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CHAPTER ONE 

WAVE PROCESSES IN ANISOTROPIC  
ELASTIC STRUCTURES. 

SOUND SCATTERING BY RANDOMLY 
ORIENTED SPHEROIDAL BODIES 

A. KLESHCHEV 
 
 
 
1.1.  The Dynamic Theory of the Elasticity for the Transversely 

Isotropic Medium 

It is well known [1] that a pulsed sound signal, like a bunch of energy, 
propagates at a group velocity. This circumstance forces us to use the 
method of imaginary sources when studying the temporal characteristics of 
pulsed signals scattered by various bodies placed in a plane waveguide [2 – 
7]. Wherein the spectral characteristics of the pulses dealing with 
continuous harmonic signals can also studied using the normal wave method 
[8]. 

When studying waves in anisotropic media, the initial equations are the 
dynamic equilibrium of continuous medium [9 – 13]:   
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We restrict ourselves to the consideration of plane monochromatic 
waves [13], the general expression of the displacement vector of such a 
wave can be written as:  
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    ,euu trki0 
                                              (1.2) 

 
where: 0u


 - is the constant vector (independent of either coordinates or 

time), called the vector amplitude of the wave. 
The displacement vector (1.2) only in that case will satisfy the equations 

of motion (1.1) if its real and imaginary parts individually satisfy the same 
equation. If the vector amplitude 


u is real, then:  

 
  ,uiusinicosuu  

                              (1.3) 
 
moreover   trkcosuu  

  and  trksinuu  
  are real 

solutions of the basic equations (1.1) in the form of plane monochromatic 
waves. Therefore, we can always choose any of them, for example, u , as 
a real solution. A plane monochromatic wave (1.2) will satisfy the equations 
of motion (1.1) not for any parameter values ,k,u


 . We rewrite the 

equations of motion (1.1) in another form, using the notation of the elastic 
modules as components of the 4th rank tensor [5]:    
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We introduce instead mljic  of the tensor 
 

                  ,c
1

mljimlji 
                         (1.6) 

which we will call the reduced tensor of elastic moduli.  
Considering that nkk


  ( n

 is the unit vector); ;kk;1n2
   

kc;nkk jj  , we rewrite (1.6) in the form: 
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       0ucunn i
2

mljmlji                                          (1.7) 
 
If we introduce a tensor of the second rank: 
 

           ,nn ljmljimi
n  
            (1.8) 

 
then equation (1.7) can be written in direct form:  
 

                          ,0u                                  (1.9) 
 
From (1.9) it follows that the displacement vector of plane wave u

  is 
an eigenvector, and the square of the phase velocity of the wave 2c  is an 
eigenvalues of the tensor Λ. 

Vector equation (1.9) is the main one for the theory of elastic waves in 
anisotropic media and is called the Christoffel equation. Solving this 
equation reduce to finding the eigenvectors and eigenvalues of the tensor Λ. 

A real symmetric positive definite (for any directions of the wave 
normal) tensor Λ in the general case has three different eigenvalues 

2
33

2
22

2
11 c;c;c   , each of which has its own vector that 

determines the direction of displacement in the wave. Therefore, in 
anisotropic media in the general case, for any given direction of the wave 
normal, three waves with different phase velocities can propagate. We will 
call such three waves, having a common wave normal, isonor-mal.              

Transversely isotropic elastic medium is characterized by five elastic 
modules: 4433131211 ,,,, AAAAA  , and the generalized Hooke’s law for 
such a medium is written in the form [9 - 13]:  
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where: zxyzyxxzy ,,,,,   - deformation components, 

zxyzyxxzy  ,,,,, ‐ strain tensor compo-nents.      
The problem will be solved in a flat setting, i. e. the displacement vector 

U


 has only two components other than zero U (on the X axis) and W (on 
the Z axis) and there is no dependence on the coordinate y. Taking this into 
account, the deformation components will be equal: 

 

                                   (1.11)          
        

And Hooke’s law will be simplified:    
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The equations of dynamic equilibrium for a flat formulation takes the 

form: 
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where: 1  – transverse isotropic half – space density 
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1.2. Diffraction Pulse Sound Signal on the  
Soft Prolate Spheroid Located in Plane Waveguide  

with the Anisotropic Elastic Bottom 

We turn to a familiar problem of the diffraction of pulses on spheroidal 
bodies in the plane waveguide [10 – 12], retaining the upper boundary 
condition Dirichlet, waveguide dimensions and scatterer with respect to 
boundaries, replacing only ideal hard boundary on the elastic isotropic 
bottom. Physical parameters of the lower medium will correspond to the 
isotropic elastic bottom, but in their values, they will be very close to 
parameters of transversely-isotropic rock – a large gray siltstone [9]. The 
longitudinal wave velocity in this material is 4750 m/s, the transverse wave 
velocity – 2811m/s. When used in this case the method of imaginary sources 
need to enter the reflection coefficient V for the each source [14], when 
displaying sources relative to the upper border sources, as before [7 – 10, 
12, 14, 15], will change the sign on the opposite, which corresponds to a 
change of phase by  .  

It is known to [14], that the imaginary sources method boundary 
conditions are not fulfilled strictly on any of borders of the waveguide even 
in the case of ideal boundary conditions of Dirichlet and Neumann. For the 
better fulfillment of these conditions in diffraction problems [7 – 10, 12, 14, 
15] were introduced imaginary scatterers by mirroring their relative 
waveguide boundaries. Likewise, introduce imaginary scatterers and in our 
problem and compare the sequence of reflected pulses [7, 8, 12] in the case 
of ideal borders and in presence of a hard elastic bottom in the waveguide. 
[14] shows that the method of imaginary sources applicable in the case 
where the reflection coefficient V will be a function of the angle of the 
incidence of the wave from a source relative to the normal to the boundary. 
In our case, this angle will be determined by the mutual position of the 
source (real or imaginary) and the scatterers (real or imaginary), where the 
wave falls from the source. Since the receiver is combined with a real source 
Q , the sequence of reflected pulses will be determined by the quantity and 
amplitudes of reflected signals (from different scatterers) having the same 
propagation time from sources to scatterers and from scatterers to the point 
Q.  Parameters of the waveguide, the position of the real source Q 
(combined receiver) and the real scatterer remained unchanged compared 
[7, 8, 12]:  L = 1000 m., H = 400 m., the real source Q and real scatterer are 
located at the depth of 200 m., the scatterer is the ideal soft prolate spheroid 
with the semi-axes ratio a/b = 10 (a = 0,279 m.) and its axis of a rotation is 
perpendicular to the plane of the figure (see Fig. 1-1 ).  The formula for the 

reflection coefficient  0NV , where N – the number of a source, is given in 
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[14]. For the calculation of first four of reflected pulses, the following 

reflection coefficients are 03V  in the direction of the first (real) scatterer 01,  

05V   in the direction of the second (imaginary) scatterer 02. As a result of 

simple calculations with the help of [10] obtain:  03V   = 0,8423 + i    0,5390; 

05V  = 0,8423 + i 0,5390.   
Coefficients have turned complex, which means the total internal 

reflection at the boundary liquid – hard elastic bottom, therefore all three 
coefficients are equal 1,0 parts of the first two coefficients are close to +1,0, 
which is typical for the boundary liquid – absolutely hard bottom. The 
resulting sequence of calculations of first four reflected pulses is shown in 
Fig. 1-2. We compare them to the sequence in Fig. 1-3 for ideal boundaries 
[7, 8, 12]: 1st and 
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Figure 1-1: The mutual disposition of the pulse point-sources and scatterers in the 
plane waveguide 
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Figure  1-2:  The normalized series of first four reflected impulses in the waveguide 
with the anisotropic elastic bottom 
 

 
 
Figure 1-3: The normalized series of first three reflected impulses with the harmonic 
filling in the point Q  
 
4th pulses 1-2 are identical with first and second pulses of Fig. 1-3, as for for 
2nd and 3rd pulses in Fig. 1-2 in the case of ideal boundaries and symmetrical 
location of real a source and a scatterer relatively of boundaries of the 
waveguide, they are compensated each reflected pulses, i. e. 2nd and 3rd 
pulses (see Fig. 1-2) show the difference in sequences of reflected pulses 
when replacing an absolutely hard bottom on an elastic hard bottom. 
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A similar pattern is observed for anisotropic bottom, such as silicon, in 
wich quasi-longitudinal wave velocity of about 8300 m/s and quasi-
transverse wave velocity of about 5700 m/s, with the second quasi-
transverse wave do not occur because of the problem statement [12]. 
Because of the high velocities of quasi – longitudinal and quasi – transverse 
waves total internal reflection effect at the anisotropic bottom manifest itself 
even more strongly than the isotropic bottom. 

In the first part of the review we investigate an interaction of a scatterer 
and an interface between media, it is shown that a main role in this is played 
by interference effects. The second part of the review is devoted to a study 
of a spectrum of a scattered field of an ideal prolate spheroid placed in an 
underwater sound channel with non – reflecting boundaries. In the third part 
of the review is determined the effect of a bottom structure on a series of 
pulses, reflected from a spheroidal body located in a plane waveguide.   

As a result of the research we can draw three conclusions: 
1) in studying propagation and diffraction of pulse signals in a plane 

waveguide need to use the method of imaginary sources as pulses 
like bundles of energy spread to any directions (including and along 
the axis of the waveguide) with the group velocity does not exceed 
the sound velocity, namely the group velocity based the method of 
imaginary sources; 

2) replacing the hard elastic bottom on the absolutely hard bottom is  
acceptable to those sources (real and imaginary) from which waves 
in the fall to the hard elastic bottom try total internal reflection; 

3) we have adopted the model of image sources and image scatterers is 
quite acceptable (due to internal reflection), at least, for first four 
calculated reflected pulses in a plane waveguide with hard elastic 
bottom. 

1.3. The Dynamic Theory of the Elasticity for  
the Orthotropic Medium 

Based at the use of the theory of the elasticity for the anisotropic medium 
and with the help of the hypothesis of the thin shells is determined the 
characteristic equation for wave numbers of elastic waves in the thin 
orthotropic cylindrical shell. Let’s consider the infinite thin orthotropic 
cylind-rical shell. The harmonic elastic wave is spread along axis Z, that is 
the axis of the symmetry of the second order. The orthotropic elastic 
medium is characterized by the nine elastic modules [9, 11, 16, 17]:

,A,A 1211  ,A,A 2213 ,A23  ,A33 665544 A,A,A . Hooke’s 
generalized law for an orthotropic body is written in the form [9]: 
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where:   rzrzzr ,,,,,  - stress tensor components, 

  rzzrzr ,,,,,  - strain components, which in turn are equal [16, 
17]: 
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Dynamic equilibrium equations in a circular cylindrical coordinate 

system have the form [16, 17]: 
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where: 
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1.4. Phase Velocities of Elastic Waves in  
a Thin Orthotropic Cylindrical Shell 

The components of the displacement vector in the elastic wave 
 zr U,U,UU 


 traveling along the axis Z, we clean in the form of the 

following decompositions [16, 17]: 
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where k – desired wave number of elastic wave. 

Substituting (1.17) in (1.18) we obtain the equations of dynamic 
equilibrium in displace-ments [16, 17]: 
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where:  
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where:  
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If now the components of the displacement vector  zr UUUU ,, 


 are 

replaced by their expansions  (1.18) and substituted (1.18) in (1.19)÷(1.21), 
then for radial functions U  rm  ,  rVm   rWm  we obtain the following 
equations [16, 17]:     
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Boundary conditions on the absence of stresses  rzrr ,,    on the 
external (r = a) and internal (r = b) surfaces of the shell are added to the 
equations (1.22)÷(1.24)  [16, 17]: 
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For thin shells it is advisable to use expansion in degrees 0Rz , 

where 
2

ba
R0


  - is the average radius, and 0Rrz   - is the 

coordinate measured from the middle surface [16 – 19]: 
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We substitute decompositions (1.28) in the boundary conditions 

(1.25)÷(1.27), as a result we get  6 equations for   1N3 1   unknown 
coefficients nnn z,y,x  [16, 17]: 
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The rest equations can be substitution of decompositions (1.28) in 

equations (1.22)÷(1.24) and by equated of coefficients at the fellow 
parameter ξ [16, 17]: 



Chapter One 
 

16

     
  

   
      
      

    ;0aaaa1nikRz

aaaan2ikRz1nRaaikz

aaaanmyaam1ny

akaRxakaR2x

akaRaamnx

1n21nx1n2nx

624201n

62420n0421n

5331n311n

4
2

7
2
02n4

2
7

2
01n

4
2

7
2
053

22
n

1n2n




















  (1.35) 
 

     
      

   
      ;0aaikmRzaaikmRzkaaR

ykaR2amaR2RyakaR

1amRny1n1n2y1n2ny

maRx1aRa1nmx1na1mx

111001n11100n
2

1112
2
0

2n
2

1109
2

12001n11
2

12
2
0

9
2

0
2

n1n2n

901n908n81n















  (1.36) 
 

      
     
       

    
  ,0akaRz

akaR2zakaRamnz

1n21nz2n1nzaaikmRy

aaikmRya1a11nikRx

a1a1n2ikRx1nRa1ikx

16
2

17
2
02n

16
2

17
2
01n16

2
17

2
013

22
n

1n2n131501n

13150n151401n

15140n0141n



















  (1.37) 
 

It is necessary to use   61N3 1  of equations (1.35)÷(1.37), but 
for 0n   and 1n   coefficients with negative indexes are equal to zero. 
Then in common with equations (1.29)÷(1.34) the homogeneous system of 
 1N3 1   equations relative to coefficients nnn z,y,x is formed. The we 

expand the determinant of this system and let this determinant is equal zero 
we receive the characteristic equation for wave numbers k of elastic waves 
with the mode m in the orthotropic cylindrical shell. 
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1.5. Sound Scattering by Randomly  
Oriented Spheroidal Bodies 

Let the spheroidal scatterer is found in the centre of the sector group of 
the hydrophones and he is orientated accident, only hydrophone is appeared 
by the sound radiator (Fig. 1-4), he radiates the harmonic sound signal of 
the frequency   . 

 

 
 
Figure 1-4: The orientation of the scatterer relatively of the source and the 
hydrophones 
 
The reflected of the body the signal is the multiplicative signal, consisting 
of the accidental and determinate parts. The determinate component can 
separate from the accidental component. We will suppose the accidental 
component by fixed and homogeneous [20, 21]. The angular correlation 
function of the fixed and homogeneous accidental field has the following 
appearance [22, 23]:     
 

      
1 2

2
, 1,2 1,2( , ) ( ) ( , ) ( , ),p pR p t R R                           (1.38) 



Chapter One 
 

18

where: 2 ( )p t   the middle square of the sound pressure;    the temporal 
interval between the signals (by us 0);   the line over the function 

1,2( , )R   means the averaging. 

The angular space correlation function 0
1,2 ( ;0 ),pR  setting the 

communication between hydrophones 0  and P , has appearance: 
 

    2

1

0 *
1,2 0 0 0 0 0( ;0 ) ( ; ) [ ; cos( )] ,p pR D D d




             (1.39) 

 
where: 0 0; arccosp p         the angle of the illumination; 1  

and 2   the cosines of the critical angles of the illumination; 

0 0( ; )D     the angular characteristic of the sound reflection in the 
direction at the source; * - means the complex conjugate quantity. 

At the base (1.39) were calculated the angular correlation functions of 
the soft and hard, prolate and oblate spheroids. For the soft prolate spheroid 
the angular characteristic of the scattering will have appearance [15]: 
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  (1.41) 
 

where: 1m   by 0;m   2m   by 0;m   , 0( , )m nS C    the angular 

spheroidal function; (1)
, 0( , )m nR C   and (3)

, 0( , )m nR C    the radial spheroidal 

functions first and third genders; 0C kh   the wave size, 0h   semi-

focal distance, k   the wave number in the liquid; 0   the radial 
spheroidal coordinate of the scatterer. 
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The correlation functions were calculated in the limits from 00  to 030  
with the step 02,5h    for the wave sizes 10,0C   and 3,1C  . The 
results of the calculations of the moduluses of the angular correlation 
functions of the sound scattering by the hard 0

1,2[ ( ;0 ) ]pR   (the curve 

1) and soft 0
1,2[ ( ;0 ) ]pR   (the curve 2) oblate spheroids for 10,0C   

are introduced at Fig. 1-5 (the angles of the intensive scattering). 
 

 
 
Figure 1-5: The modules of the angular correlation functions of the oblate spheroids 

 
For the examination of the hypothesis against homogeneous of the 

accident scattered field ( in limits of the sector 0 00 30 )  for the prolate 

spheroid were calculated the correlation functions ' 0
1,2 2( ; ;0 )pR     

and 0
1,2 2( ; ;0 )pR     relatively the zero hydrophone 0

2( 0 )   and 

hydro-phones with the angular position 0 0 0
2 10 , 20 ,30 .   At Fig. 1-6 

are shown the modules of the angular correlation functions of the prolate 
spheroid (soft and hard) by 0 ' 0

2 1,20 [ ( ;0 ) ]pR     (the curve 1) and 
0

1,2[ ( ;0 )pR   (the curve 2) and by 0 ' 0
2 1,2 230 [ ( ; ;0 ) ]pR     
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20

(the curve 3) and 0
1,2 2[ ( ; ;0 ) ]pR     (the curve 4) for the angles of the 

intensive scattering by 10,0.C    
 

 
 
Figure 1-6: The modules of the angular correlation functions of the prolate spheroids 
(by the angles of the intensive scattering) 
 
How may see from the plots, the modules of the angular correlation 
functions equally depend on the angle ,p  only the maximums of this 

functions displace at the angle 030 ,  what confirms of the hypothesis 
against of the homogeneous of the accident scattered field in this case. For 
the angles of the weak scattering the hypothesis against of the homogeneous 
of the accident scattered field don’t appear just already by 0

2 10 .   
From the curves of the Fig. 1-7, relating to this condition, we see, what by 
the transition from 0

2 0   by 0
2 10   is reversed the form of the 

angular correlation functions.  
 


