𝑥𝑥3 = 𝑧𝑧  𝑠𝑠𝑛𝑛𝑑𝑑  𝑥𝑥4 = i𝑐𝑐𝑡𝑡.  (1.33) 
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Now we define the following:   
i. Four-momentum: It is given by  

 𝑐𝑐0
𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝑑𝑑
= �𝑐𝑐0

𝑑𝑑𝑥𝑥1

𝑑𝑑𝑑𝑑
,𝑐𝑐0

𝑑𝑑𝑥𝑥2

𝑑𝑑𝑑𝑑
,𝑐𝑐0

𝑑𝑑𝑥𝑥3

𝑑𝑑𝑑𝑑
,𝑐𝑐0

𝑑𝑑𝑥𝑥4

𝑑𝑑𝑑𝑑
� (1.34) 

where 𝑐𝑐0 is the rest mass and 𝑑𝑑𝑥𝑥
𝜇𝜇

𝑑𝑑𝑑𝑑
 is the four-dimensional velocity 

vector. Then the four-momentum conservation is  

  ∑ 𝑐𝑐0
𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝑑𝑑
= 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡   (1.35) 

where summation ∑  should be taken over all the particles of the 
system.  

ii. Four-Force: (Force four-vector) The four-force vector is defined as  

 𝐹𝐹𝜇𝜇 = � 𝐹𝐹𝑥𝑥

�1−𝑢𝑢
2

𝑐𝑐2

, 𝐹𝐹𝑦𝑦

�1−𝑢𝑢
2

𝑐𝑐2

, 𝐹𝐹𝑧𝑧

�1−𝑢𝑢
2

𝑐𝑐2

, 1

�1−𝑢𝑢
2

𝑐𝑐2

𝑑𝑑𝐸𝐸
𝑐𝑐𝑑𝑑𝑑𝑑
�.  (1.36) 

 
iii. Minkowski equation of motion is  

 𝐹𝐹𝜇𝜇 = 𝑐𝑐2 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑐𝑐0

𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝑑𝑑
�    (1.37) 

 where 𝑐𝑐0 is the proper mass of the particle. 
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Exercise 1 

1. Determine the speed with which one object must move relative to 
another for its clock to be slowed by 1%, as seen by the other.  

2. You are driving at a steady 100 𝑘𝑘𝑐𝑐/ℎ𝑒𝑒. At noon you pass a parked 
police car. At twenty minutes past noon, the police car passes you, 
traveling at 120 𝑘𝑘𝑐𝑐/ℎ𝑒𝑒.  
a. How fast is the police car moving relative to you? 
b. When did the police car start driving, assuming that it accelerated 

from rest to 120 𝑘𝑘𝑐𝑐/ℎ𝑒𝑒 instantaneously? 
c. How far away from you was the police car when it started?  

3. If you throw a soccer ball at speed 𝑣𝑣 at a wall, it bounces back with 
the same speed, in the opposite direction. What happens if you throw 
it at speed 𝑣𝑣 towards a wall traveling towards you at speed 𝑤𝑤? What 
is your answer in the limit in which 𝑤𝑤 is much larger than 𝑣𝑣?  

4. You are trying to swim directly East across a river flowing South. The 
river flows at 0.5 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐−1  and you can swim, in still water, at 
1  𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐−1 . If you attempt to swim directly East, you will drift 
downstream relative to the bank of the river.  
a. What angle 𝜃𝜃𝑎𝑎  will your velocity vector relative to the bank 

make with the direction East?  
b. What will be your speed (magnitude of velocity) 𝑣𝑣𝑎𝑎 relative to 

the bank?  
c. To swim directly towards the East relative to the bank, you need 

to head upstream. At what angle 𝜃𝜃𝑐𝑐 do you need to head, again 
taking East to be the zero of the angle?  

d. When you swim at this angle, what is your speed 𝑣𝑣𝑐𝑐 relative to 
the bank?  

5. A woman walks to a shop at a speed of 6 𝑘𝑘𝑐𝑐/ℎ𝑒𝑒. How accurately 
would it be necessary to measure her walking stick to detect the 
Lorentz contraction of the stick if it is 1 𝑐𝑐 long? Is such an accuracy 
physically attainable?  

6. How much slower (or faster) is the speed of light in the air relative to a 
vacuum? How do you think the speed will depend on temperature and 
pressure? How much slower (or faster) is the speed of light in glass 
and water relative to a vacuum.  
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7. How fast do you have to throw a meter stick to make it one-fourth of 
its length at rest?  

8. Consider a clock, which, when at rest, produces a flash of light every 
second, moving away from you at 4

5
c. 

a. How frequently does it flash when it is moving at 4
5
c? 

b. By how much does the distance between you and the clock 
increase between flashes? 

c. How much longer does it take each flash to get to your eye than 
the previous one? 

d. What, therefore, is the interval between the flashes you see?  
9. Two spaceships, each measuring 100 𝑐𝑐 in their rest frame, pass by, 

traveling in opposite directions. Instruments onboard spaceship 𝐴𝐴 
determine that the front of spaceship 𝐵𝐵  requires 5 × 10−6𝑐𝑐  to 
traverse the full length of 𝐴𝐴. 

a. What is the relative velocity 𝑣𝑣 of the two spaceships? 
b. How much time elapses on a clock on spaceship 𝐵𝐵 as it traverses the 

full length of 𝐴𝐴?  
10. If light is affected by gravitation, it should be possible to go into orbit 

(i.e., a closed path) about a gravitational source. How dense would a 
thousand-kilogram mass have to be for light to be in a circular orbit 
about it?  

11. An observer, A, sees a body as having twice the length that another 
observer, B, sees. Which of them has the greater speed relative to the 
body if it lies along the direction of their relative motion? If a third 
observer sees the length as three times that as seen by B and the body 
is in the rest-frame of one of the three observers, which is the 
rest-frame of the body?  

12. Particles of half-life 10−8 secs are produced 3 km above sea level, 
and most of them are found at sea level. What is the least speed at 
which they must be traveling? In their rest-frame, there is no time 
dilation. How is it that they, nevertheless, can travel 3 km?  

13. Determine the speed with which one object must move relative to 
another for its clock to be slowed by 2%, as seen by others.  

14. Prove that the relativistic resultant of three co-linear speeds 𝑢𝑢, 𝑣𝑣,𝑤𝑤 is 
given by  


