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INTRODUCTION 

The discovery of the effects of parametric optics, in particular, the 

piezooptic effect by D. Brewster in 1818 [1, 2], the magnetooptic effect by 

M. Faraday in 1845 [3], quadratic and linear electrooptic effects by Kerr 

and Pockels in 1875 and 1893, respectively [4, 5, 6] and the 

electrogyration effect by O.G. Vlokh in the second half of the XX century 

[7], took place over almost two centuries, which were associated primarily 

with significant experimental difficulties of studying these subtle 

phenomena. In addition, the absence of a symmetry-tensor apparatus of 

crystal physics had a significant effect on the long duration of this process. 

So, the equations for optical indicatrix deformation under the electrooptic 

effect for all point symmetry groups were obtained only in the 60s of the 

XX century [8, 9]. 

Despite the classical nature of the phenomena of parametric optics, 

they still remain the fundamental basis for the development of various 

optical devices. In particular, the photoelastic effect has long been used for 

non-destructive control of mechanical stresses of transparent optical 

elements, parts, and structures (including in tensor tomography), 

measurement of mechanical stress or pressure by a non-contact method, 

modulation of the state of polarization of optical radiation, and the like. In 

turn, in recent years, it has turned out that acoustooptic control of light 

radiation can be used in the capture of microparticles with an optical beam 

and manipulating them, for addressing optical beams that have various 

quantum states, in the framework of quantum cryptography and optical 

computer information processing, as well as in formation of a Bose-

Einstein condensate [10]. 

The above circumstances make the further development of piezooptic 

materials science important and relevant. However, the existing 

experimental methods for studying the piezooptic properties of crystals are 

quite imperfect and lead to significant errors, which, in turn, does not 

allow to derive the most effective geometries in certain anisotropic 

crystalline materials. 

This monograph is intended to familiarize the reader with the 2D-

polarimetric and interferometric methods developed by the authors of the 

study of the piezooptic effect under the action of inhomogeneous 

mechanical stresses which have in advance known distribution across the 



Introduction 

 

viii 

sample (namely, diametrical compression, mechanical torsion, and four-

point bending). In addition, the monograph presents the results of 

experimental studies of the photoelastic properties of crystals, which 

provide for the determination of complete matrices of piezooptic and 

elastooptic coefficients. 



SECTION 1 

FUNDAMENTALS OF PHOTOELASTICITY. 

ANALYSIS OF STRESS HOMOGENEITY 

IN SAMPLES IN CLASSICAL PIEZOOPTIC 

EXPERIMENTS 

1.1. Photoelasticity as a phenomenon 

of parametric optics 

In the most general case, photoelasticity is an effect of changes in the 

refractive indices of optical medium under the influence of mechanical 

strains. Today, the phenomenon of photoelasticity is widely used in many 

fields of science and technology, in particular when checking mechanical 

stresses in transparent bodies [11–13], in remote optical sensors of stresses 

[14] and accelerometers [15–17], tensor-field stress tomography [18–22], 

and polarizing optical modulators [23, 24]. Moreover, of great importance is 

utilization of the photoelastic effect in various acoustooptic devices 

(deflectors, modulators, spectral filters, etc.), which are widely used in 

many modern techniques [25–28]. In addition, the photoelastic properties of 

materials should be taken into account when developing electrooptic 

devices. Practical applications of the photoelasticity effect mentioned above 

require complete and thorough information on so-called piezooptic and 

elastooptic coefficients. 

The photoelasticity can be termed as “ancient” among various 

phenomena of parametric optics (i.e., the optics of media in external or 

internal fields). The first description of the photoelastic effect in optically 

isotropic media, amorphous solids and cubic crystals has been made by 

David Brewster at the beginning of the 19th century [1, 2]. Within the 

framework of this theory, an optical birefringence Δn induced by a 

mechanical stress  is expressed as follows: 

 

.n K                                                                                             (1.1) 
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Different terms are used to denote the K coefficient. In particular, it is 

called a Brewster constant, a relative piezooptic coefficient, a relative 

photoelastic coefficient, or a stress-optical coefficient. The latter term is 

chiefly used by manufacturers of optical glass as a standard characteristic of 

any optical material [29, 30]. 

Since the scalar equation (1.1) is valid only for optically isotropic 

materials, one has to pass to a tensor relation in a more general case of 

anisotropic material. This relation has been suggested by Pockels [6]: 

 
3 3

1 1

ij ijkl kl

k l

B  
 

  (i, j, k, l = 1…3),                                             (1.2) 

 

where Bij is the increment of dielectric impermeability tensor component 

(a so-called tensor of optical polarization constant) Bij and kl denote the 

component of mechanical stress tensor, and ijkl the tensor component of 

piezooptic coefficients, which is measured in the units of 

m2/N = Pa−1 = 1012 B (B = Brewster). 

Neglecting the phenomena associated with antisymmetricity of the 

dielectric impermeability and the mechanical stress tensors (i.e., in the 

approximation Bij = Bji and kl = lk), one can rewrite equation (1.2) in a 

matrix form (or a Voigt notation): 

 

B      (,  = 1…6),                                                             (1.3) 

 

where 1 = 11, 2 = 22, 3 = 33, 4 = 23, 5 = 13 and 6 = 12, 

B1 = B11, B2 = B22, B3 = B33, B4 = B23, B5 = B13 and B6 = B12, 

 = ijkl if  =1…3 and  = 2ijkl if  = 4…6. Here and below, the 

Einstein rule is used for summation over repeating indices. 

Equations (1.2) and (1.3) are mathematical formulations of the 

piezooptic effect. If the values Bλ are expressed through mechanical 

strains, the term “elastooptic effect” is mainly used. In the matrix form, it 

can be written as 

 

B p     (,  = 1…6),                                                             (1.4) 

 

where p and  are the components of elastooptic coefficients and 

mechanical strain tensors, respectively. 

It is known that the mechanical strain tensor and the mechanical stress 

tensor are coupled via the Hooke’s law: 
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    ,S                                                                                           (1.5) 

    ,C                                                                                           (1.6) 

 

where S and C are the components of elastic compliance and elastic 

stiffness tensors, respectively. 

Thus, the piezooptic and elastooptic coefficients are coupled through the 

S and C tensors: 

 

    ,

    .

p S

p C

  

  








                                                                                   (1.7) 

 

Therefore, by determining experimentally the complete matrices of two 

of the four tensors involved in the relations (1.7), one can calculate the two 

other tensors. 

The values Bλ can be expressed through a change in the refractive 

indices, using the relation Bq = (nq)-2 and differentiating it: 

 

3

2
.q q

q

B n
n

                                                                                   (1.8) 

 

Here nq implies the initial refractive index and δnq the change in the 

refractive index occurring due to mechanical stresses (or strains). 

Substituting formula (1.8) into (1.3) and (1.4), one obtains the relation 

that links the δnq values with the mechanical stresses or strains: 

 

3

3

1
,

2

1
,

2

q q qm m qm m

q q qm m

n n K

n n p

   

 

  

 

                                                         (1.9) 

 

where Kqm denotes the photoelastic coefficient. 

It follows from the relation (1.3) that, in general, the piezooptic tensor 

(as well as the elastooptic one) can be represented by a 66 matrix, which 

contains 36 independent coefficients. For a convenience, this matrix is 

usually divided into four sub-matrices A, B, C and D: 
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11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

,qm

     

     

     


     

     

     

 
 
 
   

    
  

 
 
  

A B

C D
                  (1.10) 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

, ,

, .

     

     

     

     

     

     

   
   

 
   
      

   
   

 
   
      

A B

C D

                            (1.11) 

 

The sub-matrix A includes the “principal” piezooptic coefficients that 

describe the changes in the principal components of the dielectric 

impermeability tensor (B1, B2 and B3). This corresponds to the change in 

the ellipsoid of refractive indices (or the so-called optical indicatrix) that 

occurs along the principal coordinate axes under the action of stretching or 

compressing stresses (i.e., under the action of normal components 1, 2 

and 3 of the mechanical stress tensor). The sub-matrix B contains the 

“shift” (or “shifting”) piezooptic coefficients that describe the changes in 

the optical indicatrix under the action of shear (shift) stresses (i.e., the shear 

components 4, 5 and 6 of the mechanical stress tensor). Finally, the 

“rotating” (see the sub-matrix C) and the “rotating-shifting” (the sub-matrix 

D) piezooptic coefficients describe the changes in the “rotating” 

components B4, B5 and B6 of the dielectric impermeability tensor (i.e., 

those that cause rotation of the optical indicatrix) under the action of normal 

(1, 2 and 3) and shear (4, 5 and 6) components of the mechanical 

stress tensor, respectively. 

Symmetry of a material medium allows for reducing the number of 

independent components of the piezooptic and elastooptic tensors. In 

particular, the matrix (1.10) contains only twelve nonzero coefficients in 

case of an amorphous (glassy) material, of which only two coefficients are 

independent: 
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 

 

 

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0
.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

qm

  

  

  


 

 

 

 
 
 
 

  
 

 
 

  

            (1.12) 

 

For the crystals that belong to the cubic system, the number of 

independent components of the piezooptic and elastooptic tensors increases 

to three or four, while for the hexagonal system we have from six to eight 

components. In the same way, one can obtain seven to ten independent 

components for the tetragonal system, eight to twelve for the trigonal 

system, twelve for the orthorhombic system, twenty for the monoclinic 

system, and thirty six for the triclinic one. 

1.2. Polarimetric method for measuring photoelastic 

constants 

In experimental mechanics and glass production, various polarimetric 

methods [31–36] are commonly used to investigate photoelasticity 

properties. Historically, most of these methods have used visual or 

photographic recording of image of a sample, which is obtained in polarized 

light. At the end of the twentieth century, solid-state digital video cameras 

and computer technologies has been developed and widely spread. This has 

started production of the polarimeters for determining stress-induced optical 

birefringence, which are based upon digital image processing [37–43]. 

Over the past two decades, a number of 2D polarimeters (or imaging 

polarimeters) have been built at the O. G. Vlokh Institute of Physical Optics 

(Lviv, Ukraine) for the visible and infrared spectral ranges. All of them 

represent modifications of a basic 2D polarimeter configuration (Fig. 1-1) 

[44, 45]. This scheme includes a radiation source, a polarization generator, a 

sample under analysis, an analyzer, and an electronic section. 
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Fig. 1-1. Basic configuration of 2D polarimeter: 

(I) radiation source: (1) gas laser, (2) linear polarizer, (3) quarter-wave plate, (4) 

rotation device, (5) coherence scrambler, (6) beam expander, (7) spatial filter; 

(II) polarization generator: (8) linear polarizer, (9) quarter-wave plate, (10) rotation 

device, 

(III) sample under analysis; 

(IV) analyzer: (11) linear polarizer, (12) rotation device; 

(V) electronic section: (15) video camera interface, (16) computer, (17) stepper 

motor controller, (18) stepper motor, (19) zero-position sensor controller of 

analyzer. 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 

 

Now let us describe in brief the main sections of this configuration. 

Radiation source. The objective of this section is to create an almost 

plane monochromatic light wave with circular polarization and controlled 

intensity. It includes a gas laser (1), a radiation-intensity controller (2)–(4), 

a coherence scrambler (5) and a beam expander (6) with a pinhole spatial 

filter (7). In our scheme, a helium-neon laser emits a monochromatic 

linearly polarized light with the wavelength 632.8 nm and the power 3 mW. 

A radiation-intensity controller consists of a linear polarizer, i.e. a Glan 

prism (2) and a quarter-wave plate (3). Note that the fast axis of the quarter-

wave plate makes the angle 45 deg with the transmission axis of polarizer. 

Taken together, these components form a circular polarizer, which is placed 

on a rotation device (4), which makes it possible to adjust the intensity of 

the incident light by rotating the circular polarizer around the axis of light 

beam. This rotation is controlled by a stepper motor. 
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After the radiation-intensity controller, the light beam passes through a 

coherence scrambler (5). The aim of this device is eliminating undesirable 

speckle patterns in the image, which arise from the interference of coherent 

laser light diffracted at the components of optical scheme. The coherence 

scrambler represents a grounded glass disk that scatters light with a speckle 

structure. This speckle structure is changing continuously, since this disk is 

being rotated using an electric motor. As a result of averaging that occurs 

during exposure of sample, the effect of “spotting” disappears and an 

improved image arises, which is like the image obtained with incoherent 

light. 

After that, the light beam enters a beam expander (6), which is built 

according to a reciprocal Keppler telescopic system. To “clean” the beam 

from scattered and diffracted light, a spatial filter (7) (i.e., a pinhole 

diaphragm) is installed behind the first short-focus lens at the waist place. 

At the output of the beam expander, a collimated light beam with the 

diameter ~ 20 mm is obtained. 

Hence, utilization of laser radiation source in the 2D polarimeter 

provides a high degree of monochromaticity and, at the same time, the 

coherence scrambler eliminates the speckle structure of images, which 

would have been otherwise inherent for the polarimetric systems based on 

monochromatic sources. 

Finally, a high-quality collimated beam of circularly polarized light is 

obtained at the output of this section. This decreases any noises and 

increases the measurement accuracy. 

Polarization generator. The objective of this section is to create a 

predetermined polarization state of the light wave, which is given by the 

azimuth and the ellipticity, at the entrance of sample. It includes a first 

linear polarizer (a Glan prism (8)) and a compensator (a quarter-wave plate 

(9)). 

The ellipticity K of the light wave at the output of the polarization 

generator is determined by the angle  between the fast axis of the 

compensator and the transmission axis of the linear polarizer. The actual 

value of the optical phase difference of the compensator c is slightly 

different from its ideal value of 90 deg. Then the actual value of the 

ellipticity K reads as 

 

1
tan( ),     asin[sin(Γ )sin(2 )],

2
cK                                             (1.13) 

 

where  is the ellipticity angle. The azimuth  of the polarization ellipse is 

determined by the angular position of the fast axis с and the c value: 
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,  tan(2 ) cos(Γ ) tan(2 ).cc c c                                               (1.14) 

 

Here c implies the azimuth correction associated with imperfections of 

the compensator. 

Since the azimuth p of the linear polarizer and the angle  between the 

transmission axis of the linear polarizer and the fast axis of the compensator 

are directly set during experiment, the parameter c becomes 

 

.c p                                                                                            (1.15) 

 

Hence, by rotating the composite elliptical polarizer consisting of the 

linear polarizer and the compensator, any prescribed azimuth  of the major 

axis of the polarization ellipse and any ellipticity K of the polarization can 

be set at the output. 

A rotary device (10) enables rotation of the compensator (9) with respect 

to the linear polarizer (8), as well as joint rotation of the two latter 

components around the optical axis of the 2D polarimeter. Note that the 

composite elliptical polarizer is rotated by a stepper motor. As a 

consequence, the section of polarization generator provides a range of all 

possible azimuths from 0 to 180 deg and the range of ellipticities from –1 to 

+1. 

Sample under test. Besides of a sample itself, this section also contains 

some additional devices. In particular, this can be a cuvette with immersion 

liquid, a device for rotating the sample or a loading device. The dimensions 

of the analyzed area of sample are determined by the diameter of collimated 

light beam at the output of the composite elliptical polarizer. In its turn, this 

diameter is given by the linear dimensions of the Glan polarization prism 

(8) and equals to ~ 20 mm. 

Analyzer. The objective of this section is to analyze the polarization 

state of the light beam at the output of the sample. It comprises a second 

linear polarizer (a Glan prism (11)) arranged at a rotation device (12), which 

is controlled by a stepper motor. The rotation device is equipped with a 

zero-position sensor connected to a computer. This is due to a need in 

setting precisely a laboratory coordinate system when determining the 

azimuth angles. 

After the light has passed through the analyzer, the image of spatial 

intensity distribution over the light beam section is formed, by means of a 

lens (13), in the plane of photosensitive matrix of a detector, a video camera 

(14). For example, it can be a camera based on a charge-coupled device. 

Then the sensitive area of the photodetector contains 795 horizontal and 596 

vertical elements. The choice of the lens mentioned above depends on the 
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size of the sample under test, the resolution of the photodetector and the 

overall dimensions of the 2D polarimeter. 

Electronic section. This section includes a video-camera interface (15), a 

computer (16), stepper-motor controllers (17), stepper motors (18) and a 

zero-position sensor controller of an analyzer (19). The interface of the 

video camera (15) provides reading the image of the intensity distribution 

line by line, digitizing it and transferring the corresponding data to the 

computer memory. According to control signals, the stepper-motor controllers 

(17) generate sequences of pulses, that are fed to windings of the stepper 

motors (18). They determine the directions of rotation of motors and the 

rotation angles 

In the 2D polarimeter presented above, the rotary stages have the 

minimum rotation step of 0.012 deg and the accuracy 0.001 deg of angular 

positioning. Finally, the computer (16) carries out the operation control of 

all the elements of the polarimeter according to a preset measurement 

algorithm, accumulates and processes the data, and presents and saves the 

experimental results. 

Original software of the 2D polarimeter forms a shell for controlling its 

work. In particular, it controls the stepper motors, reads the image from the 

video camera, presents it on the computer display, processes the overall 

image and the data for a certain image pixel, fits the data for angular 

dependences with the sine function, initialize the analyzer; “binds” the 

polarizer to the analyzer, calibrates the image shift arising from the analyzer 

rotations, implements the algorithm of polarization-optical measurements, 

and calculates the resultant Jones matrix of the optical system. Moreover, it 

enables one to control the 2D polarimeter in manual and automatic 

measurement mode. 

The basic configuration of the 2D polarimeter considered above is 

universal in the sense that it provides implementing different methods for 

measuring the parameters of optical anisotropy, depending on the 

complexity of task designated by experimenter. 

1.3. Non-uniformity of mechanical stresses in a sample 

under axial compression 

A significant negative aspect of photoelasticity studies is that the piezooptic 

coefficients  of crystals are usually measured with large errors. Quite 

often, the latter exceed tens of percents and, in some cases, become as large 

as the value of the coefficient itself (see, e.g., Refs. [46–48]). 

To understand the reasons for this disappointing situation, one has to 

analyze a typical scheme of traditional photoelastic measurements 
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performed in crystal optics. For instance, the sample to which axial 

compression is applied has usually a shape of a parallelepiped close to a 

cube [49]. Usually, a strained sample is placed into a single-beam 

polarimeter or a double-arm interferometer (e.g., Michelson or Mach–

Zender interferometers). Then the sample is irradiated by a laser beam with 

the diameter ~ 1 mm. As a rule, the mechanical strain is changed during the 

experiment in order to measure a so-called “half-wave mechanical strain”. It 

is obvious that these experimental procedures contain a number of possible 

sources of measurement errors. 

1.3.1. Experimental procedures and results 

In order to visualize better the sources of measurement errors of the 

piezooptic coefficients, we use the same basic configuration of the 2D 

polarimeter [45] (see Fig. 1-1) and the measurement technique presented in 

the work [50]. To perform the measurements, the quarter-wave plate (9) is 

oriented so that its fast axis forms the angle 45 deg with the transmission 

axis of the polarizer (8). Then the circularly polarized light is formed at the 

output of the polarization generator. This light is incident on the sample 

which is prepared in the shape of a plane-parallel plate. 

The propagation of light through the sample changes the state of light 

polarization. To determine the polarization state of the light emerged from 

the sample, the analyzer is rotated in the angular range from 0 to 180 deg 

with the step of 4.5 deg. Note that the sample image is recorded for every 

azimuthal position of the analyzer. Once the analyzer has reached the angle 

90 deg, the light beam is shut out and the background image is recorded. 

The overall time of the measuring procedure is less than 30 seconds. 

In case when the circularly polarized light enters the sample as described 

by the model of linear optical retarder, the light intensity I at the analyzer 

output is determined by the formula 

 

  0 1 sin Γsin 2 ,
2

I
I a                                                           (1.16) 

 

with І0 being the intensity of light incident on the sample, а the azimuth of 

the transmission axis of polarizer,  the orientation angle of the principal 

axes of cross-section of the optical indicatrix with the plane perpendicular 

to the light beam,  = 2πΔ/λ = 2πd(Δn)/λ the optical phase difference, Δ the 

optical retardation, λ the light wavelength, d the sample thickness, and Δn 

the optical birefringence. 
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After recording and filtering of the images, the azimuthal dependences 
of the intensity I are fitted by the sine function for each pixel: 

 
 1 2 3sin 2 ,I C C a C                                                                 (1.17) 

 
where C1, C2 and C3 are fitting coefficients. 

By comparing formulae (1.16) and (1.17), one can write out the fitting 
coefficients as follows: 

 

 0 0
1 2 3,  sin Γ ,  .

2 2
I I

C C C                                                     (1.18) 

 
The  value is determined only by the fitting coefficients С1 and С2: 
 

2

1
sinΓ= .C

C
                                                                                       (1.19) 

 
In its turn, the angular orientation of the intensity minimum is given by 

the orientation  of the principal axis of the optical indicatrix, which is 
equal to the coefficient С3. 

After fitting the light intensity for each pixel of the sample image behind 
the analyzer as a function of polarization azimuth, one can construct 2D 
maps of the optical anisotropy parameters for the sample. These parameters 
comprise the optical retardation Δ and the orientation angle  of the 
principal axis of the optical indicatrix. 

As a demonstration of accuracy of our experiments, we present in 
Fig. 1-2 the spatial distributions of optical retardation and the orientation of 
the principal axis of the optical indicatrix for “empty” polarimeter with no 
sample inserted. 
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a) b) 

Fig. 1-2. Images of distributions of optical retardation (a) and orientation of major 

principal axis of the optical indicatrix (b), as measured for the polarimeter with no 

sample inserted into optical scheme. 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 

 

Of course, the optical retardation for the air and isotropic optical 

elements such as lenses and polarizers should be equal to zero. However, 

some false “background” retardation still exists. It is due to experimental 

errors caused mainly by multiple light reflections in the optical elements 

and small misalignments of the optical axes of those elements, which are 

being rotated during the experiment. Following from the results presented in 

Fig. 1-2, one can determine the apparatus-driven errors in evaluating the 

optical retardation and the orientation of optical indicatrix. These are equal 

to ±3.5 nm and ±5 deg, respectively. 

A loading device used in this experiment (see Fig. 1-3 and Ref. [50]) has 

been selected basing on the analysis [14, 15], which provides the most 

uniform distribution of stresses within the sample. 



Fundamentals of Photoelasticity. Analysis of Stress Homogeneity 
in Samples in Classical Piezooptic Experiments 

13 

 
Fig. 1-3. Scheme of the loading device. 

Note: We use a cardboard between the sample and the top (bottom) die as and 

intermediate layer, in order to eliminate inhomogeneity of the corresponding 

surfaces and decrease the friction force between these surfaces. 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 

 

The sample in the shape of cube with the dimensions 

11.45(x)×11.3(y)×11.45(z) mm3 has been prepared from a ВК7 glass 

(according to Schott classification). Its refractive index at the light 

wavelength λ = 632.8 nm is equal to n = 1.51466, while the photoelastic 

coefficient K = (n0)3(π11 – π12)/2 at the wavelength λ = 550 nm is equal to 

K = 2.76 m2/N [51]. The dispersion of the piezooptic coefficients in a 

narrow spectral region 550–632.8 nm has been neglected. 

The distributions of the optical retardation and the orientation of 

principal axis of the optical indicatrix for the glass sample with no 

mechanical stress applied are presented in Fig. 1-4. It follows from these 

results that the residual optical birefringence n is smaller than 6×10−7. 

Moreover, a comparison of the maps presented in Fig. 1-3 and Fig. 1-4 

testifies that the major part of this birefringence is false, being caused by 

specific features of both the experimental setup and the method used. In 

other terms, we deal simply with an apparatus error. In fact, the 
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birefringence as small as n  6×10−7 merely represents the accuracy for the 

birefringence achieved in the experiment. 
 

a) b) 

Fig. 1-4. Images of distributions of optical retardation (a) and orientation of 

principal axis of the optical indicatrix (b) for a glass sample with no mechanical 

stress applied. 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 

 

Fig. 1-5 displays the distributions of the optical retardation and the 

orientation of principal axis of the optical indicatrix for the glass sample 

under conditions when the mechanical stress 3 = –1.93×106 N/m2 is 

applied. It is important that repeated experiments accompanied with 

realignments of sample have not led to notable difference in the 

distributions of optical parameters. However, the maximum of the optical 

retardation has become located at different points. Namely, it has been close 

to the lateral, upper or bottom edges of the sample in different experiments. 

These shifts are probably caused by some misalignments of stress-

application scheme, which lead to appearance of additional components of 

the stress tensor. 
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a) b) 

Fig. 1-5. Images of distributions of optical retardation (a) and orientation of 

principal axis of the optical indicatrix (b) for a glass sample under the mechanical 

stress 3 = –1.93×106 N/m2 applied. 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 

 

The optical phase differences within the cross-section of the sample and 

the cross-section of laser beam (with the diameter 1.5 mm) propagating 

through the center of the cross-section are compared in Table 1-1. The 

relative error for the optical retardation inside the whole cross-section of the 

sample reaches the magnitude of 14%, while the relative error for the 

circular cross-section of laser beam is about 4%. In other words, the error 

for the experiments with non-expanded laser beam can be reduced at least 

by 3.5 times under condition that the mechanical stress in the spatial region 

where the laser beam propagates is known in advance. 

 

Table 1-1. Optical retardation for the whole cross-section of sample and the 

cross-section of laser beam propagating through the sample center 

Number 

of the 

experi-

ment 

Retardation for the whole cross-

section of sample 

Retardation for the cross-section 

of laser beam 

Mean 

value, nm 

Absolute 

error, nm 

Relative 

error,  

Mean 

value, nm 

Absolute 

error, nm 

Relative 

error,  

1 58.11 8.53 14.66 66.06 1.71 2.59 

2 58.50 9.12 15.58 67.99 3.18 4.67 

3 55.72 7.73 13.87 63.09 2.85 4.50 

4 55.74 9.51 17.07 61.33 2.53 4.13 

5 55.72 5.73 10.30 60.33 2.23 3.71 

6 56.58 6.84 12.09 62.44 2.78 4.46 

Mean 

value 
56.72 7.91 13.94 63.54 2.55 4.01 
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1.3.2. Reconstruction of mechanical stresses. 
Mechanical model and numerical simulations 

Let us assume that the experimental conditions provide a possibility for uniform 
application of mechanical load along the z direction of sample and that the 
sample is initially optically homogeneous and isotropic. Let the optical radiation 
propagate along the y direction. Then the inhomogeneity of mechanical stresses 
inside the sample can appear only due to a friction force between upper and 
lower sample surfaces and the intermediate cardboard layers. The maximal 
friction forces dFmax are proportional to the loading stress 3, 

 
max 3 ,dF k dS                                                                                (1.20) 

 
where k = 0.22 is the friction coefficient for the case of friction between the 
glass and the paper (see Ref. [52]), and dS denotes a small element of 
square of the sample surface. 

The friction forces mentioned are directed from the lateral faces of 
sample to the central z axis (see Fig. 1-6), thus leading to appearance of 
barrel-shaped distortion of the sample under the compressive stress 3. 

In the first approximation, one can take into account the following 
boundary conditions for this type of inhomogeneously stressed sample: 

(1) 1 = 2 = 0 on the four lateral faces of sample; 
(2) 1

max = 2
max = k3 on the upper and lower faces; 

(3) 3 = –1.93×106 N/m2 on all the faces in our experiment and 
simulations. 

 
Fig. 1-6. Barrel-shaped distortion of sample under a compressive stress 3. 
Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 
Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 
piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 
Physical Optics. 
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Let us use the approach presented in the work [53] for the superposition 

of three solutions, each of which being a solution of the problem for the 

elastic layer. The general solution of the Lame’s equation in the absence of 

volume forces can be written as a sum of three solutions for the 

displacement vectors u, v and w along the x, y and z directions, 

respectively. 

Simulations of the distribution of optical retardation have been 

performed on the basis of integral Jones matrix approach. The sample under 

analysis has been divided into 1000 (10×10×10) elementary (optically 

uniform) cells. The resulting Jones matrices Jij for each of 100 elementary 

beams (i, j = 1...10) have been obtained by multiplying the Jones matrices 

of 10 elementary cells, through which each elementary beam has passed 

along the y direction: 

 
10

1

.ij ij
n

n

J J                                                                                      (1.21) 

 

Here J𝑛
𝑖𝑗 is the Jones matrix of the elementary cell: 
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J              (1.22) 

 

𝑛
𝑖𝑗  represents the optical phase difference of the elementary cell, 

 

       
2 2

3
0 11 12 1 3 52 ,

ij
ij ijijij n

n n n n

d
n


    


       
      

           (1.23) 

 

and 
𝑛
 𝑖𝑗

 denotes the angle of orientation of quasi-principal axes of the 

optical indicatrix, 

 

 

   

5
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ij n
n ijij

n n




 
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
.                                                             (1.24) 

 

Because the Jones vector of the elementary beam at the sample output 

reads as 
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1

3

11
,  ,

2

ij
ij ij
out circ circij

E

iE

   
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E J E E                                         (1.25) 

 

the resulting phase difference for each elementary beam is determined by 

the ratio 

 

31
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    
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                                              (1.26) 

 

Then the optical retardation Δ = Г/2π can be calculated. 

To match the calculated distribution of the optical retardation with the 

experimental one, it has been taken into account that the pressure on the 

upper face of sample has the form of half-period of the sinusoid shifted to 

the left, which corresponds to non-ideal setting of the sample: 

 

2

3 1 .0,05sin sin 0,3 1 1
48

z c

x y x y
N

a b a b


  

           
   

      (1.27) 

 

In order to account for a barrel-shaped distortion, the stress on the side 

faces satisfies the boundary conditions 

 

1 2 30, 0,

2 1 30, 0,

0, 0.2 sin sin ,

0, 0.2 sin sin .

x a x a

y b y b

z y

c b

x z

a c

    

    

 

 

   

   

                       (1.28) 

 

Fig. 1-7 shows the simulation data for the piezo-induced optical 

retardation and orientation of optical indicatrix which takes into account a 

barrel-like deformation of the sample under pressure and inaccuracy of its 

setting with respect to the axis of pressure application. 
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a) b) 

Fig. 1-7. Maps of simulated optical retardation (a) and difference of experimental 

(see Fig. 1-5а) and simulated optical retardations (b). 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 

 

Fig. 1-7b indicates that the major part (91%) of the cross-section is 

correlated with the experimental results. Nonetheless, its small part (9%) 

still disagrees with the experimental data. It is probably caused by some 

warp of the top die in the upper left side of the sample, along with some 

sliding between the sample and the die. This can be accounted for while 

reducing the friction coefficient down to the value k = 0.1 (Fig. 1-8). In this 

case the experimental and simulation results have the similarity 98%. 

 

a) b) 

Fig. 1-8. Maps of simulated optical retardation (a) and difference of experimental 

(see Fig. 1-5а) and simulated optical retardations (b), as obtained after sliding 

between the sample and the die is taken into account. 

Adapted with permission from Vasylkiv, Y., Kvasnyuk, O., Krupych, O., Mys, O., 

Maksymuk, O., & Vlokh, R. (2009). Reconstruction of 3D stress fields basing on 

piezooptic experiment. Ukr. J. Phys. Opt., 10(1), 22–37. © O. G. Vlokh Institute of 

Physical Optics. 
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By analyzing the simulated mechanical-stress distribution, the following 

conclusions can be made: 

 

 loading of sample in a common manner gives rise not only to the 

component 3 of the mechanical stress tensor, but also to all the 

other components of this tensor; 

 the distribution of mechanical stress tensor components inside the 

sample is inhomogeneous; 

 the 3 component in the vicinity of geometrical center of the sample 

is one order of magnitude larger than the 1 component and two 

orders of magnitude larger than the other stress components; 

 the 3 component in the center of the sample reaches a value 26% 

higher than the stress actually loaded, while the deviation of this 

component within the sample volume amounts to 32%; 

 the deviations of the other stress components exceed hundred per 

cents and, moreover, the signs of the shift stress components are 

different in different parts of the sample. 

 

Let us assume that a non-expanded laser beam with the cross-section 

area ~ 2 mm2 propagates through the sample center parallel to the y axis. 

The optical phase difference for this light propagation direction is equal to 

65.7 deg. On the other hand, the optical phase difference for the case of 

homogeneously distributed mechanical stress (3 = –1.93×106 N/m2) can be 

calculated with the formula 

 

 3
0 11 12 32 / .dn                                                                 (1.29) 

 

It is equal to 60.1 deg. Hence, the actual value of the optical phase 

difference is smaller by 8.5% than the measured one. This means that in any 

practical piezooptic experiment, which does not take the distribution of 

mechanical stresses into account, the piezooptic coefficients determined 

experimentally differ from their actual values at least by 8.5%. 

Of course, only complete reconstruction of the stress field inside a 

sample and a consistent consideration of the stress components at each 

sample point would allow one to obtain a correct value of the piezooptic 

coefficient. In our case the latter is equal to (π11 – π12) = 1.59×10–12 m2/N. 

Summing up the results, we conclude that the greatest contribution into 

inhomogeneous distribution of mechanical stress originates from the 

imperfection of pressing surface of a poisson, the sample non-parallelism, 

and the friction between the poissons and the sample faces. At the same 
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time, the enormous errors appearing in typical piezooptic experiments are 

mainly caused by the friction forces that exist inside an intermediate contact 

layer between the upper and lower sample surfaces and the corresponding 

substrates, as well as by the misalignments of mechanical loading. The 

friction force leads to a barrel-shaped distortion of samples and the 

inevitable appearance of all components of the mechanical stress tensor, in 

spite of the fact that a uniaxial pressure has been initially applied. 

Unlike the simplest experiment with an isotropic medium discussed 

above, the distribution of mechanical stresses in the case of anisotropic 

media will be even more complicated, and the requirements for the loading 

device and the sample more strict. A possible way out of this situation is to 

use the technique described above to investigate the piezooptic effect in 

crystals. It allows for determining the degree of inhomogeneity of the 

spatial field of mechanical stresses inside the sample and increasing the 

accuracy of the piezooptic coefficients. 

It has been shown above that, instead of a uniform stress state which has 

traditionally been a priori supposed, uniaxial compressing of a 

parallelepiped-shaped sample results in a non-uniform distribution of 

mechanical stresses, with uncontrolled inhomogeneity. Therefore, it is 

almost impossible to obtain a uniform stress distribution when measuring 

piezooptic coefficients. Then it would be advisable to use such sample-

loading methods which lead to a non-uniform, though known beforehand 

mechanical stress distribution. 

1.4. Optimal geometric proportions of samples 

for piezooptic experiments 

As shown above, the mechanical stress tensor components are non-

uniformly distributed in any parallelepiped-shaped sample, even if a 

uniaxial compressing load is applied to this sample. 

The reasons why a complicated spatial distribution of the stress 

components appears lie in misalignments of sample loading and a barrel-

shaped distortion of rectangular samples. As a result, the error in 

determination of the mechanical stress tensor component 3 is about 30%. 

This error can be reduced down to ~ 14% by accurately aligning the sample 

in a pressure setup and carefully complying the condition of parallelism of 

the opposite sample surfaces. However, the barrel-shaped distortion, which 

appears due to the friction forces arising between the upper and lower 

sample surfaces and the appropriate substrates, cannot be eliminated 

completely. 
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To increase the accuracy of piezooptic experiments, we have suggested 

a number of methods for sample loading, which produce spatially 

inhomogeneous distributions of the stress components, of which coordinate 

dependences are known in advance. A diametrical compression of a disk, 

mechanical torsion of a rod and four-point bending of a bar are among these 

methods. They have turned out to be precise enough when determining the 

piezooptic coefficients. Moreover, some of them (e.g., the method of four-

point bending) enables one to determine all of the piezooptic tensor 

components. 

Nonetheless, these methods reveal a substantial practical disadvantage: 

they require a lot of samples with predetermined sizes and different 

crystallographic orientations. This necessitates growing of many (large 

enough) crystalline boules and utilizing complex procedures for manufacturing 

and precise processing the samples. 

Returning to uniaxial compressing of a parallelepiped-shaped sample, 

one may ask the following questions: 

 

 Could the loading-related errors of piezooptic experiments be 

minimized by optimizing a geometrical shape of a sample? 

 Which are those optimal geometrical parameters of the sample and, 

first of all, the ratio of its width to its length, which make the errors 

caused by mechanical stress inhomogeneity inside the sample small 

or, at least, smaller than the errors typical for the polarimetric or 

interferometric experiments themselves? 

 

One can try to solve this problem by means of simulations of the 

mechanical stress distributions in isotropic glass samples [54]. 

Let us consider a parallelepiped-shaped isotropic BK7-glass sample with 

a square cross-section (a = b) and different ratios of its width to height 

(a : c = 1:1, 1:3 and 1:5). Let the compression load be applied along the z 

axis. Assume that the loading force is uniformly distributed over the upper 
and lower surfaces and the substrates are covered by a layer of paper. Then 

the coefficient of friction between the glass and the paper is equal to 

k = 0.22 [52]. Obviously, the friction forces appearing between the upper 

and lower sample faces and the substrates covered by the paper should lead 

to a barrel-shaped distortion of the sample. 

The algorithm for solving the elastic equilibrium equation is similar to 

that used above. It has been described in detail in Refs. [50, 54]. Its 

application results in a spatial distribution of mechanical stress tensor 

components in the sample. Having obtained the distributions for all of the 

stress components, we have simulated the optical phase difference for the 


