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PREFACE

This book is about the post-Newtonian theory, a method of suc-
cessive approximations of Einstein’s field equations in powers of
the light speed. This method was proposed in 1938 by Einstein,
Infeld and Hoffmann1 and in 1965 the first post-Newtonian hy-
drodynamic equations for a perfect fluid were derived by Chan-
drasekhar.2 Nowadays the post-Newtonian theory is still a field
of investigation by many researches.

The aim of this book is to present the post-Newtonian theory
and some applications in a self-contained manner. The devel-
opment of the theory follows the works of Chandrasekhar and
its collaborators and the book by Weinberg.3 For another dif-
ferent approach and applications of the post-Newtonian theory

1A. Einstein, L. Infeld and B. Hoffmann, The gravitational equations
and the problem of motion, Ann. of Math. 39, 65 (1938).

2S. Chandrasekhar, The post-Newtonian equations of hydrodynamics in
general relativity, Ap. J. 142, 1488 (1965).

3S. Weinberg, Gravitation and cosmology. Principles and applications
of the theory of relativity (Wiley, New York, 1972).
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the reader is referred to the book by Poisson and Will.4

The book is organized as follows. In the first Chapter an
overview of the non-relativistic and relativistic Boltzmann equa-
tion with the corresponding transfer and balance equations are
introduced. The particle four-flow and the energy-momentum
tensor are calculated with the equilibrium Maxwell-Jüttner dis-
tribution function and it is shown that the equilibrium condition
of the Boltzmann equation in gravitational fields leads to Tol-
man and Klein laws.

In Chapter two the first post-Newtonian approximation of
Einstein’s field equations is determined from Chandrasekhar and
Weinberg methods, which introduce different gauge conditions
and equivalent gravitational potentials. The post-Newtonian
balance equations for an Eulerian and non-perfect fluids are ob-
tained and the Brans-Dicke theory in the post-Newtonian ap-
proximation is developed. Other subjects of this chapter in-
clude the analysis of the gravitational potentials, the conserva-
tion laws and the virial theorem in the post-Newtonian approx-
imation.

The second post-Newtonian approximation is the subject
of Chapter three, where new gravitational potentials come out
from Einstein’s field equations. The Eulerian balance equations
are determined and the conservation laws are investigated in
this approximation.

In Chapter four the first and second post-Newtonian approx-
imations of the Boltzmann equation and of the Maxwell-Jüttner

4E. Poisson and C. M. Will, Gravity: Newtonian, Post-Newtonian, Rel-
ativistic, (Cambridge UP, Cambridge, 2014).
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distribution function are derived. From a transfer equation of
the post-Newtonian Boltzmann equations the Eulerian balance
equations for perfect gases are obtained for the two approx-
imations. Furthermore, the post-Newtonian Jeans equations
for stationary spherically symmetrical and axisymmetrical self-
gravitating systems are derived.

The aim of Chapter five is the search for polytropic solutions
of the post-Newtonian Lane-Emden equation for some stars like
the Sun, white and brown dwarfs, red giants and neutron stars.
The post-Newtonian solutions are compared with the ones that
come out from the Newtonian Lane-Emden equation.

In Chapter six the problem of spherically symmetrical ac-
cretion is investigated where the Bernoulli equation and the
critical values of the flow fields are determined in the post-
Newtonian approximation. The solutions of the post-Newtonian
Bernoulli equation are compared with the ones that follow from
the Bernoulli equations of a relativistic theory and its weak field
approximation.

The Jeans instability from the hydrodynamic equations is
the subject of Chapter seven. Here the Newtonian Jeans insta-
bility is investigated for a non-expanding and expanding Uni-
verse. The post-Newtonian Jeans instability are obtained from
the mass density and momentum density balance equations in
the first and second approximations.

The aim of Chapter eight is to study Jeans instability within
the framework of the Boltzmann equation. For the Newtonian
and post-Newtonian Boltzmann equations two approaches are
used to obtain the dispersion relation which leads to the Jeans
instability. In one of them the perturbed distribution function

xv



is left unspecified while in the other the perturbed distribution
function is written in terms of the summational invariants of the
Boltzmann equation. The determination of Jeans instability for
an expanding Universe and for a BGK model of the Boltzmann
equation – where collision between the particles are taken into
account – are also examined.

In the last chapter it is investigated the rotation curves of
galaxies within the post-Newtonian framework and the solution
of Jeans equation for stationary spherically symmetrical self-
gravitating systems.

The notations used in this book are: Greek indices take the
values 0,1,2,3 and Latin indices the values 1,2,3. The semicolon
denotes the covariant differentiation, the indices of Cartesian
tensors will be written as subscripts, the summation convention
over repeated indices will be assumed and the partial differen-
tiation will be denoted by ∂/∂xi.

It is expected that this book can be helpful not only as a
text for advanced courses but also as a reference for physicists,
astrophysicists and applied mathematicians who are interested
in the post-Newtonian theory and its applications.

The financial support of Conselho Nacional de Desenvolvi-
mento Cient́ıfico e Tecnológico (CNPq, grant No. 304054/2019-
4) Brazil, is gratefully acknowledged.

Gilberto Medeiros Kremer

Itajáı, Brazil
July 2021
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CHAPTER 1

THE BOLTZMANN
EQUATION:
AN OVERVIEW

In this chapter an outline of the Boltzmann equation is pre-
sented. The non-relativistic Boltzmann equation is based on
the book [1] while the relativistic one on the book [2]. For more
details and references on non-relativistic and relativistic Boltz-
mann equation the reader should consult these two books and
the references therein.

1



2 CHAPTER 1. BOLTZMANN EQUATION

1.1 Non-relativistic Boltzmann equa-
tion

The Boltzmann equation is a non-linear integro-differential equa-
tion for the space-time evolution of the one-particle distribution
function f(x,v, t) in the phase space spanned by the space co-
ordinates x and velocity v of the particles. The one-particle
distribution function is such that dN = f(x,v, t)d3xd3v gives
at time t the number of particles in the volume element d3x
about x and with velocities in a range d3v about v. In the non-
relativistic kinetic theory of monatomic gases the Boltzmann
equation reads

∂f

∂t
+ vi

∂f

∂xi
+ Fi

∂f

∂vi
=

∫ [
f(x,v′∗, t)f(x,v′, t)

−f(x,v∗, t)f(x,v, t)
]
g σ dΩ d3v∗. (1.1)

Here F is a force per unit mass which acts on the particles and
do not depend on its velocities. The right-hand side is a con-
sequence of the so-called Stoßzahlansatz which considers only
binary collisions of two beams of particles which before collision
have velocities (v,v∗) and after collision (v′,v′∗). Furthermore,
g = |v∗ − v| is a relative velocity, σ a collision differential cross
section and dΩ an element of solid angle of the scattered parti-
cles. In the binary collision the momentum and energy conser-
vation laws hold

mv +mv∗ = mv′ +mv′∗,
1

2
mv2 +

1

2
mv2
∗ =

1

2
mv′2 +

1

2
mv′2∗ ,

(1.2)
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where m is the particle rest mass.
In the kinetic theory of gases the macroscopic fields are

given in terms of integrals over the microscopic quantities of
the particles multiplied by the one-particle distribution func-
tion. The microscopic quantities mass m, momentum mv and
energy mv2/2 of a particle imply the macroscopic fields of mass
density ρ, momentum density ρV and energy density ρu of the
gas defined by

ρ(x, t) =

∫
mf(x,v, t)d3v, ρV(x, t) =

∫
mvf(x,v, t)d3v, (1.3)

ρu(x, t) =

∫
m

2
v2f(x,v, t)d3v.(1.4)

The energy density can be decomposed into a sum of a kinetic
energy density ρV 2/2 and an internal energy density ρε by intro-
ducing the peculiar velocity Vi = vi−Vi which is the difference of
the particle velocity v and the hydrodynamic velocity V. Hence
we have

ρu =
1

2
ρV 2 + ρε, where ρε =

∫
1

2
mV2f(x,v, t)d3v. (1.5)

Note that
∫
Vifd3v = 0.

An important quantity in the kinetic theory of gases is the
so-called summational invariant ψ defined by the relationship
ψ+ψ∗ = ψ′+ψ′∗. It is easy to see that the mass m, the momen-
tum mv and the energy mv2/2 of a particle are summational in-
variants. One important consequence is that the representation
of the summational invariant as a sum of mass, momentum and
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energy of a particle leads to the determination of the one-particle
distribution function at equilibrium. Indeed, the equilibrium is
characterized when the collision term of the Boltzmann equa-
tion (1.1) vanishes, i.e., at equilibrium the number of particles
entering in the phase space volume is equal to those that leav-
ing it. In this sense f(x,v′∗, t)f(x,v′, t) = f(x,v∗, t)f(x,v, t)
implying that ln f(x,v, t) is a summation invariant so that at
equilibrium the one-particle distribution function becomes the
Maxwellian distribution function

f =
ρ

m

( m

2πkT

) 3
2

exp

[
−mV

2

2kT

]
, (1.6)

where the absolute temperature T is related with the specific
internal energy by ε = 3kT/2m with k denoting the Boltzmann
constant.

The derivation of hydrodynamic equations from a transfer
equation for arbitrary macroscopic quantities which are associ-
ated with mean values of microscopic quantities is an old subject
in the literature of kinetic theory of gases which goes back to
the work of Maxwell in 1867 [3]. In 1911 Enskog [4] determined
from the Boltzmann equation a general transfer equation for an
arbitrary function of the space-time and particle velocity where
the hydrodynamic equations could be obtained. The starting
point for the knowledge of the so-called Maxwell-Enskog trans-
fer equation follows from the multiplication of the Boltzmann
equation (1.1) by an arbitrary function of the space-time coordi-
nates and particle velocity Ψ(x,v, t) and subsequent integration
of the resulting equation over all values of the particle velocity
components d3v. Hence it follows the Maxwell-Enskog transfer
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equation ∫
Ψ

[
∂f

∂t
+ vi

∂f

∂xi
+ Fi

∂f

∂vi

]
d3v =

∂

∂t

∫
Ψfd3v

+
∂

∂xi

∫
Ψvifd

3v +

∫
∂ΨfFi
∂vi

d3v

−
∫ [

∂Ψ

∂t
+ vi

∂Ψ

∂xi
+ Fi

∂Ψ

∂vi

]
fd3v

=
1

4

∫
[Ψ + Ψ∗ −Ψ′ −Ψ′∗] [f ′∗f

′ − f∗f ] g σ dΩ d3v∗d
3v. (1.7)

In the above equation the underlined term vanishes since it can
be converted by the use of the divergence theorem into an inte-
gral over a surface situated far away in the velocity space where
the distribution function tends to zero. Its right-hand side fol-
lows by considering the symmetry properties of the collision op-
erator of the Boltzmann equation where it was introduced the
abbreviations f ′∗ ≡ f(x,v′∗, t), f ≡ f(x,v, t) and so on. Note
that the right-hand side of the transfer equation vanishes if Ψ
is a summational invariant, i.e., for Ψ ≡ ψ.

The balance equations for the fields of mass density ρ, mo-
mentum density ρV and energy density ρu are obtained from
the transfer equation (1.7) by choosing Ψ equal to the mass m,
momentum mv and energy mv2/2 of the particles. Hence, it
follows respectively

∂ρ

∂t
+
∂ρVi
∂xi

= 0, (1.8)
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∂ρVi
∂t

+
∂(ρViVj + pij)

∂xj
= −ρ ∂φ

∂xi
, (1.9)

∂
[
ρ
(
ε+ V 2

2

)]
∂t

+
∂
[
ρ
(
ε+ V 2

2

)
Vi + qi + pijVj

]
∂xi

= −ρ ∂φ
∂xi

Vi.

(1.10)
In the above equations we have identified the force per unit mass
F as the gravitational field g = −∇φ where φ is the Newtonian
gravitational potential, which is related with the mass density ρ
and the universal gravitational constant G through the Poisson
equation ∇2φ = 4πGρ. Furthermore, it was introduced the
pressure tensor pij and the heat flux vector qi which are given
in terms of the one-particle distribution function by

pij =

∫
mViVjfd3v, qi =

∫
1

2
mV2Vifd3v. (1.11)

The pressure is the trace of the pressure tensor p = prr/3 and
for perfect gases it is related to the specific internal energy by
p = 2ρε/3 = ρkT/m.

If we eliminate the time derivative of the hydrodynamic ve-
locity V from the balance equation for the energy density (1.10)
by using the momentum density balance equation (1.9) we get
the internal energy density balance equation

∂ρε

∂t
+
∂(ρεVi + qi)

∂xi
+ pij

∂Vi
∂xi

= 0. (1.12)
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1.2 Boltzmann equation in special rel-
ativity

In special relativity it is considered that a gas particle of rest
mass m is characterized by the space-time coordinates (xα) =
(ct,x) and momentum four-vector (pα) = (p0,p). From the
constraint that the length of the momentum four-vector is equal
to mc, its time component p0 is given in terms of the spatial
components p by p0 =

√
|p|2 +m2c2.

The one-particle distribution function f(xα, pα) = f(x,p, t)
is defined in terms of the space-time and momentum coordinates
so that the number of particles in the volume element d3x about
x and with momenta in a range d3p about p at time t is given
by dN = f(x,p, t)d3x d3p.

In order to know if the one-particle distribution function is a
scalar invariant we have to know if d3xd3p is a scalar invariant,
because the number of particles in a volume element is indeed
a scalar invariant due to fact that all observers will count the
same number of particles.

We consider two inertial systems which transform according
a homogeneous Lorentz group in a Minkowski space-time and
whose components of the metric tensor are diag(1,−1,−1,−1).
The volume elements d4x = d4x′ and d4p = d4p′ are scalar
invariants. If we choose the primed frame of reference as a rest
frame where p′ = 0, we have that d3x′ is the proper volume
whose transformation law is

d3x =
√

1− v2/c2d3x′. (1.13)
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The transformation law for p0 and d3p – by taking into account
the primed frame as a rest frame where p′ = 0 – are

p0 =
1√

1− v2/c2
p′0,

d3p′

p′0
=
d3p

p0
. (1.14)

In a Minkowski space-time p0 = p0 hence from the above equa-
tions we have that d3xd3p = d3x′d3p′ is a scalar invariant and
as a consequence the one-particle distribution function is also a
scalar invariant. Note that d3p/p0 is a scalar invariant.

In the phase space spanned by the space coordinates x and
momentum p of the particles the space-time evolution of the
one-particle distribution function f(x,p, t) is given by the Boltz-
mann equation

pµ
∂f

∂xµ
=

∫ [
f(x,p′∗, t)f(x,p′, t)

−f(x,p∗, t)f(x,p, t)
]
F σ dΩ

d3p∗
p∗0

. (1.15)

The right-hand side of the above equation represents the colli-
sion term which takes into account the binary collision of two
beams of particles which before collision have momenta (p,p∗)
and after collision (p′,p′∗). The relative velocity here is given
by the invariant flux

F =
p0p0
∗

c

√
(v − v∗)2 − 1

c2
(v × v∗)2 =

√
(pα∗ pα)2 −m4c4.

(1.16)
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Furthermore, σ is the invariant differential cross-section and dΩ
the solid angle element. At collision the energy-momentum con-
servation law holds

pµ + pµ∗ = p′µ + p′µ∗ , (1.17)

which is a summational invariant.

The transfer equation for an arbitrary function Ψ(xµ, pµ)
is obtained from the multiplication of the Boltzmann equation
(1.15) by Ψ(xµ, pµ) and integration of the resulting equation
with respect to d3p/p0, yielding

∂

∂xµ

∫
Ψpµf

d3p

p0
−
∫

∂Ψ

∂xµ
pµf

d3p

p0

=
1

4

∫
[Ψ + Ψ∗ −Ψ′ −Ψ′∗] [f ′∗f

′ − f∗f ] F σ dΩ
d3p∗
p∗0

d3p

p0
,(1.18)

where the right-hand side follows from the symmetry properties
of the collision operator of the Boltzmann equation. Here it was
introduced the abbreviations f ′∗ ≡ f(x,p′∗, t), f ≡ f(x,p, t) and
so on.

The equilibrium state is attained when the right-hand side
of Boltzmann equation (1.15) vanishes so that ln f(x,p, t) is a
summational invariant and the one-particle distribution func-
tion at equilibrium becomes the Maxwell-Jüttner distribution
function

f(x,p, t) =
n

4πm2ckTK2(ζ)
exp

(
−p

µUµ
kT

)
. (1.19)
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Here n is the particle number density, Uµ the hydrodynamic
four-velocity – such that UµU

µ = c2 – and K2(ζ) the modified
Bessel function of second kind defined by

Kn(ζ) =

(
ζ

2

)n Γ
(

1
2

)
Γ
(
n+ 1

2

) ∫ ∞
1

e−ζy(y2 − 1)n−
1
2 dy. (1.20)

The relativistic parameter ζ = mc2/kT is the ratio of the rest
energy of the gas particle mc2 and the thermal energy of the
gas kT . In the non-relativistic limiting case ζ � 1 while in the
ultra-relativistic limiting case ζ � 1.

The macroscopic fields of particle four-flow Nµ and energy-
momentum tensor Tµν are defined in terms of the one-particle
distribution function as

Nµ =

∫
cpµf(x,p, t)

d3p

p0
, Tµν =

∫
cpµpνf(x,p, t)

d3p

p0
.(1.21)

The balance equations for the macroscopic fields are ob-
tained from the transfer equation (1.18) by choosing Ψ = c
and Ψ = cpµ, yielding

∂

∂xµ

∫
cpµf

d3p

p0
= 0, ⇒ ∂µN

µ = 0, (1.22)

∂

∂xν

∫
cpµpνf

d3p

p0
= 0, ⇒ ∂νT

µν = 0. (1.23)

Let us determine the equilibrium values of the particle four-
flow Nµ and energy-momentum tensor Tµν from the Maxwell-
Jüttner distribution function. We choose a local Lorentz frame
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where the spatial components of the hydrodynamic four-velocity
vanishes, i.e., Uµ = (c,0) and write the particle four-flow as

Nµ =

∫
cpµf

d3p

p0
= − cn

4πm2ckTK2(ζ)

∂

∂Uµ

∫
e−(pµUµ) d

3p

p0
,

(1.24)
where we have introduced Uµ = Uµ/kT which obeys the rela-
tionships

UµUµ =
ζ2

(mc)2
,

∂ζ

∂Uµ
=

(mc)2

ζ
Uµ = mUµ. (1.25)

In a local Lorentz frame we can use spherical coordinates to
write

d3p = |p|2 sin θd|p|dθdϕ, (1.26)

where the range of the angles are 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.
Furthermore we change the integration variable and introduce
a new variable y such that

p0 = mcy, |p|2 = p2
0 −m2c2 = m2c2(y2 − 1), (1.27)

d|p|
p0

=
dy√
y2 − 1

. (1.28)

Hence by considering that the integrals over the angles θ and ϕ
furnish 4π, (1.24) becomes

Nµ = − ζn

mK2(ζ)

∂

∂Uµ

∫
e−ζy

√
y2 − 1dy

= − ζn

mK2(ζ)

∂K1(ζ)/ζ

∂Uµ
= nUµ. (1.29)
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The evaluation of the energy-momentum tensor proceeds in
the same way

Tµν =

∫
cpµpνf

d3p

p0
=

ζn

mK2(ζ)

∂2K1(ζ)/ζ

∂Uµ∂Uν

= (ε+ p)
UµUν

c2
− pgµν , (1.30)

Here gµν is the Minkowski metric tensor. The energy density ε
and the hydrostatic pressure p are given by

ε = ρc2
(
K3(ζ)

K2(ζ)
− 1

ζ

)
, p = nkT. (1.31)

In the above equations it was used the recurrence relation
for the modified Bessel function of second kind

d

dζ

(
Kn(ζ)

ζn

)
= −Kn+1

ζn
. (1.32)

The energy density has the following values in the non-
relativistic ζ � 1 and ultra-relativistic ζ � 1 limiting cases

ε = ρc2
(

1 +
3kT

2mc2

)
, for ζ � 1, (1.33)

ε = 3nkT = 3p, for ζ � 1, (1.34)

by using the asymptotic expressions for the modified Bessel
function of the second kind given in the Appendix.

Another quantity that is very important in the analysis of
the Boltzmann equation is the entropy. In a relativistic the-
ory the entropy four-flow is given in terms of the one-particle
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distribution function by

Sµ = −k
∫
cf ln f pµ

d3p

p0
. (1.35)

If we choose Ψ = −kc ln f in the transfer equation (1.18) we get
the balance equation for the entropy four-flow

∂

∂xµ

∫
(−kc ln f)pµf

d3p

p0
= −kc

∫
∂f

∂xµ
pµf

d3p

p0

+
kc

4

∫ [
ln
f ′f ′∗
ff∗

] [
f ′f ′∗
ff∗

− 1

]
f∗f F σ dΩ

d3p∗
p∗0

d3p

p0
. (1.36)

The first term in the right-hand side of the above equation van-
ishes, since it can be identified as the multiplication of the Boltz-

mann equation (1.15) by kc, integration over all values of d3p
p0

and considering the symmetry properties of the collision opera-
tor. The second term is non-negative thanks to the relationship
(x− 1) lnx ≥ 0 which is valid for all x > 0. Hence the entropy
four-flow balance equation reduces to

∂µS
µ ≥ 0. (1.37)

The equilibrium entropy four-flow can be obtained from the
insertion of the Maxwell-Jüttner distribution function (1.19)
into its definition (1.35) and integration of the resulting equa-
tion, yielding

Sµ = k

∫
fpµe−

pµUµ
kT

{
pνUν
kT

− ln

[
n

4πm2ckTK2(ζ)

]}
d3p

p0
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=
TµνUν
T

+ k ln

[
4πm2ckTK2(ζ)

n

]
Nµ

= n

{
k ln

[
4πm2ckTK2(ζ)

n

]
+

ε

nT

}
Uµ. (1.38)

thanks to (1.29) and (1.30). The entropy per particle s is related
to the equilibrium value of the entropy four-flow written as Sµ =
nsUµ.

The Gibbs function per particle is identified with the chem-
ical potential µ and defined by

µ =
ε

n
− Ts+

p

n
= kT

{
ln

[
n

4πm2ckTK2(ζ)

]
+ 1

}
. (1.39)

From this last result we can rewrite the Maxwell-Jüttner
distribution function (1.19) as

f = exp

[
µ

kT
− 1− pµU

µ

kT

]
. (1.40)

1.3 Boltzmann equation in
gravitational fields

In order to write the number of particles in terms of the one-
particle distribution function we have to know the transforma-
tions of the volume elements d3x and d3p in a Riemannian space.
These transformations read

p0√−gd3x = p′0
√
−g′d3x′,

√
−g d

3p

p0
=
√
−g′ d

3p′

p′0
, (1.41)


