
Statistical Modeling 
for Naturalists 



 



Statistical Modeling 
for Naturalists 

By 

Pedro F. Quintana Ascencio,  
Federico López Borghesi  
and Eric S. Menges 
 
 



Statistical Modeling for Naturalists 
 
By Pedro F. Quintana Ascencio, Federico López Borghesi  
and Eric S. Menges 
 
This book first published 2022  
 
Cambridge Scholars Publishing 
 
Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK 
 
British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library 
 
Copyright © 2022 by Pedro F. Quintana Ascencio,  
Federico López Borghesi and Eric S. Menges 
 
All rights for this book reserved. No part of this book may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, without 
the prior permission of the copyright owner. 
 
ISBN (10): 1-5275-7587-X 
ISBN (13): 978-1-5275-7587-5 



CONTENTS 
 
 
 
Acknowledgements ................................................................................. vii 
 
Foreword .................................................................................................. ix 
Luis Cayuela Delgado 
 
Preface ...................................................................................................... xi 
 
Chapter I .................................................................................................... 1 
Models in Ecology 
 
Chapter II ................................................................................................... 5 
Florida Scrub 
 
Chapter III ................................................................................................. 9 
Connecting Models with Data: A Quick Glance at Probability 
 
Chapter IV ............................................................................................... 31 
Bayesian Approaches: The Average Height of a Rare Plant 
 
Chapter V ................................................................................................ 50 
The Importance of Assumptions: Evaluating Reproductive Outputs 
 
Chapter VI ............................................................................................... 70 
The Use of Priors: Plant Height and Number of Tillers in Wire Grass 
 
Chapter VII .............................................................................................. 86 
Analyzing Binary Responses: Trade-offs between  
Reproduction and Survival 
 
Chapter VIII .......................................................................................... 100 
Random Effects of Populations: Revisiting Reproductive Outputs 
 
Chapter IX ............................................................................................. 113 
Count Data: Seeds per Fruit 
 



Contents 
 

vi

Chapter X .............................................................................................. 126 
Data with too Many Zeros: Reproductive Biology 
 
Chapter XI ............................................................................................. 138 
Model Selection for Mixed Models:  
Effects of Size, Reproduction, and Time-since-fire on Survival 
 
Chapter XII ............................................................................................ 153 
Spatial and Temporal Variation: Effects of Fire and  
Habitat Structure on Reproduction 
 
Chapter XIII .......................................................................................... 171 
Integration: Population Dynamics  
in Natural and Humanized Environments 
 
Chapter XIV .......................................................................................... 187 
Modeling Humanized Environments 
 
Bibliography .......................................................................................... 190 
 
Index ...................................................................................................... 198



ACKNOWLEDGEMENTS 
 
 
 
The main structure of this book took shape while teaching multiple 
iterations of statistical modeling classes to graduate students in the 
University of Central Florida, Orlando, Florida, USA, and short courses at 
El Colegio de La Frontera Sur, Chiapas, México, Universidad Técnica 
Particular de Loja, Loja, Ecuador, Universidad Regional Amazónica – 
Ikiam, Tena, Ecuador, and Universidad Rey Juan Carlos, Móstoles, Madrid, 
Spain. We are profoundly thankful to all participants for challenging our 
views. We thank James Angelo and Lina María Sánchez-Clavijo for their 
invaluable contributions. Reed Bowman kindly provided the front cover 
photo and Haoyu Li most of the black and white pictures. Conversations 
with Dave Jenkins, Carlos Iván Espinosa, Diego Vélez Mora, David 
Duncan, Betsey Boughton, Mario González Espinosa, Neptalí Ramírez 
Marcial, Brad Ochocki, Xavier Picó, Maria Paniw, Jesse Anaya, Aaron 
David, Will Crampton, Carl Weekley, Jennifer Navarra, Mark Burgman, 
Margaret Evans, John Fauth, Stephanie Koontz, David Nickerson, Fernando 
Quintana-Ascencio, José María Iriondo Alegría, Adrián Escudero, José 
Miguel Olano and Roberto Salguero Gómez were edifying. The support and 
advice of Eréndira Malinali Quintana Morales, Amarantha Zyanya 
Quintana Morales, Adrian Edward De Angelis, and Laura Cristina De 
Angelis have enriched this and many other ventures. Most especially, we 
are grateful for the unwavering patience and companionship of María 
Cristina Morales Hernández and Ericka Vanessa Correa Roldán without 
whom this book would not exist. We thank research assistants and interns 
at Archbold Biological Station and students at the University of Central 
Florida for their participation in collecting and organizing much of the data. 
The staff at Archbold Expeditions offered extensive aid and guidance. They 
are instrumental for the preservation of the ecosystems described in this 
book. We are particularly indebted to Luis Cayuela Delgado and Ian Biazzo 
for their extensive reviews and invaluable suggestions. They caught many 
errors and considerably improved the content of every chapter. Helen 
Edwards, our commissioning editor, provided continuous support during 
the final preparation of this document. We greatly celebrate the 
contributions of people that historically provided the conceptual basis 
allowing us to organize information, examine questions and guide our 
actions in efficient and creative ways. Any imprecisions and mistakes on 



Acknowledgements 
 

viii

the interpretation and implementation of the methods in this book are the 
responsibility and privilege of the authors. 



FOREWORD 
 
 
 
Statistical Modeling for Naturalists presents an outstanding introduction to 
different statistical methods focusing on the application of models for 
ecological problem-solving. It covers many statistical methods typically 
used in the field of ecology, such as linear models, generalized linear models 
and mixed modeling. The book provides access to datasets and code used 
for the different case studies. Two freely available, open-source software 
platforms are used in this book, R and Stan. R is one of the most popular 
programming languages for data analysis, statistical modeling, and 
visualization. Stan is a platform for statistical modeling and high-
performance statistical computation. Both R and Stan run on all major 
platforms (Linux, Mac, Windows) and can interface with other data analysis 
languages. 

But what makes this book unique compared with other published books 
featuring words such as “statistical” and “ecology”?  

First, it is written by ecologists, and therefore the emphasis is on natural 
history. This is pretty well illustrated throughout the book, where each 
chapter develops a case study in population ecology based on decades of 
research conducted by the authors at Archbold Biological Station in Central 
Florida, USA. Each case study represents a research question, which is 
carefully framed by ecological theory about the problem at hand. This puts 
statistics at the service of ecological problem-solving and makes the book 
particularly appealing for biology and environmental science students and 
practitioners. By the end of the book, you will have acquired a pretty good 
knowledge of the ecological functioning of plant populations in the Florida 
scrub ecosystem even if, as in my case, you have never set foot in it. 

Second, the book is based on a Bayesian approach to statistics; that is, 
statistical inference is based on the posterior distribution, which expresses 
all that is known about the parameters of a statistical model, given the data 
and existing knowledge. There are many advantages of the Bayesian 
approach, such as the possibility to combine previous with existing 
information to address the research question or the ease of error 
propagation, which is making the Bayesian paradigm gain tremendous 
momentum in statistics and its applications, including ecology. Yet, the 
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Bayesian approach might turn back many students who have been trained 
in the use of frequentist methods. But do not panic! The book provides very 
clear explanations about the way models are constructed and how to 
interpret the results. So regardless of you having received previous training 
either as a Bayesian or a frequentist, you will find the book very easy to 
follow. I must admit I am considering turning Bayesian myself after reading 
the book! 

The way the book is structured makes it easy for readers to find good recipes 
for framing and analyzing their own research questions based on the 
presented case studies. But reading the book from beginning to end also 
gives an added value to the reader, as problems are presented in increasing 
complexity and quite often based on the results found in previous chapters. 
Statistical Modeling for Naturalists is worth reading. It offers insightful 
clues for conducting sound ecological research to students, practitioners, 
and researchers in different stages of their academic careers. 

Enjoy the reading! 

Luis Cayuela 
Department of Biology and Geology, Physics, and Inorganic Chemistry 

Universidad Rey Juan Carlos, Spain 



PREFACE 
 
 
 

This book aims to introduce the reader to captivating and useful methods 
for statistical data analysis and basic mathematical modeling. It is directed 
at people with rudimentary/intermediate statistical and mathematical 
instruction. It is neither a book for the beginner nor the specialist. For the 
former, we make our best efforts to explain every topic in the book in terms 
that are approachable to a novice. For those interested in mathematical 
demonstrations and programming specifics, we do our best to redirect them 
to more sophisticated sources. The book is written to appeal to naturalists 
like us. To this end, we focus on the questions and considerations that guide 
our modeling choices. We recapitulate three decades of ecological work on 
the Florida Scrub at Archbold Biological Station in Central Florida, USA. 
Each chapter follows two threads: one mathematical/statistical and the other 
ecological. This approach has been successful in retaining the attention of 
graduate students who are more interested in ecology and evolution than in 
data analysis and modeling. We are convinced about the prominence of 
mathematical and statistical thinking in producing robust, reproducible, and 
relevant science. But we are also persuaded of the need to constantly relate 
our models to the concepts being evaluated. The approaches in this book 
require code writing, so we use freely available software – R and Stan. We 
find these platforms to be among the best communitarian projects in recent 
decades, transforming the use and progress of mathematical and statistical 
applications. We maintain an associated website (https://github.com/ 
StatsForNats/Book) where the reader can access all of the data and code 
used in the book. We must remark, however, that this book is not a guideline 
on either language. We recommend the reader to use the suggested literature 
to complement the material presented here. Most important, we employ 
Bayesian inference. Bayesian models are flexible and powerful but have 
been overlooked, mostly due to computational limitations and lack of 
training. Bayesian analyses formalize the process of evaluating information 
involved in the generation of knowledge, and they are particularly suited for 
the complex data used in ecological studies. With this book we intend to 
help make these tools accessible to naturalists and other people interested in 
understanding ecological mechanisms. 

 





CHAPTER I 

MODELS IN ECOLOGY 
 
 
 

 
 

"All models are wrong, but some are useful”  
     – George Box 

Relevant notions 

Models allow us to explore complex phenomena and develop our 
understanding. They do this by offering a tradeoff – we must focus on a few 
aspects while excluding many others. Which factors we choose to include, 
and which to exclude, depends on what it is we are trying to understand. A 
model airplane might be useful to evaluate aerodynamic properties but it 
ignores the propulsion system.  

The notion of models as simplified representations of complex reality is 
very much present across science. Such a vague definition of scientific 
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models is purposeful. First, it allows us to recognize that models are 
ubiquitous to our way of thinking and can, therefore, take many forms. A 
scientific model can be anything from a visual model (such as a flowchart) 
to a computer program combining complex mathematical functions. In this 
book we deal mostly with statistical models, in which we propose a data-
generating process and then estimate its parameters empirically. Regardless 
of its form, the purpose of any model is to make the phenomena in question 
easier to understand. The corollary of this statement is that we should not 
make models more complicated than they need to be. Second, this definition 
helps us to acknowledge the limitations of any given model. A frequent 
aphorism in statistics states that “all models are wrong, but some are useful.” 
We prefer to see the glass half full and say that no model is fully correct. 
Models can provide different insights and help us to identify important 
information, but we must not feel guilty of letting go one model in favor of 
another. Finally, recognizing models as simplified descriptions of reality 
forces us to acknowledge that many assumptions are necessary in their 
construction. Model assumptions are the topic of Chapter V, but we want to 
emphasize here the importance of keeping them in mind and validating them 
whenever possible. 

Within ecology, we make inaccurate observations on phenomena which 
arise from a myriad of interacting variables that change continuously. The 
size of a plant, for instance, is determined by multiple environmental factors 
(such as sunlight, water, and nutrients), biotic interactions (including 
diseases and predation), physical, chemical, and mechanical constraints, and 
the individual genetic background and ontogeny. The timing and intensity 
of each of these variables are affected by an increasing number of other 
factors. 

Realistically, our studies can only deal with a small number of those factors, 
and models are the tools we use to help us focus on those relations. This is 
not to say that we randomly pick variables from a hat and use models to see 
whether they are helpful in explaining our observations. Our choices are 
biased and informed by our motivations, education, prior experiences, and 
ideas (Larson 2011). A butterfly flapping its wings might affect the initial 
conditions of a system sufficiently to help bring about a hurricane, but it 
would be silly for meteorologists to go around recording flying butterflies 
to forecast hurricanes. Their focus on data collected from weather tracking 
technology is well justified. 

In this book we explore statistical approaches to evaluate ideas using data 
as arbitrator. When we propose models to formalize hypotheses (suggesting 
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possible explanations of our observations), we require a way to substantiate 
them. One possible approach is through classical frequentist statistics. 
However, we agree with Howson and Urbach (1989) that the Newman-
Pearson/Fisher approach fails to reach this goal in many realms. Their 
aspiration of objectivity, supposedly intended to avoid using degrees of 
belief, culminates in several paradoxes. These start with the problematic 
definition of “accepting” and “rejecting” a hypothesis since accepting it 
does not mean it is true and rejecting it does not imply it is false. The 
decision is arbitrary on the choice for the null hypothesis and its frequent 
lack of relevance for the question of interest. In any case, attempting to 
validate a hypothesis with the falsification of a null hypothesis does not 
inform how much the single alternative hypothesis compares to other logical 
explanations (Aho et al. 2014). Since they rely exclusively on the data at 
hand, ignoring any prior information, they are poorly suited for evaluating 
complex hypotheses and studies with limited data. There is an unwarranted 
belief in the certainty of a long-run frequency associated to the model 
parameters. Importantly, we believe the confidence placed in an arbitrary 
threshold as a single criterion when evaluating evidence is unjustified, and 
leads to poor inference (see Nuzzo 2014 and Wasserstein and Lazar 2016). 

An alternative approach (the one embraced in this book) relies on the use of 
Bayesian inference. This approach ranks hypotheses within a spectrum of 
degrees of certainty in the light of evidence. It uses information available 
independently of a study alongside the likelihood of the data at hand to 
generate posterior probability distributions (see Chapter III). The posterior 
distributions from one study become available as prior information for 
future studies. Another advantage of Bayesian inference is that it considers 
model parameters as random variables instead of assuming they are true, 
fixed quantities (Ellison 2004). We find this long-standing philosophical 
tradition to be a satisfactory and robust way to evaluate ideas. It is a clear 
method for estimating model parameters and evaluating the degree of their 
uncertainty. It offers a probabilistic measure of the relative confidence we 
can have in competing models.  

Touchon and McCoy (2016) documented that, while there has been a clear 
increase in the use of Bayesian statistics in the mainstream ecological 
literature, most doctoral programs in the United States still do not cover 
these approaches. In this book, we introduce Bayesian probabilistic 
frameworks as tools to create and evaluate models with the hope of reducing 
this disparity.  
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In his brilliant contribution, “Remedies for a scientific disease”, Mark 
Burgman warns against a propensity among scientists to feel overly 
confident in our predictions. Since most ecological studies do not even 
attempt to determine if the intensity of monitoring is sufficient, there is a 
great risk of overlooking effects when the data are too limited. Often, many 
scientists wrongly interpret a lack of statistical effects as a lack of “real” 
effect. This is particularly damaging when assessing environmental impacts 
since the costs of false negatives can lead to real problems being 
disregarded. Burgman advocates for the use of the precautionary principle, 
weighting the costs of false positives and false negatives when evaluating 
the results of our analysis. We concord with him that one of the best 
safeguards against irrational interpretation is the use of images of the data 
and models’ predictions in the form of scatterplots and histograms, and 
illustrations of estimates of associated uncertainty. With these ideas in mind, 
we try to present extensive images depicting the level of support for our 
models and encourage the reader to do the same.        

Our model system is the Florida scrub and, in particular, an endangered and 
rare plant species inhabiting this ecosystem, both described in Chapter II. 
We use these model systems to introduce what we believe are powerful 
concepts that can help in developing descriptive statistics, inference, and 
modeling. We build these models as examples of tools to gain an 
understanding of ecological phenomena in this ecosystem. Using case 
studies dealing with contemporary ecological theories, we present relevant 
statistical concepts and procedures used to build models aimed to improve 
their understanding.   



CHAPTER II 

FLORIDA SCRUB 
 
 
 

 
 

“The job of an ecologist is like putting together a giant puzzle, only all the 
pieces are hidden and the puzzle keeps changing” 
                                          – Warren Abrahamson 

 
As natural ecosystems go, Florida scrub does not have a high profile. It is 
not majestic like a redwood forest, iconic as the Everglades, or as romantic 
as a midwestern grassland. But still, it is a beautiful, interesting, and at times 
confounding landscape. It is also the source of data used in this book. Here 
is a short description of Florida scrub. 

Florida scrub is a shrubland, dominated by woody plants with multiple 
stems. It is not a forest (despite some prior categorizations of it as “sand 
pine scrub” or “sand pine forest”). The dominants are mainly shrub oaks, 
dwarf palmettos, and shrubs in the blueberry family. Elsewhere in the 
landscape, there are natural forests in Florida, which have the abundant 
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precipitation necessary to support tree growth. But under most 
circumstances, Florida scrub has only scattered (or no) trees and is not 
routinely invaded by trees. 

Florida scrub has sometimes been characterized as a desert, in part because 
there are many xeromorphic characteristics in its plants. These include small 
evergreen leaves that are thick and waxy, and stems that are often spiny. 
These traits are often assumed to be a function of low water availability but 
can also evolve in response to nutrient deficiency or herbivory (see Chapter 
III). Florida has no shortage of rain (although it is strongly seasonal) but the 
sandy soils supporting Florida scrub are extremely low in nitrogen, 
phosphorus, and other nutrients. With added nutrients, both planted citrus 
and introduced grasses can thrive on these soils. But, left undisturbed by 
humans, Florida scrub is often the result. 

Most of Florida is affected by periodic, natural fire. The high productivity 
during the rainy season, the pronounced dry season, frequent lightning, and 
flammable vegetation all contribute to fires that can be frequent or intense. 
Florida scrub, occurring on less productive sites than more mesic 
vegetation, burns relatively infrequently (say every 10-30 years) and 
intensely. On the other hand, grass-dominated habitats like wiregrass-
dominated flatwoods (see Chapter VI) burn more frequently and less 
intensely. The interplay between fire and vegetation is complex and occurs 
at multiple spatial scales (see Chapters XI and XII). 

Most plants in Florida scrub survive fires, resprouting from below-ground 
storage organs such as rhizomes. The resprouting is rapid but varies with 
the species, prior plant size, and season. Types of Florida scrub (e.g., 
scrubby flatwoods) dominated by resprouting oaks and palmettos rapidly 
regain their height and density in a few years or decades. A few plants take 
advantage of the short-term openings (gaps) in the resprouting vegetation to 
complete their life cycles. 

Other plants use dormant seeds to deal with periodic fire. Post-fire 
germination and growth can be rapid and allow species of lesser competitive 
abilities to survive in the landscape. The seeds that provide the new start are 
dormant in the soil and cued to germinate by increased light or fire cues 
such as smoke or heat.  

One of these obligately seeding plants is Highlands scrub hypericum, 
Hypericum cumulicola, the source of much of the data in this book (see 
Chapters IV-V and VII-XIII). This small herbaceous plant can produce 
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seeds as early as its first year of life (see Chapter VIII). It populates the soil 
with dormant seeds that can germinate in high numbers after fire, even after 
many years of quiescence below ground. Plants do particularly well in the 
years after fire, and populations grow rapidly in size during the first decade 
after burns. However, plants and populations begin an inexorable decline 
after this first decade, often disappearing above ground until the next fire 
(see Chapters XI and XII). Increasing competition with shrubs partially 
explains this decline. 

Hypericum cumulicola occurs mainly in a type of scrub termed Rosemary 
scrub, named after Florida rosemary (Ceratiola ericoides). This shrub is 
different from oaks and palmettos in that it is killed by fire. Florida rosemary 
accumulates dormant seeds in the soil, much like H. cumulicola. After a 
fire, its seeds also germinate, but on a delayed schedule relative to 
herbaceous plants like H. cumulicola. This delay gives the smaller plants a 
head start. But these diminutive individuals are likely to do well only where 
there are large gaps between the growing Florida rosemary plants. As time 
marches on, these gaps shrink as Florida rosemary and other shrubs expand 
their canopies and root systems. With enough time between fires, the gaps 
become too small to support the less competitive species. 

Florida scrub is full of endemic plants and animals, species that are found 
only in a small area. Many of the rare plants are specialists for rosemary 
scrub and for gaps (H. cumulicola is an example). The biodiversity of this 
landscape is dependent upon fire and the creation and maintenance of gaps 
among the dominant shrubs. This relationship is also true for some iconic 
animals of Florida scrub and other upland ecosystems. Florida scrub jays 
need bare sand to cache acorns and few pines that harbor predators. Gopher 
tortoises need open areas to forage on herbaceous plants that are most 
abundant following fires.   

Florida Rosemary scrub occurs as relatively well-defined patches of 
different sizes within a matrix of wetlands, scrubby flatwoods and flatwoods 
which have higher moisture availability and are more heavily covered by 
vegetation (Chapter XI). To colonize other Florida scrub suitable patches, 
endemic plants and animals in Florida rosemary scrub, need to disperse 
through large tracts of unsuitable habitat. The spatial arrangement of the 
scrub patches determines the probability of occurrence of many of these 
endemics, with large and aggregated patches having the highest 
probabilities of occupancy (Chapter XII). These endemic species rely on 
varying compromises between dormancy and dispersal to take advantage of 
the temporal occurrence of optimal habitats a few years after fire, while also 
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minimizing the consequences of suboptimal habitat development associated 
with post-fire recovery. Their chances of persistence in the landscape are 
influenced by spatial heterogeneity and frequency of disturbance.     

Conservationists and land managers are well aware of the key role of fire in 
promoting biodiversity in Florida scrub (and other Florida ecosystems) and 
apply prescribed fire routinely. Robust debate ensues among land managers 
about the frequency, intensity, seasonality, and patchiness of burns. For 
example, patchy burns are thought to be important in allowing the co-
existence of species with different optimal requirements for different 
aspects of the fire regime. Unburned patches are key refugia for species that 
are tolerant of dense vegetation but lacking the ability to resprout and do not 
form seed banks to recover from fire. 

Unfortunately for the biota, the expanding human population in Florida has 
eliminated a great deal of natural habitat, fragmented the remaining pieces, 
and successfully reduced the occurrence of natural fire across the landscape. 
Remaining habitat fragments, if unmanaged, become overgrown with few 
suitable areas for many plant and animal species. Diversity decreases and 
the narrowly specialized organisms are particularly likely to disappear. 
Some species, like H. cumulicola, can persist along edges such as sand roads 
and fire lanes. However, these anthropogenic habitats are not the same as 
less disturbed scrub, with effects on the demography of many species 
(Chapter XIII). 

Although only about 15% of Florida scrub on the Lake Wales Ridge has 
been spared from development, the remaining landscapes, when managed 
with fire, are supporting a vast array of bacteria, fungi, algae, plants and 
animals, and a fascinating mixture of adaptations and interactions that has 
received a great deal of study and will receive continued attention from 
scientists, conservationists, and nature-lovers.   

 



CHAPTER III 

CONNECTING MODELS WITH DATA:  
A QUICK GLANCE AT PROBABILITY 

 
 
 

 
 

“Extraordinary claims require extraordinary evidence.” 
     – Carl Sagan 

Probability: A framework for model arbitration 

If models are simplified descriptions of reality, multiple models might be 
proposed to describe the same phenomena. So, a valid and pertinent 
question arises: how do we decide which models to favor? In the book “The 
Ecological Detective”, the authors Ray Hilborn and Marc Mangel (1997) 
make a strong case for letting data arbitrate between competing models. 
Fitting models to data allows us to judge their relative merit. This seemingly 
straightforward task can be more challenging than anticipated, as we will 
see throughout this book. It requires us to be mindful – ask pertinent 
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questions, perform diagnostic tests, keep track of our assumptions, and, 
most difficult, acknowledge our ignorance.  
 
The idea of allowing data to judge our models is a powerful and appealing 
one, but every arbitrator needs some guideline or framework to settle 
disputes. In this book, the underlying framework used to connect data to 
models is provided by probabilities. 
 
Although there is still disagreement regarding the most useful definition of 
probability, it is widely accepted that it relates to how likely an event is to 
occur. It is defined as the expectation of a particular outcome considering 
all possible outcomes. A major disagreement among competing frameworks 
is the basis of this expectation: whether it is obtained from a sample 
representing outcomes of a long-term (essentially infinite) frequency 
distribution or if it constitutes a degree of belief that must be updated after 
new data. The probability of an event is represented by a number between 
0 and 1 – where 0 signifies the event is impossible and 1 that it always takes 
place. When taken as a whole, probabilities provide a way to describe 
uncertainty. A very instructive account on probabilities can be found in 
Hilborn and Mangel (1997). Below we discuss some relevant concepts. 

Probability of finite events 

In order to reach a definition of probability that is applicable to the purposes 
of this book, let’s start by looking at a series of simple Venn logical 
diagrams representing the probability of finite events.  
 

 
Figure 3.1: Space of event A 
 
If the area of the oval A in Figure 3.1 is thought of as representing all 
instances of event A, and the area of the rectangle Ω as representing all 
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instances of any possible event (including event A), the probability of A can 
be described as:  

𝑃 𝐴
  

  
                      (Equation 3.1) 

 
We could think, for example, of Ω as all instances of Hypericum cumulicola 
plants and A as all instances of adult H. cumulicola defined as a plant older 
than a year. The remaining blank space in rectangle Ω represents all 
instances of finding recently recruited plants (< one year old). These two 
events are mutually exclusive. Now that we have a simple definition of 
probability, we need to turn our attention to another important concept: 
conditional probability. To do so, we need to look at two sets of events that 
might occur simultaneously (not mutually exclusive). 
 
In Figure 3.2, there are two overlapping ovals (A and B), which represent 
different events that can potentially occur at the same time. At Archbold 
Biological Station chances of damage by mammals (mostly rabbits and 
deer) in H. cumulicola are very variable (10-90%), decreasing with time-
since-fire and increasing with the number of co-occurring conspecifics in 
the immediate area (Brudvig and Quintana-Ascencio 2003). Imagine that Ω 
represents all H. cumulicola plants in a Florida Rosemary scrub patch. Oval 
A represents all instances of plants with evidence of consumption by 
mammals in this patch, and oval B all instances of dead plants. In this case, 
there are 4 possible outcomes: instances of damaged H. cumulicola live 
plants (the non-overlapping section of A); instances of intact H. cumulicola 
plants that died (the non-overlapping section of B); instances of damaged 
dead plants (the overlap between both ovals); and instances of intact live 
plants (the remaining blank space).  
 
Before turning our attention to conditional probabilities, we need to define 
joint probabilities, which pertain to the interaction between variables. This 
probability can be visualized as the area of the overlapping section divided 
by the total area of the rectangle Ω (Figure 3.2). 
 

𝑃 𝐴 ∩ 𝐵  = the probability of A and B happening simultaneously 
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Figure 3.2: Overlapping events 
 
If the probability of a plant dying was independent of damage (i.e., 
consumed plants have the same mortality as intact plants) we would call 
these two sets independent events, and 𝑃 𝐴 ∩ 𝐵  would simply be the 
multiplication of P(A) and P(B).  
 
You might suspect, however, that the probability of a plant dying is higher 
for damaged plants. If that were the case, we would not be able to simply 
multiply P(A) and P(B), because P(B) – the probability of any plant dying 
– combines information from both damaged and intact plants. So, how do 
we know if two events are independent? For this we need to look at 
conditional probabilities. 
 
Let’s say event A has already taken place (we found a damaged H. 
cumulicola), we want to know the probability that this plant is also dead. 
The notation for this is P(B|A), or the probability of B given A. The first 
thing we need to do is recognize that our event space has changed. Any area 
representing intact plants (both dead and alive) is no longer considered. In 
other words, we would crop Figure 3.2 and consider only oval A and the 
overlapping section between ovals B and A (Figure 3.3). 
 

 
Figure 3.3: Space of B given A 
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The probability of B given A, then, can be visualized as the area of the 
segment of B called B’ divided by the area of A. 
 

𝑃 𝐵|𝐴
  

  
                      (Equation 3.2) 

 
From looking at the sequence of logic diagrams, we can see that, the area of 
A is equivalent to P(A) in the original space Ω, and the area of B’ is 
equivalent to P(A ∩ B). Therefore, we can rewrite the probability of B given 
A as: 

 
𝑃 𝐵|𝐴

∩                       (Equation 3.3) 
 
 
Following the same logic, we can define the probability of A given B 
(having found it dead, what is the probability that the plant was damaged?). 
The equation is simply: 
 

𝑃 𝐴|𝐵
∩                       (Equation 3.4) 

Bayes’ theorem 

As we saw earlier, calculating joint probabilities for non-independent 
variables is not trivial. So, calculating a conditional probability would still 
be difficult. We could instead define one conditional probability in terms of 
the other one. From equation 3.4, then, we can solve the joint probability 
𝑃 𝐵 ∩ 𝐴  
 

𝑃 𝐵 ∩ 𝐴 𝑃 𝐴|𝐵  𝑃 𝐵                       (Equation 3.5) 
 
Since the overlap between A and B is the same as that between B and A, P(B 
∩ A) is the same as P(A ∩ B). So, replacing P(A ∩ B) in equation 3.3, we 
obtain: 
 

𝑃 𝐵|𝐴
|                      (Equation 3.6) 

 
This last equation is called Bayes’ theorem. As we will see in a subsequent 
section, this is a powerful tool that provides a way to revise our beliefs 
(usually called updating probabilities) given new evidence. Returning to our 
previous example, calculating the mortality of damaged plants might be 
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difficult because it is hard to estimate how many damaged plants beat the 
consequences of the herbivory and survived. We could readily get the 
overall mortality – P(B) – from the literature, and conduct a survey to 
estimate the probability of a plant being damaged – P(A) – as well as the 
probability of a dead plant being damaged P(A|B). Using Bayes’ theorem, 
we could now calculate P(B|A), or the mortality of damaged plants. 

Expanding the scope 

So far, we have dealt with binary events as realizations of variables that 
could take one of two values (present or absent, infected or not infected). 
Random variables, however, may also take more complex forms in which 
events can have multiple realizations, or even infinite, each with its own 
probability. In these cases, it may not be practical or even possible to specify 
each probability individually. To describe these probabilities, then, we can 
make use of probability distribution functions. The last section of this 
chapter will present several useful probability distributions and examples of 
how they can be used to model real data.  
 
Probability distributions are often divided as either discrete or continuous 
depending on how the variable we want to model is measured. Anything 
that is counted as integers (such as the number of plants in a population) is 
considered as discrete, while anything that is measured using units that can 
be divided into infinitely smaller parts (such as weight) is considered as 
continuous. It is important to remark that whether a variable is discrete or 
continuous is contingent on how we perform the measurement rather than 
the nature of the trait. For instance, we could represent the foliage of a tree 
as the number of leaves (discrete) or as the total area of the leaves 
(continuous). The key point to bear in mind is that probability distribution 
functions are themselves models used to describe a more complex reality 
and, therefore, are not set in stone. 
 
In describing discrete random variables, we can use probability mass 
functions (PMF) to compute the probability that the variable takes a 
particular value (xi), so that:  
 

𝑓 𝑥  𝑃 𝑋 𝑥           (Equation 3.7) 
 

The actual form of the function 𝑓 𝑥   will change depending on the discrete 
distribution being described, but all PMF share a few characteristics. First, 
the values of the PMF for each potential xi must be between 0 and 1, as they 
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represent probabilities. Second, the sum of the probabilities for all 
realizations of 𝑥  must be equal to 1.  
 
Another way to describe the distribution of a discrete variable is through a 
cumulative distribution function (CDiF) which is the summation of the PMF 
and computes the probability of a variable being equal to or less than a 
particular value (xi), so that:  
 

𝑓 𝑥  𝑃 𝑥 𝑥 ,  for any 𝑥 ∈ 𝑅     (Equation 3.8) 
 
To provide a simple example of how the PMF and CDiF relate to each other, 
let’s consider the typical case of a fair six-sided die. The assumed 
probability of any number in a single roll is given by the PMF: 

𝑓 𝑥  1/6       (Equation 3.9) 
 

which essentially means that P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = 
1/6. The corresponding CDiF for this example would be: 
 

𝑓 𝑥  ∑ 𝑖 ∗ 1/6       (Equation 3.10) 
 
which means that the function will result in the sequence {1/6, 2/6, 3/6, 4/6, 
5/6, 6/6}. Individual values of the CDiF cannot be less than 0 or more than 
1, but they always remain the same or increase. 
 
When referring to continuous random variables, the probability for a single 
value is not defined since its mass is infinitely small, but the probability of 
an interval can be obtained with the integration of a probability density 
function (PDeF).  

 
𝑓 𝑥         (Equation 3.11) 

 
A cumulative density function (CDeF) can also be used to describe 
continuous distributions of probabilities. They are defined in similar ways 
as for discrete variables and retain the same properties. The main 
characteristic of a PDeF is that the total integral must be 1. Just like the 
CDiF for a discrete variable is obtained through the summation of a PMF, 
in the case of continuous variables, the CDeF can be obtained through the 
summation of a PDeF. 
 
𝑓 𝑥  𝑃 𝑥 𝑥 ,  for any 𝑥 ∈ 𝑅    (Equation 3.12) 
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Bayesian inference 

In this book we approach statistical inference through a Bayesian 
framework. In order to describe what this entails, and provide reasons for 
our choice, we will briefly discuss the approach used in classical hypothesis 
testing: the frequentist framework. 
 
In frequentist inference, the parameters of a model are treated as fixed, even 
if unknown, and no probability can be associated with them. Any 
hypothesized value of a parameter cannot be assigned a probability, so 
statistical significance is determined by looking at how likely the data are 
under a null hypothesis (usually stated as the probability of the parameter 
taking the value of zero).  
 
This notion of likelihood of the data given a parameter value is central to an 
approach called maximum likelihood estimation (MLE), in which we 
estimate the parameters of a model by finding the values that maximize the 
likelihood of the data. In other words, if we consider a range of potential 
values for the parameters of a model, which ones are more likely to produce 
the data in our sample? 
 
While it is true that MLE is a powerful approach rooted in probability 
theory, it still fails to assign probability distributions to parameters. In other 
words, the likelihood function of a parameter is obtained by conditioning 
the data to different potential values of the parameter and, therefore, it is not 
a probability distribution function (i.e., it does not integrate to 1). In 
practical terms, this means that we cannot describe the probability of the 
hypothesized model parameter value given the data. Yet, this is our stated 
goal in ecological modeling. 
 
So, how can we go from calculating the probability of the data given a 
parameter – P(x|𝛿) – to calculating the probability of a parameter given the 
data – P(𝛿|x)? Luckily for us, Bayes’ theorem provides an elegant way to 
connect these two conditional probabilities, so that: 
 

𝑃 𝛿|𝑥
|        (Equation 3.13) 

 
This application of Bayes’ theorem is known as Bayesian inference, and it 
presents many advantages. We can start identifying some of those 
advantages by looking at the different parts of this equation. The term 
𝑃 𝛿|𝑥  is commonly known as the posterior and, as stated, represents the 
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probability distribution of the parameter given the data. The term 𝑃 𝑥|𝛿  is 
simply known as the likelihood. The new term that appears, P(σ), is known 
as the prior, and it represents any knowledge that we possess a priori 
regarding the probability distribution of the parameter. The use of prior 
information represents one of the main advantages of Bayesian inference 
and will be treated more carefully in Chapter V. The last term – 𝑃 𝑥  – is a 
normalizing factor that warrants that the posterior is in the range between 0 
and 1. 
 
Finding the posterior analytically can only be done in simple cases, for 
instance by calculating the mean when the shape of the probability 
distribution of variance can be clearly identified. For most parameters which 
cannot be solved analytically, there are several ways to estimate their 
posterior probability distributions. Some rely on assumptions regarding the 
shape of the posteriors. More flexible procedures that do not require any 
assumption of distribution usually take much longer and require 
computation. The estimation of the posterior distribution with these 
approaches is accomplished using a stochastic process known as Markov 
Chain Monte Carlo (MCMC) estimation (Hobbs and Hooten 2015). The 
development of tools to obtain reliable and efficient MCMC estimates is 
progressing at a fast rate. In the analyses we develop in this book, we depend 
on the available software STAN (mc-stan.org) to estimate the posterior 
distributions of our parameters. Discussion on how it works is beyond the 
scope of this book and we encourage the readers to better inform 
themselves. There are several excellent sources that explain how these 
procedures work (for example, Hobbs and Hooten 2015, McElreath 2016). 

Modeling randomness: probability distributions 

There are many probability distributions that can be used to describe data. 
Selecting which one to use in our models is a process that requires careful 
consideration of many questions regarding the nature of the phenomenon 
and how it is measured. For instance, we should consider what range and 
types of values the data can take. As mentioned earlier, one of the main 
ways to classify distributions is by looking at whether they are discrete or 
continuous. Hilborn and Mangel (1997), Matthiopoulos (2011) and Dietze 
(2017) provide excellent introductions to these distributions. Here, we 
briefly present a non-exhaustive list of distributions that we have found to 
be useful and then show an example of how we might select among them. 
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Discrete distributions 

► Binomial 
 
The binomial distribution is used to represent the incidence of an outcome 
out of a total number of independent trials (called Bernoulli trials), where 
only two outcomes are possible. We might use it, for instance, to describe 
the proportion of reproductive plants or the survival probability from one 
season to the next. The PMF for a binomial distribution is: 
 
𝑃 𝑋 𝑘 𝑝 1 𝑝      (Equation 3.14) 

 

 
Figure 3.4: Probability mass functions (left) and cumulative distribution functions 
(right) for binomial distributions with varying levels of p and n 
 
where k is the number of times the outcome of interest occurs, n-k the 
number of times that the alternative outcomes occur, n the total number of 
outcomes and p is the probability of the focal outcome. The CDF would 
simply be the iterative sum of values between 0 and n, so that: 
 
𝑃 𝑋 𝑘 ∑ 𝑝 1 𝑝      (Equation 3.15) 

 
The mean of the binomial distribution is np while its variance is np(1-p). 
The shape and the location of the binomial functions on the abscissa (x axis), 
then, will depend on the values of p and n (Figure 3.4). 
 
 


