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Chapter 1

Algebraic Topology

1 History

For many people, Poincaré’s works [59] are the real foundation of the
algebraic topology, when he defined for the first time in 1985 what
is meant by homologous chains in a manifold. His definition was
rather imprecise, but the notion he used covered exactly the current
acceptance: two closed chains are homologous if they differ by an
edge.

By 1940, the homological algebra theory was well defined and
contributed greatly to the emergence of many other concepts like
categories and functors. Various generalisations have been imag-
ined later, like cohomology of groups with many surprising geo-
metrical connections, bounded cohomology and equivariant coho-
mology. This shows, how homological notions have become largely
widespread in almost all mathematics areas, and sometimes even
in theoretical physics. The main principle of algebraic topology is
to associate, in a functorial way, to any topological object an alge-
braic object which is invariant under certain kinds of transforma-
tions like homeomorphisms, homotopisms, holomorphisms and iso-
morphisms.

A constructive example is how to apply to a torus, two scissors
to make it homeomorphic to a paper sheet. Topologically speaking,
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scissors here symbolise loops. Two cuts are said to be equivalent,
when they have the same effect on the ambient space. In other words
one can continuously switch from one to the other. The first cut goes
around the central hole; and we get a crown. The second one is a
radial cut on this crown and gives us a rectangle.

2 Functors and categories

A category is a collection of objects connected by a kind of ar-
rows, called morphisms such that

1. (f ◦g)◦h = f ◦ (g ◦h), for any morphisms f ,g,h, whenever
the composition is possible;

2. For any object X, there exists an unique morphism, de-
noted idX ∈ hom(X,X) such that idX ◦ f = f ◦ idX = f ,
for any other morphism f , whenever the composition is
possible.

Definition 1.1

As example of categories, one may consider sets connected by maps,
topological spaces connected by continuous maps, groups connected
by morphisms of groups, or finally vector spaces connected by linear
maps.

A functor T between two given categories C and C′ is any corre-
spondence

T : C −→ C′ ,

that associates to any object X in C, an object T (X) in C′ , and
associates to any morphism f : X −→ Y in C, a morphism
T (f ): T (X) −→ T (Y ) in C′ , such that

T (idX ) = idT (X),

Definition 1.2
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for any X in C.

Vocabulary. Let T : C −→ C′ be a functor.

• T is said to be covariant when T (f ◦ g) = T (f ) ◦ T (g), for any
f ,g ;

• T is said to be contravariant when T (f ◦g) = T (g)◦T (f ), for any
f ,g ;

Examples.

1. Let C = Gpe, be the category of groups endowed with mor-
phisms of groups, then T (g) = g−1 is a contravariant functor.

2. Let C = Gpe, be the category of groups endowed with mor-
phisms of groups, then T (g) = h−1.g.h is a covariant functor,
where h is a fixed morphism.

3 Homology

A chain complex is any N-indexed family (Cn)n∈N of modules
endowed with a family of morphisms of modules

dn: Cn −→ Cn−1,

such that
dn ◦ dn+1 = 0,

with the convention that C−1 = 0.

Definition 1.3

Following the notation here above, Zn: = Imdn+1 ⊂ Bn: = kerdn.
Elements of Zn are called n-cycles, while those of Bn are called n-
bords. From Zn+1: = Imdn+1 ⊂ Bn: = kerdn, we deduce that any cycle
is a bord. The inverse is naturally not always true.

By setting C: =
⊕

n∈N

Cn, we get a graduation: any element c ∈ Cn

is called of degree n and we write |c| = n. This yields to the map
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d: C −→ C where d|Cn
= dn. In particular d2 = 0, which means that d

is a derivation, called a differential.

Let (C,d): =
⊕

n∈N

Cn a chain complex.

• Hn(C,d): = kerdn/Imdn+1 is called the
n-th group of homology of (C,d);

• βn(C): = rankHn(C,d) is called the Betti number of (C,d);

• H∗(C,d): =
⊕

n∈N

Hn(C,d) is the homology group of (C,d);

• dimH∗(C,d): =
+∞∑

n=0

βn(C) is the homological dimension of

(C,d);

• χc(C): =
∑

n

(−1)nβn(C) is the Euler-Poincaré homological

invariant of (C,d).

Definition 1.4

It is worth pointing out that the homology measures the obstruction
of a bond to be a cycle. In fact, two bords x and y are homologous,
i.e., [x] = [y], means that dx = dy = 0 and that x = y+dc.

Let n be a fixed integer. A standard n-simplex (or standard
simplex of dimension n) in Rn, denoted generally ∆n, is the
hull convex inRn of the points e0, e1, · · · , en, where e0 = (0, · · · ,0),
e1 = (1,0, · · · ,0), . . . , and en = (0, · · · ,0,1).

Definition 1.5

• A 0-standard simplex is a point;

• A 1-standard simplex is a segment;

• A 2-standard simplex is a full triangle;
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Figure 1.1: A tetrahedron is 3-simplex

• A 3-standard simplex is a full tetrahedron.

Let n be a fixed integer, and ∆ a given n-standard simplex.
Let 0 ≤ k ≤ n. Any hull convex of a sub-family (ei ) of k elements
among e0, e1, · · · , en is a k-standard simplex of ∆, called a k-face
of ∆.

Definition 1.6

For example, the 0-faces of a tetrahedron are its vertices, its 1-faces
are its edges, while its 2-faces are its full triangles. The table here
above summarises the number of faces of some examples of n-simplices

simplex 0-faces 1-faces 2-faces 3-faces 4-faces 5-faces

Point 1 - - - - -
Segment 2 1 - - - -
Triangle 3 3 1 - - -
Tetrahedron 4 6 4 1 - -
Pentachord 5 10 10 5 1 -
5-simplex 6 15 20 15 6 1
6-simplex 7 21 35 35 21 7

We get this Euler-Poincaré formula:
∑

n≥0

(−1)nrn(C) = 1,

where rn denotes the number of the n-faces in C.
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We call a simplicial complex any set of simplices K, that satisfies
the following conditions:

1. Every face of a simplex from K is also in K;

2. Any non empty intersection of two simplices σ1,σ2 ∈ K is
a face of both σ1 and σ2.

Definition 1.7

Figure 1.2: Simplicial complex or not?

Let K be a simplicial complex, and n a fixed integer.
We call a n-chain in K any formal sum

∑
niσi , where σi are n-

simplices in K, with coefficients ni ∈Z.
The subset of all this n-chains will be denoted Cn(K), with the
convention that C−1(K) = ∅.

Definition 1.8

Let K be a simplicial complex.
The boundary operator on K, is the Z-linear map defined by:

∂n: Cn(K) −→ Cn−1(K)
σ: = [e0, . . . , en] 7−→ ∂nσ

Definition 1.9
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where, ∂nσ: =
n∑

i=0

(−1)i [e0, . . . , êi , . . . , en] and that êi means omit-

ted.

One can check that

∂n−1 ◦∂n = 0.

Theorem 1.1

In particular we have

Im∂n ⊂ ker∂n−1.

This yields the chain complex

0
i
→֒ Cn(K)

∂n
−→ Cn−1(K)

∂n−1
−→ ...

∂1
−→ C0(K)

∂0
−→ 0,

which is an algebraic structure that consists of a sequence of abelian
groups (or modules) and a sequence of homomorphisms between
consecutive groups such that the image of each homomorphism is in-
cluded in the kernel of the next. Elements of Im∂k are called bound-
aries, those of ker∂k−1 are called cycles. Thus any boundary is a cycle,
the inverse is not always true.

The k-th simplicial homology group of K, is defined to be the
quotient group

Hk(K) = ker∂k−1�Im∂k .

Its rank, denoted βp(K), is called the k-th Betti number of K.

Definition 1.10

Hk(K) represents the obstruction of a cycle to be a boundary, and
βp(K) represents the number of the homologous k-dimensional holes
in a shape. Since the interior of a circle is a disc, which is a variety
of dimension 1, one may consider a circle to have a one-dimensional
hole. In particular β0 is the number of the path-connected compo-
nents of a shape, since two points are homotopic if and only if they
live in the same path-connected component.
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Figure 1.3: Betti numbers of some shapes.

Let X be a topological space, and n a fixed integer.
Any continuous map σ: ∆n −→ X is called a n-singular simplex
of X.

Definition 1.11

While identifying σ to its geometrical image in X, it is clear that:

• 0-singular simplices are points of X;

• 1-singular simplices are curves in X;

• 2-singular simplices are 3D-surfaces in X;

• 0-singular simplices are 3D-volumes in X.

Let X be a topological space, and n a fixed integer.
n-singular chains are all finite sums,

∑
niσi , where ni are inte-

gers, while σi are n-singular simplices.

Definition 1.12
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The Z-module of such chains, will be denoted Cn(X).

Let X be a topological space, and n a fixed integer.
The bord operator ∂: Cn(X) −→ Cn−1(X) is defined by

∂σ: =
n∑

i=0

(−1)iσ|∆i
n−1

,

where ∆i
n−1: = [e0, . . . , êi , . . . , en] and that êi means omitted.

Definition 1.13

Following the notations here above, we have

∂2 = 0

Theorem 1.2

In particular we have

Im∂n ⊂ ker∂n−1.

Hence, we obtain a chain complex

0
i
→֒ Cn(X)

∂n
−→ Cn−1(X)

∂n−1
−→ ...

∂1
−→ C0(X)

∂0
−→ 0,

whose homology is called the singular homology of X.

Let X be a topological space, and C(X) its associated singular
chain complex as described here above. Then, we put

H∗(X): =H∗(C(X),∂), the singular homology of X.

Definition 1.14
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Let X and Y be two given topological spaces, and f : X −→ Y a
continuous map. For any singular X-simplex σ: ∆n −→ X, one
can associate a singular Y -simplex: f ◦ σ: ∆n −→ Y . In partic-
ular, if σ1 and σ2 are two homologous cycles in X, then their
images are still homologous in Y .
This enables us to define on the category Top, of topological
spaces, endowed with continuous maps, the following invari-
ant functor:

H∗: X 7→H∗(X), H∗: f 7→H∗(f )

where
H∗(f ): H∗(X) −→ H∗(Y )

[σ] 7−→ [f ◦σ]

Remark 1.1

4 Cohomology

A cochain complex is any graded family (Cn)n∈N ofZ-modules
equipped with Z-morphisms dn: Cn −→ Cn+1 such that dn+1 ◦
dn = 0.

Definition 1.15

By analogy to the above, we set Bn: = Imdn ⊂ Zn+1 = kerdn+1, and
define the cohomology of (C,d) to be

Hn(C,d): = Zn+1/Bn.

• Element de Zn are called n-cocycles;

• elements of Bn are called n-cobords.

For a given topological space, X, we dualize its singular homology as
follows:

Cn(X): = Cn(X)#

and put
d: = ∂#,
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we get a cochain complex C∗(X),d), whose cohomolgy is called the
singular cohomology of X.

Let X be a fixed topological space. The cap product is the bilin-
ear application defined as follows:

⌢ : Cp(X;K)×Cq(X;K) −→ Cp−q(X;K)
(σ,δ) 7−→ σ ⌢ δ: = δ(σ |[e0 ,...,eq ])σ |[eq ,...,ep ]

,

that can be extended naturally to homology and cohomology as
follows:

⌢ :Hp(X;K)×Hq(X;K) −→Hp−q(X;K).

Definition 1.16

If X is a closed and orientable manifold of dimension n, it is well
known that

dimHn(X) = 1.

and that
Hk(X) = 0,for any k > n.

The generator [µ] of Hn(X;Q), called the class fundamental of X veri-
fies the following:

[µ]⌢ [σ] ∈Hn−k(X), for any [σ] ∈Hk(X).

We get the following linear application

D: Hk(X) −→ Hn−k(X)
[σ] 7−→ D[σ]: = [X]⌢ [σ]

.

Poincaré duality: If X is a closed and orientable manifold of
dimension n, then the application

D:Hk(X;Q) −→Hn−k(X;Q) is an isomorphism.

Theorem 1.3
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In other words,
Hk(X) �Hn−k(X).

For further details on both homology and cohomology we suggest
these standard references: [29] and [49].

5 Homotopy

Set I : = [0,1], and let X and Y be two given topological spaces.
We call a homotopy from X to Y , any continuous map:

H : X × I −→ Y.

Then two continuous maps f ,g : X → Y are said to be homo-
topic, when there is a homotopy H : X × I → Y , such that

H(−,0) = f , H(−,1) = g,

then we write
f ∼ g,

which define an equivalence relation on continuous maps from
X to Y .

Definition 1.17

Two given topological spaces X and Y , are said to be homo-
topic, or have the same homotopy type if and only if there exist
two continuous maps f : X→ Y and g : Y → X such that

f ◦ g ∼ idY , g ◦ f ∼ idX .

This leads to an equivalence relation on the category Top of
topological spaces endowed with continuous maps.

Definition 1.18
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An algebraic object obj(X) associated to a topological space X,
is defined to be a homotopical invariant when

obj(X) � obj(X),

for any X ∼ Y .

Definition 1.19

The following algebraic objects are homotopically invariant

1. The homology: X ∼ Y =⇒H∗(X) �H∗(Y );

2. Betti numbers: X ∼ Y =⇒ βk (X) = βk (Y );

3. Homological and cohomological dimensions: X ∼ Y =⇒
dimH∗(X) = dimH∗(Y ) and dimH∗(X) = dimH∗(Y );

4. Euler-Poincaré invariant: X ∼ Y =⇒ χc(X) = χc(Y ).

Theorem 1.4

Let X be a path-connected topological space, and n a fixed in-
teger.
The n-homotopy group of X is defined to be

πn(X): = map(Sn,X)/ ∼,

where Sn denoted the unit sphere of Rn+1, and map(Sn,X)/ ∼
the quotient set of continuous maps γ : Sn −→ X, up to homo-
topy.

Definition 1.20

With respect to the denotations above, it is worth pointing out
the following:

• The homotopy groups πn(X) are all abelian, for n ≥ 2;

Remark 1.2
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• π0(X) is nothing other than the set of the path compo-
nents of X;

• π1(X) called the fundamental group ofX, describes, when
loops inX are homotopic. card(π1(X)) interprets the num-
bers of "holes" in X.
In particular, if X is simply connected, then πi(X) = {0}.

Let X and Y be two topological spaces, then any continuous
map f : X −→ Y can be extended naturally to the homotopy
groups, by setting:

πn(f ): πn(X) −→ πn(Y )
[γ] 7−→ [f ◦γ]

f is said to be a weak homotopy equivalence , when all πn(f ) are
isomorphisms.
Hence X and Y are said to have the same weak homotopy type.

Definition 1.21

Let X and Y be two given topological spaces, A a fixed subset
of X and f : A −→ Y a continuous map.
We call an attachment of X with respect to f , the quotient set
X ∪f Y obtained while identifying any element x ∈ A with its
image f (x) ∈ Y .
More precisely,

X ∪f Y : = (X
∐

Y )/x ∼ f (x),

where X
∐
Y denotes the disjoint geometrical sum of X and Y .

Definition 1.22

Vocabulary: Let n be a fixed integer.

• We call n-cell, generally denoted en, any topological space that
is homeomorphic to the open disk D(0,1) of Rn;

• We call n-skeleton, generally denoted X(n), any topological space
that can be obtained by the attachment of X(n−1) to a finite
number of n-cells;
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• By convention, 0-skeletons, X(0), are any discrete collections of
points.

We call a CW-complex, any topological space of the form X =⋃
X(n) obtained by successive attachment of cells, and that ver-

ifies the following:

• Closure-finite: The boundary of each cell is equal to a
disjoint union of a finite number of cells of smaller di-
mensions;

• Weak topology: If X is endowed with the weak topology,
then a subset A of X is open, if and only if A∩Xn is open
for any n ∈N.

Definition 1.23

The category of CW-complexes turns out to be a good category to
work in homotopy, as the following results illustrate:

A continuous map f : X −→ Y between two CW-complexes is
called a cellular map, if it injects any n-skeleton of X into a n-
skeleton of Y .
More precisely, if f (X(n)) ⊂ Y (n), for any n ∈N.

Definition 1.24

Cellular Approximation Theorem: Any continuous map be-
tween two CW-complexes is homotopic to a cellular map.

Theorem 1.5

Whitehead Theorem: Anyweak homotopy equivalence between
two CW-complexes is a homotopy equivalence.

Theorem 1.6
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We call a cellular model of a topological space X, any CW-
complex that has the same weak homotopy type of X.

Definition 1.25

Cellular Model Theorem: Any topological space has a cellular
model, unique up to homotopy.

Theorem 1.7

For further details on homotopy, we suggest this standard reference:
[69].
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Chapter 2

Rational Homotopy
Theory

1 Introduction

An element of a group is said to be without torsion when its order
is infinite. The group itself is said to be without torsion, or free of
torsion, when its unity is the unique element with torsion. If we
tensor a group G, then we obtain a Q-vector space G ⊗G5, which is
an abelian group without torsion. Basically, the aim of the rational
homotopy theory, founded in the 1960s by D. Quillen [52] and D.
Sullivan [61], is to study the rational homotopy type of a topological
space by ignoring the torsion of its homotopy groups.

A topological space is said to be rational, when all its homotopy
groups are Q-vector spaces.

Definition 2.1
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If X is a simply connected CW-complex, then there exists a ra-
tional simply connected CW-complex, XQ, such that

πn(X)⊗Q � πn(XQ) as Q-vector spaces.

XQ is called the rationalization of X, and its homotopy type is
called the homotopy type of X.

Theorem 2.1

In fact, the birth of rational homotopy went back a little further to
1950, when H. Hopf conjectured the following:

The homotopy type of any topological space can be modelled
by a Q-graded Lie algebra.

Conjecture 1

P. Serre was the first to study the non-torsion of the homotopy
and homology groups. In 1953, he resolved the Hopf conjecture in
this particular case:

The rational weak homotopy type of any finite product of spheres
of odd dimensions can be modelled by a semi-simple, compact
and connected Lie group.

Theorem 2.2

In 1967, D. Quillen resolved completely the Hopf conjecture in a
rational context. He stated that:

The rational homotopy type of any simply connected and pointed
topological space can be modelled by a Lie group.

Theorem 2.3
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The rational weak homotopy equivalence of any finite prod-
uct of spheres of odd dimensions can be modelled by a semi-
simple, compact and connected Lie group.

Theorem 2.4

Quillen’s work represented a crucial step toward the develop-
ment of the rational homotopy theory, by justifying theoretically the
reliability of the algebraic model as an efficient tool to determine the
rational homotopy type of a topological space. However, his work
suffered from a major flaw: the calculations were generally difficult
or even impossible.

In the early 1970s, D. Sullivan tackled this problem of calcula-
tions, and proposed amodel dual to that of Quillen. Sullivan’s model
is a co-chain of commutative algebras, based on piecewise linear ra-
tional forms. When publishing his first results, Sullivan pointed
to the possibility of applying his models to resolve some geometric
problems, such as the study of non-abelian periods in a differential
manifold.

He claims that:

Any reasonable geometric construction on a topological
space can be reflected by another finite, algebraic, using

minimal models.

2 Hilali Conjecture

We were interested especially in some open problems related to el-
liptic spaces: the topological spaces X, whose rational homotopy
π∗(X)⊗Q, and rational homology H∗(X;Q) are both of finite dimen-
sion. Around 2007, our research focused on the following open prob-
lem:

Hilali conjecture (Topological version), [32]: For any simply

Conjecture 2

19



connected elliptic space X, we have:

dimH∗(X;Q) ≥ dim(π∗(X)⊗Q) .

One of the powerful tools we used from rational homotopy the-
ory, was the Sullivan minimal model, which relates by a homotopy
equivalence the category of simply connected topological spaces to
that of commutative differential graded algebras. This allows topol-
ogists to transpose many of their topological problems in a algebraic
version, as follows:

Sullivan [61]: For any simply connected topological space X of
finite type, i.e.,
dimHk(X;Q) <∞ for all k > 0, there exists a commutative dif-
ferential graded algebra (ΛV ,d), called the minimal Sullivan
model of X, which algebraically models the rational homotopy
of X, in the sense that

πn(X)⊗Q � V as vector spaces,

and that
H∗(X;Q) �H∗(ΛV ,d) as algebras.

Theorem 2.5

That means that any simply-connected topological space X, can be
replaced by a rational CW-complex XQ, without exchanging either
the rational homotopy type, or the rational cohomology. In particu-
lar, we get:

dimH∗(X;Q) = dimH∗(ΛV ,d);
dimπn(X) = dimV ,

and the

Hilali conjecture (Algebraic version), [32]: If (ΛV ,d) is a sim-
ply connected and elliptic model of Sullivan, then

dimV 6 dimH∗(ΛV ,d).

Conjecture 3
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Before our works, the conjecture holds uniquely for pure models
(dimV even = dimV even), [32]:

If (ΛV ,d) is a simply connected and elliptic pure model of Sul-
livan , then

dimV 6 dimH∗(ΛV ,d).

Theorem 2.6

From 2008, we proved the following:

Hilali & M. (2008), [36]: The Hilali conjecture holds for H-
spaces.

Theorem 2.1

Let us recall that H-spaces are topological spaces whose Sullivan
models are of the form (ΛV ,d). Topological groups are particular
examples of H-spaces.

Hilali &M. (2008), [36]: The Hilali conjecture holds for simply
connected and elliptic topological spaces X, such that

fd(X) ≤ 10,

where fd(X): = max{k ∈N, dimHk(X;Q) , 0.

Theorem 2.2

Hilali &M. (2008), [36]: The Hilali conjecture holds for simply
connected and hyper-elliptic minimal Sullivan models, under
some restrictive conditions.

Theorem 2.3

Let us recall that aminimal Sullivan model (ΛV ,d) is called hyper-
elliptic whenever it satisfies the following:

dV even = 0 and dV odd ⊂ΛV even ⊗ΛV odd.

Pure models are particular examples of hyper-elliptic under our re-
strictive conditions.
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Hilali & M. (2008), [36]: The Hilali conjecture holds for sym-
plectic manifolds, for cosymplectic manifolds, and for nilman-
ifolds.

Theorem 2.4

We especially show that for such manifolds, the inequality in the
Hilali conjecture is strict.

Hilali &M. (2008), [37]: The Hilali conjecture holds for simply
connected and elliptic formal topological spaces.

Theorem 2.5

Formal spaces are topological spaces whoseminimal Sullivan mod-
els (ΛV ,d) verify the following:

V =U ⊕W, with dV = 0, and dW is a regular sequence in ΛU.

Examples of formal spaces include spheres, H-spaces, symmetric spaces,
and compact Kähler manifolds.

Hilali & M. (2008), [37]: The Hilali conjecture holds for sim-
ply connected and elliptic minimal Sullivan models (ΛV ,d)
whose differential is homogeneous of length at least 3, i.e. dV ⊂
Λ
≥3V .

Theorem 2.6

Around 2014, we investigated the case of coformal spaces, those
for whom the differential of the Sullivan model is purely quadratic,
i.e., dV ⊂Λ

2V . We especially prove the following:

Elkrafi, Hilali & M. (2015), [13]: The Hilali conjecture holds
for any coformal space X whose rational homotopy Lie algebra
L is of nilpotency 1 or 2.

Theorem 2.7
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We also proposed some research directions to resolve completely
the coformal case by induction on the nilpotency degree of the asso-
ciated homotopy Lie algebra. In fact, resolving completely the cofor-
mal case would be a decisive step towards the definitive resolution of
the Hilali conjecture, since the case when the differential is homoge-
neous of length at least 3 was already resolved. The Hilali conjecture
now belongs to the rational homotopy theory folkloric open prob-
lems, and it gave rise to a lot of research interests and is now stated
in many interesting cases, such as:

• Hyper elliptic Sullivan models, see [4];

• Two stages Sullivan models, i.e. when V = U ⊕W with dU = 0
and dW ⊂Λ

≥2U , see [1].

We also investigate the Hilali conjecture for configuration spaces of
manifolds. Let us recall that

If M is given a manifold and k a fixed non null integer, then

F(M,k) = {(x1,x2, ...,xk ) ∈M
k , xi , xj for i , j}

denotes the space of all ordered configurations of k distinct
points in M .

Definition 2.2

Our main result states that

Hilali, M. and Yamoul (2015), [39]: IfM is a closed and simply
connected manifold, then F(M,k) verifies the Hilali conjecture
provided that F(M,k) is elliptic.

Theorem 2.8

We also proved the following

Hilali, M. and Yamoul (2015), [39]: If M is rationally elliptic,
and X =M − {pt} has a non-trivial rational homotopy group in
dimension > 1, then F(X,2) and F(M,k) for k > 2, are rationally

Theorem 2.9
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hyperbolic.

Hilali, M. and Yamoul (2015), [39]: IfM is a simply connected
manifold of dimension at least 3, and has at least two linearly
independent elements in its rational cohomology, then F(M,3)
and in general F(M,k),k ≥ 3 is rationally hyperbolic.

Theorem 2.10

where a topological space is said to be hyperbolic, whenever its ho-
mology is of infinite dimension

3 Halperin Conjecture

Around 2016 we were especially interested in:

Halperin conjecture [30]: For any elliptic space X, we have:

dimH∗(X;Q) ≥ 2rk0(X),

where rk0(X), called the toral rank, is defined to be the maxi-
mum, or the infinity, of integers n such that the toral Tn acts
almost freely on X.

Conjecture 4

We firstly make the connection possible between this conjecture
and that of Hilali, thanks to the following results:

Let χc andχπ be the cohomological and homotopic Euler-Poincaré
characteristics of X, respectively defined by:

χc: =
∑

k≥0

(−1)k dimHk(X;Q);

χπ: =
∑

k≥0

(−1)k dimπn(X)⊗Q.
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