Indian Placer Deposits
Indian Placer Deposits

Edited by
R. Dhana Raju
Dedicated, with reverence, to

(i) the late Dr. G. Prabhakar Rao, former Regional Director, AMD – a pioneer in the exploration and evaluation of the placer Heavy Mineral Sand deposits in India and whose team-work laid the foundation leading to the establishment of India’s major resource base of the Heavy Minerals in Mineral Sands and their industrial-scale utilisation;

(ii) the late Dr. K.M.V. Jayaram, former Deputy Director, AMD for his dynamic leadership in planning, evaluation and development of mineral technology for the recovery of the Rare Metal and Rare Earth (RM-RE) minerals to meet, indigenously, the major requirement of the RM-REs for the Indian nuclear programme; and

(iii) the Global Healthcare Personnel, who by their dedicated service, have both served and saved many lives, even with some sacrificing their own lives, during the Covid-19 pandemic, which has already taken > 3.5 million lives (Nature Briefings, June 07, 2021).

The Editor of and Contributors to the Volume, “Indian Placer Deposits”.

The syllable Aum has three phonetic components. ‘A’, ‘U’, ‘M’. It represents the three states of consciousness: waking state, dream state and sleep state.

This book is meant for educational, learning and research purposes. The editor and the contributors to different chapters of the book have taken all reasonable care to ensure that the contents of the book do not violate any existing copyright or other intellectual property rights of any person in any manner whatsoever. In the event they have been unable to track any source and if any copyright has been inadvertently infringed, please notify the publisher in writing for corrective action.
CONTENTS

Preface ... xviii

Acknowledgements .. xxii

List of Figures .. xxiii

List of Tables .. xxxi

Chapter One .. 1

Placer Deposits – An Overview

R. Dhana Raju

Abstract ... 1
Introduction ... 2
Historical and Economic Aspects of Placers .. 4
Nature of Placer Minerals ... 6
Geology of the Source Rocks for Placers ... 8
Conditions for and Principles of the Formation of Placers 9
Classification of Placers ... 14
Placer Locations .. 20
Geomorphological Setting of Placer Deposits .. 21
Economically Important Features of Placer Deposits 22
Important Placer Deposits in the World .. 32
Exploration of Placer Deposits .. 51
Mining of Placer Deposits .. 59
Refilling-Recycling-Rehabilitation-Reuse (R-4) and Environmental Concerns
during Placer Mining and Processing ... 66
Conclusions .. 69
Acknowledgements .. 70
Bibliography ... 71
About the Author ... 82
Chapter Two .. 83
Placer and Other Types of Gold Occurrences in the Wayanad–Nilambur
Valley, SW India: An Overview
Prabhakar Sangurmath

Abstract .. 83
Introduction .. 84
Principles of Placer Gold Formation .. 85
Previous Studies on Gold in Kerala and Tamil Nadu 86
Physiography, Geomorphology and Climate 86
Geological Setting .. 87
Gold Mineralisation ... 89
Gold Potentiality in the Wayanad – Nilambur area 94
Discussion .. 96
Acknowledgements .. 100
Bibliography .. 100
About the Author ... 104

Chapter Three .. 106
Inland diamond placer deposits of India and their source rocks
S.V. Satyanarayana, K. Sivaji, S.S. Nayak, K.V. Suryanarayana
and R. Dhana Raju

Abstract .. 106
Introduction ... 107
Salient Aspects of Diamonds and Their Host-Rocks 109
Genesis of Diamonds .. 110
Diamond – Host-Rocks .. 112
Sedimentary Rocks (Recent and Palaeo-Placers) 112
Igneous Rocks (Kimberlites and Lamproites) 112
Geographic Distribution of the Primary Rocks 113
Age of the Primary Rocks ... 113
Morphology of the Pipe Rocks .. 114
Mineralogical and Petrological Characteristics 114
Chemical Composition .. 116
Diamond-bearing Pipes ... 117
Diamonds and Diamondiferous Mantle Xenoliths 118
Diamond Indicator Minerals .. 118
Diamond Mining ... 119
Processing of Diamond-bearing Ores ... 120
Sorting and Grading of Diamonds ... 120
Geological Set-up of India ... 121
Brief History of Diamond Mining in India .. 124
Chapter Four

Placer deposits associated with rare metal pegmatites in parts of India

P. V. Ramesh Babu

Abstract... 160

Introduction.. 162

Bastar-Malkangiri Pegmatite Belt (BMPB) in the state of Chhattisgarh in central India .. 163

Pegmatites of the Jharsguda district in north Odisha, Eastern India ... 166

Pegmatites of Holenarsipur and Nagamangala schist belts in the state of Karnataka, Southern India ... 171

RM mineralization in Pegmatites and Placers.. 174
Primary Mineralization in Pegmatites .. 174
Secondary RM Placer Deposits, associated with Mineralized Pegmatites .. 177
Mineral chemistry of RM minerals .. 180
Recovery of RM (Nb-Ta) minerals ... 186
Size-analysis ... 187
Processing plant ... 188
Mobile Plant – Concept and Advantages 191
Tailings Management ... 193
Conclusions .. 193
Acknowledgements .. 195
Bibliography .. 195
About the Author ... 199
Chapter Five .. 200
Rare Earth riverine placer deposits in eastern India
P. V. Ramesh Babu
Abstract ... 200
Introduction ... 202
Rare earth riverine placers in the Chhotanagpur Granite Gneiss Complex ... 205
Exploration Methodology ... 208
Ib river basin in the Kunkuri area, Jashpur district, Chhattisgarh 211
Source rocks for Xenotime placers in Kunkuri area 215
Sirí River Placers .. 216
Mineral chemistry of Xenotime and Monazite from the Sirí River placers .. 219
Baljora River placers ... 224
Mahan River basin in Dhaí-Dumhat area, Surguja district, Chhattisgarh ... 225
Deo River basin in Kolebira area, Simdega district, Jharkhand 228
Kanhar River basin in Balmampur-Bhandaria area in Surguja district, Chhattisgarh and Garhwa district, Jharkhand........ 231
Source rocks for Xenotime placers in Kanhar River basin 235
Comparison of Xenotime placers of Kanhar River basin with those from the Mahan and Ib river basins 237
Recovery of Xenotime-concentrates and their Up-gradation 239
Size analysis of Raw Sand and Pre-Concentrate 240
Flow-sheet for separation of Xenotime and Monazite-rich products ... 242
Conclusions ... 245
Chapter Six
Geo-Informatics in Exploration for Placer Heavy Mineral Sand deposits:
A case study from Kerala, India
K. Palanivel, R. Rajaperumal, R. Melwyn Joshua,
J. Sravanavel, C.J. Kumann and S. Chandrasekaran

Abstract.. 252
Introduction.. 253
Geospatial methodology .. 255
Geospatial technology in preparation of thematic maps 255
Study area.. 255
Lithology .. 258
Geomorphology ... 259
Digital image processing techniques... 259
Digital elevation models and their products 259
Field verification of geomorphic landforms................................. 262
Probable heavy mineral-bearing landforms 267
Confirmation of placer heavy mineral-bearing Landforms........ 271
Discussion... 271
Conclusions... 273
Acknowledgements.. 275
Bibliography .. 275
About the Authors... 276

Chapter Seven
Placer mineral sand deposits along the Kerala coast, southern India
S. Chandrasekaran, K. Balachandran and C. Murugan

Abstract.. 279
Introduction.. 280
Geology .. 282
Precambrian rocks .. 285
Tertiaries ... 288
Laterites ... 288
Structure... 289
Exploration and Evaluation.. 289
Beach Placers.. 292
Regional distribution of placer heavy minerals and its controls .. 292
Prominent Placer Heavy Mineral Sand Deposits................................. 294
 Chavara major HMS deposit.. 294
 Deposits in the northern contiguity of Chavara HMS deposit..... 302
 Kayamkulam Bar – Arattupuzha .. 303
 NTPC Plant and dredging sites... 303
 Attapuzha – Thrissuranpuzha... 303
 Thrissuranpuzha – Thotapally... 303
 HM occurrences south of the Chavara HMS deposit 306
 Kannimelssery – Neendakara... 306
 Malappuram – Odetti.. 306
 Anjengo – Vettur... 306
 Veli – Kazhakuttam.. 306
 Vizhinjam – Kovalam – Pachallur... 307
 HMS deposits north of the Shertala/Achankovil shear zone 307
 Valarpattanam – Azhikode.. 308
 Chavakkad – Puduponnani – Ponnani................................... 308
 Azhikode – Chavakkad.. 309
 Gold in heavy mineral sands.. 309
 Heavy mineral resources.. 311
 Mining and Mineral Processing... 311
 Production of Heavy Minerals and Value-added Products 312
 Heavy minerals... 312
 Value-added Products.. 313
 Lake-bed and Off-shore Resources... 315
 Conclusions.. 316
 Bibliography... 317
 About the Authors.. 319

Chapter Eight... 321
 The Shoreline, Inland Red Sands (Teris) and Fluvial Placer Deposits in Tamil Nadu, southern India
 S. Chandrasekaran and C. Murugan

 Abstract.. 321
 Introduction.. 323
 Geomorphology... 326
 Geology.. 327
 Archaean and Proterozoic Rocks... 328
 Satyamangalam Group ... 328
 Peninsular Gneissic Complex I... 329
 Khondalite and Charnockite Groups..................................... 330
 Migmatite Complex... 331
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indian Placer Deposits</td>
<td></td>
</tr>
<tr>
<td>Phanerozoic Sediments</td>
<td>331</td>
</tr>
<tr>
<td>Mesozoic Sediments</td>
<td>331</td>
</tr>
<tr>
<td>Tertiary Sediments</td>
<td>332</td>
</tr>
<tr>
<td>Quaternary Sediments</td>
<td>332</td>
</tr>
<tr>
<td>Exploration and Evaluation</td>
<td>333</td>
</tr>
<tr>
<td>Beach Sand- and Dune-Deposits</td>
<td>336</td>
</tr>
<tr>
<td>Regional Heavy Mineral Distribution</td>
<td>336</td>
</tr>
<tr>
<td>Grain-Size</td>
<td>340</td>
</tr>
<tr>
<td>Mineral Chemistry</td>
<td>341</td>
</tr>
<tr>
<td>Prominent Beach Sand Deposits</td>
<td>343</td>
</tr>
<tr>
<td>Manvalakuruchi</td>
<td>343</td>
</tr>
<tr>
<td>Kollamkode-Vayakkallur</td>
<td>344</td>
</tr>
<tr>
<td>Thengapattanam-Midalam-Kolachel</td>
<td>345</td>
</tr>
<tr>
<td>Pillaiyakoppu-Pallam-Kovalam</td>
<td>346</td>
</tr>
<tr>
<td>Kanyakumari-Vattakottai-Kuttupuli</td>
<td>346</td>
</tr>
<tr>
<td>Perumanal-Panjal-Kudamkulam</td>
<td>346</td>
</tr>
<tr>
<td>Navaladi-Ovari</td>
<td>346</td>
</tr>
<tr>
<td>Ovari-Tiruchendur</td>
<td>347</td>
</tr>
<tr>
<td>Taruvaikulam -Pudumadam-Tondi</td>
<td>347</td>
</tr>
<tr>
<td>Velanganni-Cuddalore</td>
<td>348</td>
</tr>
<tr>
<td>Cuddalore-Pondicherry</td>
<td>348</td>
</tr>
<tr>
<td>Cuddalore-Puduppattuchavadi</td>
<td>348</td>
</tr>
<tr>
<td>Pudupattinam-Kalpakkam</td>
<td>349</td>
</tr>
<tr>
<td>Pondicherry-Chennai</td>
<td>349</td>
</tr>
<tr>
<td>Red Sand (Teri) Heavy Mineral Deposits</td>
<td>349</td>
</tr>
<tr>
<td>Regional Distribution</td>
<td>349</td>
</tr>
<tr>
<td>Prominent Red/Teri Sand Deposits</td>
<td>355</td>
</tr>
<tr>
<td>Navaladi – Periyathalai</td>
<td>355</td>
</tr>
<tr>
<td>Sattankulam</td>
<td>355</td>
</tr>
<tr>
<td>Kudiramoli</td>
<td>355</td>
</tr>
<tr>
<td>Kutappalli-Nadavakurichi</td>
<td>356</td>
</tr>
<tr>
<td>Kulathur – Melmandai</td>
<td>356</td>
</tr>
<tr>
<td>Surangudi – Sevalpatti</td>
<td>356</td>
</tr>
<tr>
<td>Eravadi – Kilakarai</td>
<td>357</td>
</tr>
<tr>
<td>Inayam-Midalam</td>
<td>357</td>
</tr>
<tr>
<td>Fluvial Placers</td>
<td>359</td>
</tr>
<tr>
<td>Heavy Mineral Resources</td>
<td>360</td>
</tr>
<tr>
<td>Mining of Placer Deposits</td>
<td>363</td>
</tr>
<tr>
<td>Heavy Mineral Separation/ Beneficiation</td>
<td>364</td>
</tr>
<tr>
<td>Production of Heavy Minerals and Value-Added Products</td>
<td>366</td>
</tr>
<tr>
<td>Off-Shore Investigations</td>
<td>368</td>
</tr>
</tbody>
</table>
Shoreline heavy mineral sand deposits of Andhra Pradesh

G.S. Ravi

Abstract

Introduction

Regional Geology, Geomorphology, Structure and Tectonics

Proterozoic Eastern Ghats Mobile Belt (EGMB)

Gondwana Formations

Tertiary Formations

Quaternary Formations

Red Sediments

Regional Geomorphology

Three Segments of AP Coast

Control of Lineaments on the Coast

Exploration History

Methods of Study adopted for Mineral Sands

Drilling and Sampling

Heavy Mineral Analysis

Distribution of Heavy Minerals in Mineral Sands of AP

Mineralogy

Heavy Mineral Chemistry

Heavy Mineral Sand (HMS) deposits in the Northern Segment of Andhra P coast

Bhavanapradeshadu and Kalingapatnam HMS deposits

Srikurumam HMS deposit

Other Heavy Mineral Sand Deposits of Significance

Bhimunipatnam HMS deposit

Koyyam HMS deposit

Bendi - Donkuru - Barua HMS deposit

HMS deposits in the Central Segment of AP coast

Kakinada HMS deposit

Nizampatnam, Narsapur and Amalapuram HMS deposits

HMS deposits in the Southern Segment of AP coast

Offshore Heavy Mineral Sand occurrences

Sediment and HM distribution

Economic Prognosis

Environmental concerns of HMS deposits
Chapter Ten ... 462
Shoreline and inland heavy mineral sand deposits of Odisha, eastern India
G.S. Ravi

Abstract .. 462
Introduction.. 463
Regional geology, geomorphology, structure and tectonics 468
Geology of the provenance rocks for HMS deposits 468
Geology of the Precambrian rocks.. 469
EIC and the Singhbhum-Gangpur mobile belt.......................... 469
Eastern Ghats Mobile Belt (EGMB) ... 469
Gondwana Supergroup ... 472
Cainozoic Formations ... 472
Tertiary Formations ... 473
Quaternary Formations ... 473
Quaternary deposits... 473
Quaternary sediments... 473
Structure and Metamorphism of Precambrian rocks 476
Physiography and Drainage... 477
Geomorphology ... 479
Classification of the Odisha coast ... 481
Historical evolution of mineral sands and their exploration and evaluation in Odisha ... 483
Methods of study adopted in exploration for Mineral Sands 486
Surface study and Drilling .. 487
Laboratory studies ... 490
Heavy Mineral Sand Deposits in Odisha 491
Southern coastal segment ... 491
Gopalpur Mineral Sand Deposit .. 494
Chhatrapur Mineral Sand Deposit .. 497
Rishikulya – Bajarkot M.S. Deposit ... 499
Central coastal segment .. 499
Brahmagiri Mineral Sand Deposit ... 500
Heavy Mineral Occurrences in Odisha 502
Chilika bar occurrence ... 502
Nuanu-Konar (Kadua) occurrence ... 503
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontiagarh occurrence</td>
</tr>
<tr>
<td>Jhatipodar occurrence</td>
</tr>
<tr>
<td>Inland sand bodies of Paradeelp and Gahirmatha coasts</td>
</tr>
<tr>
<td>Northern Coastal Segment</td>
</tr>
<tr>
<td>Astaranga occurrence</td>
</tr>
<tr>
<td>Distribution of HMs in coastal sands</td>
</tr>
<tr>
<td>Mineralogy, Petrology and Chemistry of HMs</td>
</tr>
<tr>
<td>Chhastrapur HMS deposit</td>
</tr>
<tr>
<td>Ilmenite</td>
</tr>
<tr>
<td>Rutile</td>
</tr>
<tr>
<td>Zircon</td>
</tr>
<tr>
<td>Monazite</td>
</tr>
<tr>
<td>Garnet</td>
</tr>
<tr>
<td>Sillimanite, Kyanite and Andalusite</td>
</tr>
<tr>
<td>Studies from other HMS occurrences</td>
</tr>
<tr>
<td>Kontiagarh HMS occurrence Mineralogy</td>
</tr>
<tr>
<td>Mineral chemistry</td>
</tr>
<tr>
<td>Ti-minerals</td>
</tr>
<tr>
<td>Other heavy minerals</td>
</tr>
<tr>
<td>Jhatipodar HMS occurrence</td>
</tr>
<tr>
<td>Mineralogy</td>
</tr>
<tr>
<td>Mineral chemistry</td>
</tr>
<tr>
<td>Ti-minerals</td>
</tr>
<tr>
<td>Other Heavy Minerals</td>
</tr>
<tr>
<td>Astaranga beach HMS occurrence</td>
</tr>
<tr>
<td>Mineralogy</td>
</tr>
<tr>
<td>Mineral chemistry</td>
</tr>
<tr>
<td>Comparison of the chemistry of Ilmenite of the HMS deposits</td>
</tr>
<tr>
<td>Offshore Heavy Mineral Occurrences</td>
</tr>
<tr>
<td>HMS deposits and Environmental concerns</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
<tr>
<td>Acknowledgements</td>
</tr>
<tr>
<td>Bibliography</td>
</tr>
<tr>
<td>About the Author</td>
</tr>
</tbody>
</table>

Chapter Eleven .. 565

Placer deposits: mineral processing and value-addition

R. Dhana Raju

Abstract .. 565

Introduction .. 566

Mineral Processing of Placer Deposits ... 566
Mineral processing of Gold Placers ... 567
Mineral processing of Diamond Placers 569
Mineral processing of PGM Placers ... 570
Mineral processing of Tin Placers .. 572
Mineral processing of Rare Metal and Rare Earth Placers 574
Beneficiation of low-grade placer Li-ores 577
Beneficiation of Beryl ... 578
Recovery of Xenotime from REE placers 579

Value–addition in the Processing of Placer Deposits 587

Value-added products from Ilmenite .. 588
Processes of conversion of Ilmenite into TiO2-enriched synthetic products .. 588

Sulphate and Chloride Processes ... 589
Benelite Cyclic Process .. 590
Becher Process .. 591

Processing Ilmenite-concentrate to Synthetic Rutile through pressure leaching with HCl acid .. 594
Solvent extraction process of Argex Titanium Inc., Canada 594
Synthesis of high purity Rutile nanoparticles from Ilmenite 595
Separation of Fe and Ti from Ilmenite by Selective Precipitation .. 595
Some more advances in the production of Titanium 596

Value–added products of REEs from RE-minerals 596
Nature, abundance, occurrence, uses and production/trade history of REEs .. 596
History of RE production and trade .. 597
Important REE primary and secondary deposits 599
Value-added products during processing of RE-Minerals 600
RE-recovery by fractional precipitation from the sulphuric leach liquor, obtained after processing of phosphogypsum 601
Value-added products from placer Zircon 604
Value-added production from placer Sillimanite 605

Uses of Placer Minerals and Their Valuable Metals 606
Conclusions ... 608
Acknowledgement ... 608
Bibliography .. 609
About the Author .. 613

Subject Index ... 614
Placers, from the Spanish word “placer”, meaning “alluvial sand”, are economically important mechanical, secondary and detrital present or past accumulations/denudations of chemically resistant, stable, inert, hard, heavy minerals with specific gravity of > 2.89. They are: (i) separated from the light minerals by weathering and erosion of diverse geologic source materials; (ii) transported by moving water and/or air, based on natural gravity; and (iii) deposited for a profit in an aquatic and aeolian regime. They have been mined since the metals were first used by humanity and, hence, many of their features and evaluation have been known for a few centuries. The list of minerals that can be concentrated in placers contains approximately 40 species, including 30 minerals that can make up placer deposits. These deposits are mostly of the Phanerozoic age and rarely of older ages, with the latter being designated as “Palaeo-Placers”. The known placers are formed predominantly in the Cenozoic, derived from the Mesozoic and older primary mineralisation, disseminations, regional background levels and lithified intermediate sources. They occur worldwide at all elevations and at most latitudes, though the majority is generally confined to the tropical and subtropical belts. As a consequence, economically important placer deposits occur in Australia, India, Brazil, Sri Lanka, Malaysia, Thailand, Myanmar, Vietnam, Mozambique, Sierra Leone, Madagascar, South Africa and the south-east USA. These deposits host many diverse precious, semi-precious, industrial and high-tech heavy minerals and metals, which include gold, platinum and other gemstones, magnetite, ilmenite, rutile, zircon, monazite, xenotime, chromite, cassiterite, columbite-tantalite, sillimanite, garnet etc. Historically, placers have yielded a very significant part of the world’s total supply of gold, platinum, tin and diamonds. They are presently the source of most of the world’s titanium. Compared to the primary metallic deposits, such as ferrous, non-ferrous, base metals and precious metals as well as non-metallic deposits, such as coal, limestone, phosphate and barite, the placer deposits have the following unique attributes: (i) wide spectrum of mineralisation, which includes precious, semi-precious, industrial, strategic and critical minerals, required for the ornamental, conventional, high-tech and cutting-edge technologies-based industries; (ii) easy and less costly to mine, mostly by surface and open-pit mining, as they occur at very shallow depth either at surface or near-
surface, in contrast to the deep-seated many primary deposits; (iii) occurrence during a long geological period of the Archaean (palaeo-placers) to Recent/ Present at all elevations and most latitudes; (iv) diverse controls, such as the source rock geology, disintegration of minerals, resistance to weathering, transportation media, gradient, density difference, favourable locales, geomorphology, different environments of lacustrine, fluvial, beach, dune, marginal marine, marine and glacial; waves and long-shore currents; and (v) the cost of placer minerals and their metals ranging widely from a few hundred dollars per ton (e.g., ilmenite, sillimanite and garnet) to a few thousand dollars per ounce (31.1 g of gold) and carat (200 mg of diamond).

At the invitation of the Cambridge Scholars Publishing, the UK, the undersigned has selected the topic of ‘Indian Placer Deposits’ for the present edit volume, in view of many notable attributes of the placers, cited above, and the occurrence of diverse types of placer deposits/prospects in India, such as the gold, diamond and other gemstones, tin, rare metals, rare earths and the vast heavy mineral sands. For this, he has invited some of his former colleagues in the AMD and a few other geo-scientists, each having an expertise in their respective fields of specialisation for nearly three decades, resulting in the present volume that comprises their and the undersigned’s contributory chapters on the Indian placer deposits.

In this volume, Dhana Raju presents in (i) Chapter 1, an overview of the placers of gold, platinum, diamond and other gemstones, tin, rare metals, rare earths and heavy mineral sand (HMS) deposits, encompassing the historical-economic aspects of placers, their provenance rocks, exploration, mining and post-mining operations; and (ii) Chapter 11, the mineral processing of HM deposits with many flow-sheets for separation, concentration, purification and extraction of both the individual placer HMs and their contained valuable metals, together with different processes to obtain their value-added products. In Chapter 2, Prabhakar Sangurmath deals with the primary, supergene lateritic and placer gold occurrences, prospects and 42 micro-mines opened up by the ancient/ modern artisanal miners over an area of ~ 1200 sq. km in the Wayanad–Nilambur sector within the granulitic terrain of SW India; these have been known since over two centuries, and are the earliest ones explored for gold in India. In Chapter 3, Satyanarayana et al., present an account of the India’s inland diamond placer and primary deposits/occurrences, their source-host-rocks, geology, geomorphology, distribution, exploration,
mining and processing at Majhgawan, the country’s only plant for diamonds, and resources, besides India’s pre-eminent position in the world from the pre-historic times for diamonds and their trading as also some world-famous diamonds such as the Koh-i-Noor. Ramesh Babu presents in (i) Chapter 4, a detailed account of the eluvial, deluvial, colluvial and alluvial Rare Metal (RMs: Nb-Ta, Be, Li and Cs) placer deposits, associated with the primary mineralised source rocks – zoned RMRE granite pegmatites and their replacement zones – in three major pegmatite belts, viz., (a) the Bastar–Malkangiri Pegmatite Belt (BMPB) in the states of Chhattisgarh and Odisha, (b) the Jharsuguda district in north Odisha and (c) the Holenarsipur and Nagamangala schist belts in the state of Karnataka, together with their geology, exploration, RM- and Sn-mineralogy (columbite-tantalite, beryl, spodumene, lepidolite and amblygonite, and cassiterite), mineral chemistry, resources and mineral processing for the up-gradation, concentration and recovery of RM minerals in the field-based mobile recovery plants; and (ii) Chapter 5, an account of HREE and LREE riverine, small placer deposits, respectively, in the form of xenotime and monazite, derived from the intrusive granites and pegmatites in the Chhotanagpur Granite Gneiss Complex region in parts of the states of Chhattisgarh and Jharkhand, along with their geology, exploration, mineralogy, chemistry of RE-minerals and their concentrates, evaluation and mineral processing for recovery, concentration and up-gradation of the RE-minerals. In Chapter 6, Palanivel et al., present some of the advanced methods of geo-informatics used to probe the lithology, structure, geomorphology and location of the placer HMS deposits, taking those in the state of Kerala as a case-study. In Chapter 7, Chandrasekaran, Balachandran and Murugan present the information and data on the beach placer heavy mineral sand deposits of Kerala, in terms of their geology, geomorphology, structure, evolution, areal extent, exploration, evaluation, mineralogy, grade, grain-size, chemical characters, resources, mining, production, value-addition and the lake-bed and offshore resources etc. In Chapter 8, Chandrasekaran and Murugan document the shoreline, fluvial and inland red sands (Teris) placer HMS deposits in the state of Tamil Nadu, covering the aspects of geomorphology, geology, exploration, evaluation of the beach and dune HMS deposits, Teri sand deposits and fluvial HMS occurrences, their mining, HM resources, mineralogy and mineral chemistry of ilmenite, mineral beneficiation, production and value-added products. Ravi presents in (i) Chapter 9, the shoreline HMS deposits in the state of Andhra Pradesh, covering aspects of the geology, influence of hinterland geology and geomorphology on the HM-grade, exploration, evaluation, resources,
reserves, sedimentological parameters, mineralogy and mineral chemistry of HMs, offshore HMS occurrences, down-stream industry with value-addition, economic prognosis, environmental concerns and refilling-recycling-reclamation-reuse (R-4) of the mined areas; and (ii) Chapter 10, the shoreline and inland HMS deposits/potential occurrences in the state of Odisha, covering the aspects of regional geology, provenance rocks, geomorphology, structure, tectonics, exploration, and resource evaluation of HMs in the major deposits and potential occurrences, together with salient aspects of the mineralogy, textures, sedimentology, EMP-based mineral chemistry of HMs and a brief account on the offshore HM resources and the environmental constraints in the study-area.

Lastly, the editor will be grateful if any omissions and commissions in the volume are brought to his notice, so that the same will be attended to in its subsequent editions.

R. Dhana Raju (Editor)
1-10-284/1, Brahmanwadi Lane No. 5, Begumpet, Hyderabad – 500 016, India, dhanaraju.reddi@gmail.com
ACKNOWLEDGEMENTS

My sincere thanks are due to:

- The authors of all papers and other publications, from different academic institutes and organizations/companies of the mineral industry, which are cited in the text, figures and tables, and listed under the ‘Bibliography’ for their data and information, without which this volume could have never been possible;
- “Google Search” and “ResearchGate”, which helped in tracing the relevant papers on the topic of “placer deposits”;
- My all ‘Co-Contributing Subject-Specialists’ of the volume for their completion of the chapters, almost in time, in spite the Covid-19 pandemic in 2020 and 2021, and its effect on personal health;
- My former colleagues in the Atomic Minerals Directorate (AMD) for Exploration and Research, Department of Atomic Energy, Govt. of India and Dr. B. Srinivas of the Dept. of Applied Geochemistry, Osmania University, Hyderabad, India for their continuous support;
- Mr. K. Jagannadha Rao and Mr. J. Srikanth for their help in preparing/modifying and formatting a few figures and folders;
- Mrs. Helen Edwards, Mrs. Rebecca Gladders, Mrs. Sophie Edminson and others of Cambridge Scholars Publishing (CSP), Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, the U.K. for their invitation and approval of my project for this edited volume as well as for its processing and publishing;
- The CSP for their contribution to meet partly the proof-reading cost of the draft-manuscripts of eleven chapters;
- Dr. John E. Jacobs for timely proof-reading of the manuscripts;
- My wife, Mrs. R. Manikyamba and our family members – Venkat Ram, Lokeshwar, Srinivas Rao, Lakshmi Prabha, Krishnaveni, Seeta Mahalakshmi, Naren, Sneha, Jaya Kalyan and Sishir Dev for their support at home; and
- Above all, the Almighty, my teachers, mentors and well-wishers for Their Blessings.

R. Dhana Raju
LIST OF FIGURES

Chapter One

1-1. Cartoon showing the different types of placer deposits................. 3
1-2. Locations of Placers ... 21
1-3. General distribution of different types of placer deposits
 in the world .. 33
1-4. Deposits of the Platinum Group Metals (PGM) in the world....... 36
1-5. World map of the Diamond producing countries,
 deposits and mines ... 40
1-6. Global distribution and resources of Tin..................................... 45
1-7. Beach placer Heavy Mineral Sand (HMS) deposits in the world... 48
1-8. Map showing locations of the Indian placer deposits............... 50
1-9. Processing placer gold deposits... 62
1-10. World map showing areas of gold panning, sluicing
 and dredging ... 63
1-11. Surface mining of a placer heavy mineral sand deposit......... 65
1-12. Dredging and back-filling of a placer HMS deposit.............. 67

Chapter Two

2-1. Geological map of the granulite terrane of southern India,
 with the Waynad area in the Nilgiri block in between
 the Moyar and Bhavani shear zones (SZ)................................. 89
2-2. Map showing locations of gold mines and prospects in the
 Waynad Gold Field area... 90
2-3. Primary Quartz–Sulphide veins in the Maruda area 92
2-4. Gold in Laterite in the Maruda - Nilambur area...................... 92
2-5. Placer Gold in the stream near Eddakara.............................. 93
2-6. Hand-Panning for Gold by local people at Eddakara............ 93

Chapter Three

3-1. World Distribution of Cratonic Areas 111
3-2. Cross section of upper mantle .. 111
3-3a. Standard Kimberlite model ... 115
3-3b. Simplified models of Kimberlite and Lamproite pipes 116
3-4. Generalised Geological Map of India 123
3-5. Simplified Tectonic Map of India 124
3-6. A few historic and famous diamonds from Kolluru-Paritala 126
3-7. Map showing the Diamond provinces of Peninsular India 128
3-8. Geological map of the Banganapalle area, A.P 131
3-9. Diamondiferous Proterozoic Banganapalle conglomerates 132
3-10. Gravels and gravel mines from different river basins 134
3-11. Geological map of the Kolluru area, Guntur dist., A.P 135
3-12. Geological map of the Panna area, Madhya Pradesh 138
3-13. Diamondiferous Vindhyan conglomerate workings, Panna Diamond Belt, Madhya Pradesh .. 140
3-14. Diamondiferous surface and sub-surface gravel workings, Baghain River area, Panna Diamond Belt, M.P 141
3-15. Diamondiferous Mahanadi river gravels, Boudh area, Odisha .. 143
3-16. Majhgawan Lamproite Mine with gem-quality diamonds, Panna diamond belt, Madhya Pradesh.............................. 150

Chapter Four

4-1. Map of India showing the Rare Metal pegmatite areas 164
4-2. Geological map of the Bastar-Malkangiri Pegmatite Belt (BMPB) in the Chhattisgarh State in central India 167
4-3. Geological map of north Odisha in eastern India showing RM pegmatites of Jharsuguda district 169
4-4. Pandikimal pegmatite in the Jharsuguda district in north Odisha, showing the quartz core .. 170
4-5. Geological map showing RM pegmatites in the Holenarsipur and Nagamangala schist belts in the state of Karnataka, southern India .. 173
4-6. Geological map of the Churwada pegmatite in the BMPB, showing greisenised and albitised replacement zones 175
4-7. A trench showing albitized zone in the Pandikimal pegmatite.. 176
4-8. Schematic depiction of placers, associated with the RM pegmatites in India ... 177
4-9. Eluvial/deluvial placers with the RM minerals along the slopes of Pandikimal pegmatite in Jharsuguda district, Odisha, eastern India .. 179
Indian Placer Deposits

4-10. Colluvial placers with the RM minerals below a thick soil cover, associated with the Marlagalla swarm of pegmatites in the state of Karnataka, southern India ... 180

4-11. Flow-sheet for recovery of Rare Metal minerals from small pegmatite deposits by Mobile Plants .. 189

4-12. Pilot-scale columbite-tantalite recovery plant in the Bastar-Malkangiri Pegmatite Belt in the state of Chhattisgarh 192

4-13. Pilot-scale columbite-tantalite recovery plant in the Jharsuguda district, Odisha ... 192

4-14. Pilot-scale columbite-tantalite recovery plant in the Marlagalla area, Karnataka ... 193

Chapter Five

5-1. Map of India showing the rare earth riverine placer areas in eastern India ... 205

5-2. Geological map of the Chhotanagpur Granite Gneiss Complex (CGGC) showing xenotime-bearing riverine placer areas in Chhattisgarh and Jharkhand states in eastern India 207

5-3. Schematic representation of exploration methodology 210

5-4. Geological map of Kunkuri area showing Siri River and Champajharia and Baljora stream with xenotime placers in Ib River basin 213

5-5. Fine-grained Granite (FGG) of Madesar Pahar (. 868m), exposed north of Mayali village ... 214

5-6. Medium-grained Granite (MGG) forming dome-shaped Burha Pahar hill (. 672m) near the Dhongamba village 214

5-7. Geological map of a part of the Siri River showing various types of placer bodies ... 217

5-8. Placer bodies developed along the Siri River .. 218

5-9. Placer bodies developed along the Champajharia stream 218

5-10. Bi-pyramidal crystals of xenotime from the Siri River 219

5-11. Geological map of a part of Baljora stream in the Ib River basin, showing placer bodies ... 224

5-12. Geological map of the Dhib-Dumhat area showing various streams hosting the xenotime placers in the Mahan River Basin . 226

5-13. Map showing the location of Siri River and other streams in the Ib river basin in the Kunkuri area, Jashpur district and Deo River and other streams in the Kolebira area, Simdega district, Jharkhand.. 230

5-14. Map showing the xenotime placer bodies in a part of the Deo River in the Kolebira area, Simdega district, Jharkhand 230
5-15. (A) Location map; (B) Xenotime stream placers in the Mahan River and Kanhar river basins; and (C) Geological map of the Balrampur - Bhandaria area showing xenotime placers 233
5-16. Flow-sheet for recovery of heavy minerals from the inland riverine placer sand deposits .. 240
5-17. Sizing characteristics of Raw sand ... 241
5-18. Sizing characteristics of Pre-concentrate 241
5-19. Flow-sheet for the recovery of xenotime and monazite from the riverine placers .. 243

Chapter Six

6-1. Base-map of the study area in Kerala................................. 257
6-2. (a) LANDSAT 7 ETM MNF image ... 260
 (b) Valley-fills found on the lateritic uplands ... 260
 (c) LANDSAT 7 ETM PCA image .. 260
 (d) Contact between the litho-units of laterite and coastal sands . 260
6-3. Lithology map of the Kerala coast ... 261
6-4a and b. Coastal geomorphic landforms identified through DEM wrapped FCC and Geo-Eye data .. 263
6-4c and d. CARTOSAT – 1A DEM, IRS-P6 LISS-4 FCC wrapped DEM, 1 m Contour and DEM wrapped geomorphology 264
6-5. Field verification of “Geomorphological Landforms, present in the northern sector .. 265
6-6. Geomorphology map of the Kerala coast 268
6-7. Probable geomorphic landforms, potential for the exploration of placer heavy mineral sands .. 270

Chapter Seven

7-1. The Geological map of Kerala ... 286
7-2. The Lineament map of Kerala.. 291
7-3. The Chavara major heavy mineral sand deposit, Kerala 296
7-4. Variation of HM concentration across the Chavara major HMS deposit .. 297
7-5a. Grain-size distribution (primary mode) in Chavara major HMS deposit .. 298
7-5b. Grain-size distribution (secondary mode) in the Chavara major HMS deposit .. 299
7-6a. Chemical patterns of Ilmenite in the Chavara major HMS deposit .. 300
Indian Placer Deposits

7-6b. Chemical patterns of Ilmenite in the Chavara major HMS deposit .. 300
7-7. Variation of TiO\textsubscript{2}, FeO and Fe\textsubscript{2}O\textsubscript{3} contents in the ilmenite from India, compared with that from other countries of the world 301
7-8a. TiO\textsubscript{2} plots of ilmenite in the northern contiguity of Chavara HMS deposit .. 305
7-8b. MgO, MnO, V\textsubscript{2}O\textsubscript{5}, Cr\textsubscript{2}O\textsubscript{3} and CaO plots of ilmenite in the northern contiguity of Chavara HMS deposit .. 305

Chapter Eight

8-1. Geological map of Tamil Nadu .. 329
8-2. Methodology adopted for the field exploration of placer HMS deposits .. 334
8-3. Laboratory procedure in processing of HMS samples 335
8-4. Variation of heavy minerals with the latitude in the beach and sand dunes of Tamil Nadu .. 337
8-5a. and b. Grain-size characteristics of heavy minerals in the beach and dune sands .. 341
8-6. Chemical characterisation of ilmenite in the beach and dune sands of Tamil Nadu .. 342
8-7. Trace element content of ilmenite in the beach and dune sands of Tamil Nadu .. 343
8-8. Manvalakurichi placer heavy mineral sand deposit—an aerial view .. 344
8-9. Different blocks of Manavalakurichi HM sand deposit 345
8-10. Teri sands— a satellite view ... 351
8-11. Sattankulam Teri sand deposit .. 352
8-12. Variation in the grain size of heavy minerals in the Teri sands 352
8-13. Grain size characteristics of the heavy minerals in the Teri sands of Tamil Nadu .. 353
8-15. Trace element content of ilmenite in the Teri sands 354

Chapter Nine

9-1. Generalised Geological Map of the Coastal Andhra Pradesh, with the locations of HMS Deposits .. 380
9-2. Red Sediments, (a) Exposed along Beach Face, with an overlying Sand Dune and (b) Exposed near Rear Dune 384
List of Figures

9-3. (a) Fore Dune, (b) Inter Dune, (c) Rear Dune, (d) HM concentration, etc ... 388
9-4. Drilling in Progress - (a, b) Hand Auger Drilling and (c) Dormer Unit Drilling ... 396
9-5. Sample Processing and Analytical Flowchart .. 398
9-6. Sections across the HMS deposits in Northern and Central segments showing the Down Depth Variation in HMs 401
9-7. Variation in the individual HM contents ... 402
9-8. Variation in Major HMs concentration along the Coastal Andhra Pradesh .. 403
9-9. Ore microscopic studies: Ilmenite showing alterations, rutile and different forms of seriate texture, etc.......................... 407
9-10. Microscopic studies of Micro- Diamonds and Xenotime, etc 408
9-11. Geological map of the Bhavanapadu and Kalingapatnam HMS Deposits .. 420
9-12. Geological map of the Srikurmam HMS Deposit 423
9-14. Geological map of the Koyyam HMS Deposit 427
9-15. Map of the Kakinada HMS Deposit .. 430
9-16. Geological map of the Nizampatnam – Narsapur - Amalapuram HMS deposits .. 432
9-17 a and b. Lithological & HMs distribution map off the Kalingapatnam- Donkuru coast, Andhra Pradesh 437
9-18. Probable Quaternary Palaeo-strandlines and identified Barrier Beach Ridges of the Krishna-Godavari basin 440
9.19a. Beneficiation of Ilmenite and Value Addition 442
9.19b. Beneficiation of Zircon and Value-Addition 443
9-20. Stages in Land Rehabilitation of mined area in the Murray Basin .. 446

Chapter Ten

10-1. Map of India showing major Heavy Mineral Sand deposits/ Occurrences .. 465
10-2. Geological map of the state of Odisha .. 470
10-3. Quaternary sediments, Red sediments, calcareous concretions, section of Red sediment, contact of Red sediment & calcareous formations (??) ... 475
10-4. Drainage pattern of the Odisha State .. 479
10-5. Dune formations along the coast – fore- and rear-dunes 489
10-6. Drilling in progress ... 489
Indian Placer Deposits

Chapter Ten

10-7. Flow-sheet for a laboratory-study of sand samples 492
10-8. Map of the Gopalpur HMS Deposit, Odisha .. 495
10-9. Map of the Chhatrapur HMS deposit, Odisha .. 498
10-10. Map of the Brahmagiri HMS deposit, Odisha .. 501
10-11. Map of the Kontiagarh HM occurrence, Odisha .. 505
10-12. Map of Jhatipodar HM occurrence, Odisha .. 507
10-13. Location map of the Inland HM placer occurrences, Jagatsinghpur, Central and Northern segments, Odisha .. 508
10-14. Map of the Astaranga HMS occurrence, Odisha .. 512
10-15. HM Distribution along the Coastal Segments of Odisha .. 514
10-16. HM assemblages and distribution patterns of individual HMs in different segments and in the Inland Placers .. 516
10-17. Morphological studies of ilmenite grains from the Chhatrapur Area .. 518
10-18. Morphological characteristics of zircon grains .. 526
10-19. Photographs of ilmenite grains under reflected light of Kontiagarh area .. 534
10-20. Microscopic studies under reflected light of Astaranga coast, Puri district .. 544
10-21. Offshore HM Occurrence off Chilika – Puri Coast .. 550
10-22. Structural overview of the Ti-mineral processing industry from the raw material to the final product .. 554

Chapter Eleven

11-1. Flow-sheet for the processing of placer Pt-concentrate .. 572
11-2. Flow-sheet of the physical beneficiation of the placer poly-mineral ore of Nb-Ta-Sn from Mundval, Bastar craton, India .. 576
11-3. Flow-sheet for obtaining tin metal from cassiterite-concentrate by alkali fusion route .. 577
11-4. Flow-sheet for the beneficiation of placer Lepidolite .. 578
11-5. Flow-sheet for the beneficiation of placer Beryl .. 579
11-6. Flow-sheet (generalized) for recovery of placer Xenotime .. 580
11-7. Advanced Rare-Earth projects around the world .. 581
11-8. Mineral processing of raw sand for heavy mineral concentrate (HMC) of a placer HMS deposit .. 583
11-9. Mineral processing of Heavy Mineral Concentrate (HMC) for individual VHMs of ilmenite, rutile, garnet, monazite, zircon and sillimanite, adopted by the IREL in India .. 585
11-10. Global operations of the HM sand industry .. 586
11-11. Comparison of the Benelite Process with the one developed at IREL’s OSCOM plant, Chhatrapur in Odisha, India 591
11-12. Flow-sheets showing the Lurgi-Beher process for production of synthetic rutile (SR) and Ti-slag .. 593
11-13. IREL’s (India) flow-sheet for the processing of placer monazite for value-added products .. 602
11-14. IREL’s (India) processing of placer monazite for its value-added products .. 603
11-15. IREL’s (India) processing of monazite by H2SO4 603
11-16. IREL’s (India) production process of high-pure RE-oxides 604