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PREFACE 

Dynamics is a subject dealing with objects (natural or artificial) with mass 
in motion. It regards two fundamental questions. 

1) How do objects move?
2) Why do objects move?

The first question leads to the study of Kinematics and the second one to 
Kinetics. In Kinematics, motion of an object is described and quantified by 
its time-varying displacement (linear: d = d(t) / angular: q = q(t)), velocity 
(linear: v = v(t) / angular: w = w(t)), and acceleration (a=a(t)). These 
dynamic parameters (d, v, a) carry different forms in various coordinate 
systems. In Kinetics, the relationship between dynamic parameters and 
mechanical parameters (force F, moment M, work W, energy U, impulses, 
linear momentum L, angular momentum H) are investigated in order to 
explain the motion of an object.  

Students intending to succeed in Dynamics must be equipped with 
college-level Calculus and Statics. Topics like coordinate systems, 
trigonometry, vector analysis, differentiation, and integration are usually 
covered in the modern approach of college-level Calculus. In Statics, free-
body diagram, force equilibrium, and moment equilibrium are typically 
included.  

Over the past several years, I have been teaching Dynamics at the UMass 
Lowell to undergraduate students in Civil and Environmental Engineering, 
Mechanical Engineering, and Chemical Engineering. While there is a trend 
to use many illustrated examples to introduce the topics in Dynamics, many 
times I found students having difficulties grasping the big picture of 
Dynamics. Rather, many students treat the topics in Dynamics as 
disconnected dots, resulting in tedious efforts to learn these topics by 
memorizing specialized equations. I hope this book can solve this problem 
by presenting a systematic perspective on all topics in Dynamics.  



PREFACE xi 

It is this author’s intention to keep this manuscript as concise as possible. 
There are already many comprehensive titles on Dynamics, typically 
presented with sufficient illustrations to exemplify concepts in Dynamics. It 
is also this author’s intention to use abstracted sketches to describe concepts 
in Dynamics. Analytical reasoning can be fostered by identified key 
information and, in many cases, is better presented by simplified 
illustrations.  

 
As always, curiosity is the key to deepen one’s understanding on any 

subject. Students will find themselves at an elevated level of understanding 
if they care to constantly ask “why?” on everything they learn. This 
suggested approach is certainly time consuming, but it is also the only way 
to mastering any subject. The view on the top of a mountain is always 
magnificent, but only those who are willing to climb up can enjoy it.  

 
Tzuyang Yu 

Lowell, Massachusetts, U.S.A. 
December 2020 
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FUNDAMENTALS

Before introducing the topics in Dynamics, it is important to make sure 
that students are equipped with necessary knowledge from Calculus and 
Statics. The mission of this chapter is to help students review related 
topics in Calculus and Statics before they take on the journey in 
Dynamics. Related topics like coordinate systems (rectangular/Cartesian, 
polar, cylindrical, spherical) and the conversions among them, space-time 
conversion, and mass moment of inertia are reviewed in this chapter.  

1.1 Fundamental Axiom and Assumptions 

Before we start the journey, we must be aware of all fundamental 
axiom and assumptions and their consequences in Dynamics in order to 
understand the limitations of derived formulae in Dynamics. The 
fundamental axiom in Dynamics is 

All objects considered in Dynamics must be made of 
different kinds of matter with mass. The consequence of 
considering mass in Dynamics is the inertia (linear and/or 
angular) caused by changing the dynamic state of objects.  

Two fundamental assumptions are 

• Rigidity assumption – All objects considered in Dynamics are
rigid body, suggesting that they are undeformable (incompressible,
inextensible) when in motion. The consequence is that all
mechanical effects (e.g., stress/strain distribution) inside an object
are not considered in Dynamics.

• Velocity assumption – All velocities considered in Dynamics are
much less than the speed of light (2.99792458 × 10!
meters/second). The consequence is that relative motion holds true
in Dynamics.
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1.2 Coordinate Systems  
 
To answer the first basic question in Dynamics, “How do objects 

move?” one must be able to describe a motion. Using coordinates in 
selected coordinate systems serves the purpose. For the problems 
considered in Dynamics, the following coordinate systems are used.  

 
• The rectangular/Cartesian coordinate system  
• The polar coordinate system 
• The cylindrical coordinate system 
• The spherical coordinate system 
 
In rectangular/Cartesian coordinate systems, one-dimensional (1-D), 

two-dimensional (2-D), and three-dimensional (3-D) coordinates are 
available for dynamic parameters (displacement, velocity, and 
acceleration) of different dimensionalities. Since these parameters are 
directional, it is necessary to use vector representation to define them. 
Vectors are 1-D tensors, while scalars are zero-dimensional (0-D) tensors 
and matrices 2-D tensors.  

 
The axis vectors in rectangular coordinate systems are denoted by their 

unit vectors (�⃗�, �⃗�, 𝑧). It is also customary to use 2𝚤, 𝚥, 𝑘6⃗ 7 as the unit vectors 
in rectangular coordinate systems.  

 
In addition, 𝚤 ⊥ 𝚥, 𝚥 ⊥ 𝑘6⃗ , 𝑘6⃗ ⊥ 𝚤, and |𝚤| = |𝚥| = ;𝑘6⃗ ; = 1. Rectangular 

coordinates are denoted by (𝑥, 𝑦, 𝑧) with axes defined by (𝑋, 𝑌, 𝑍).  
 
𝑠 = 𝑠"�⃗� + 𝑠#�⃗� + 𝑠$𝑧		 (1-1) 
 
where 𝑠", 𝑠#, 𝑠$ = linear components of vector 𝑠 on 𝑋, 𝑌, 𝑍, 

respectively. The magnitude of 𝑠 is determined by 𝑠 = 	 |𝑠| =
	B𝑠"% + 𝑠#% + 𝑠$%. Fig. 1-1 shows vector 𝑠 in a 3-D rectangular coordinate 
system. 
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Fig. 1-1. 3-D rectangular/Cartesian coordinate representation of vector 𝑠 

 
In polar coordinate systems, 1-D and 2-D coordinates are available. 

Polar coordinates are denoted by (𝑟, θ) with axes defined by (𝑅, Θ) and 
unit vectors by 2𝑟, �⃗�7. The polar coordinate representation of vector 𝑠 is  

 
𝑠 = 𝑠&𝑟 +	𝑠'�⃗� (1-2) 
 
where 𝑠&, 𝑠' = linear and angular components of vector 𝑠 on 𝑅, Θ, 

respectively. The magnitude of 𝑠 is 𝑠 = 	 𝑠&. Fig. 1-2 shows vector 𝑠 in a 2-
D polar coordinate system. 

 
In cylindrical coordinate systems, 1-D, 2-D, and 3-D coordinates are 

available. Cylindrical coordinate systems are denoted by (𝑟, θ, z) with axes 
defined by (𝑅, Θ, Z) and unit vectors by 2𝑟, 𝜃, 𝑧7. The cylindrical 
coordinate representation of vector 𝑠 is  

 
𝑠 = 𝑠&𝑟 +	𝑠'�⃗� +	𝑠$𝑧 (1-3) 
 
where 𝑠&, 𝑠', 𝑠$ = linear, angular, and linear components of vector 𝑠 on 

𝑅, Θ, 𝑍, respectively. The magnitude of 𝑠 is 𝑠 = 	B𝑠&% + 𝑠$%. Fig. 1-3 
shows vector 𝑠 in a 3-D cylindrical coordinate system. 
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Fig. 1-2. 2-D polar coordinate representation of vector 𝑠 
 

 
 

Fig. 1-3. 3-D cylindrical coordinate representation of vector 𝑠 
 
In spherical coordinate systems, 1-D, 2-D, and 3-D coordinates are 

available. Spherical coordinate systems are denoted by (𝑟, θ, ϕ) with axes 
defined by (𝑅, Θ,Φ) and unit vectors by 2𝑟, �⃗�, 𝜙6⃗ 7. The cylindrical 
coordinate representation of vector 𝑠 is  

 
𝑠 = 𝑠&𝑟 +	𝑠'�⃗� +	𝑠(𝜙6⃗  (1-4) 
 
where 𝑠&, 𝑠', 𝑠( = linear, angular, and angular components of vector 𝑠 

on 𝑅, Θ,Φ, respectively. The magnitude of 𝑠 is 𝑠 = 	 𝑠&. Fig. 1-4 shows 
vector 𝑠 in a 3-D spherical coordinate system. 
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Fig. 1-4. 3-D spherical coordinate representation of vector 𝑠 
 
Conversion among coordinate systems is necessary in Dynamics when 

studying the interaction between two objects. From rectangular to 
cylindrical coordinates, 

 
𝑠& = B𝑠"% + 𝑠#% (1-5) 
𝑠' = tan)* P+!

+"
Q (1-6) 

𝑠$ = 𝑠$ (1-7) 
 
From cylindrical to rectangular coordinates, 
 
𝑠" = 𝑠& cos(𝑠') (1-8) 
𝑠# = 𝑠& sin(𝑠') (1-9) 
𝑠$ = 𝑠$ (1-10) 
 
From rectangular to spherical coordinates, 
 
𝑠& = B𝑠"% + 𝑠#% + 𝑠$% (1-11) 
𝑠' = tan)* +!

+"
 (1-12) 

𝑠( = tan)*
,+"#-+!#

+$
 (1-13) 

 
From spherical to rectangular coordinates, 
 
𝑠" = 𝑠& cos(𝑠') sin2𝑠(7 (1-14) 
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𝑠# = 𝑠& sin(𝑠') sin2𝑠(7 (1-15) 
𝑠$ = 𝑠& cos2𝑠(7 (1-16) 

 
Conversion between polar and rectangular coordinates is a special case 

of the one between cylindrical and rectangular coordinates, which can be 
obtained from Eqs. (1-5) ~ (1-10). 

 
1.3 Vector Algebra  

 
Arithmetic operations between two vectors fall into the discipline of 

vector algebra or linear algebra. In Dynamics, only simply arithmetic 
operations are used, including addition, subtraction, and multiplication. 
Their physical meanings in Dynamics are also introduced in this section.  
However, before we discuss these operations, properties of a vector must 
be introduced.  

 
Magnitude/amplitude – The magnitude or amplitude of a vector is 

defined by the summation of all components (𝑠 = |𝑠|). Since a vector can 
have various representations in different coordinate systems, its magnitude 
is determined differently, depending on the coordinate system. These 
representations are listed in the following. 
 

• Rectangular/Cartesian coordinates –  
𝑠 = B𝑠"% + 𝑠#% + 𝑠$% (1-17) 

 
• Polar coordinates –  

𝑠 = 𝑠& (1-18) 
 

• Cylindrical coordinates –  
𝑠 = B𝑠&% + 𝑠$% (1-19) 
 

• Spherical coordinates –  
 𝑠 = 𝑠& (1-20) 

 
Direction – The direction of a vector is defined by its directional 

vector. A directional vector is the unit vector of any arbitrary vector, 
which has a magnitude of unity. Depending on the coordinate system, a 
directional vector takes the following forms.  

 
• Rectangular/Cartesian coordinates –  
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�̂� = +⃗

,+"#-+!#-+$#
= +"

+
�⃗� + +!

+
�⃗� + +$

+
𝑧 (1-21) 

 
• Polar coordinates –  

�̂� = +⃗
+
= +%

+
𝑟 +	𝑠'�⃗� (1-22) 

 
• Cylindrical coordinates –  

�̂� = +⃗
/+%#-+$#

= +%
+
𝑟 +	𝑠'�⃗� +	

+$
+
𝑧  (1-23) 

 
• Spherical coordinates –  

 �̂� = +⃗
+
= +%

+
�⃗� +	𝑠'�⃗� +	𝑠(𝜙6⃗  (1-24) 

 
Addition/subtraction – Addition/subtraction between two vectors is 

carried out at the component level. Its result is another vector. Consider 
two vectors 𝑠 and 𝑑 in Cartesian coordinates.  

 
𝑠 ± 𝑑 = (𝑠" ± 𝑑")�⃗� + 2𝑠# ± 𝑑#7�⃗� + (𝑠$ ± 𝑑$)𝑧 		 (1-25) 

 
In Dynamics, addition/subtraction between two vectors leads to a 

resultant vector (e.g., displacement, velocity, or acceleration). This 
operation is frequently encountered in relative motion. Furthermore, 
subtraction between two position vectors defines a displacement vector.  

 
Multiplication – There are two major multiplication operations used in 

Dynamics, scalar or dot product and vector or cross product. The 
scalar/dot product between two vectors is a scalar, which is defined by 

 
𝑠 ∙ 𝑑 = 𝑠"𝑑" + 𝑠#𝑑# + 𝑠$𝑑$  (1-26) 

 
The vector/cross product between two vectors results in a vector, 

which is defined by 
 

𝑠 × 𝑑 = Z
�⃗� �⃗� 𝑧
𝑠" 𝑠# 𝑠$
𝑑" 𝑑# 𝑑$

Z  (1-26) 

= 2𝑠#𝑑$ − 𝑠$𝑑#7�⃗� + (𝑠$𝑑" − 𝑠"𝑑$)�⃗� + 2𝑠"𝑑# − 𝑠#𝑑$7𝑧         (1-27) 
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1.4 Dynamic Parameters and Space-Time Conversion 
 
In Dynamics, information regarding the motion of an object can be 

expressed in the time domain or the space domain. Physically, an object 
can move in one of the three modes: 1) translational/linear motion, 2) 
rotational/angular motion, and 3) general motion (translation and rotation), 
as shown in Fig. 1-5. These modes are further elaborated in the following. 

 

 
Fig. 1-5. Three fundamental modes in Dynamics 

 
1) Translational/linear motion – In translational motion, three linear 

dynamic parameters are used in describing the motion of an 
object; namely linear displacement s, linear velocity v, and linear 
acceleration a. In the vector form, relationships among these 
parameters are defined by 
 
𝑠(𝑡) = 𝑆(𝑡*) − 𝑆(𝑡0) = 𝑆* − 𝑆0 (1-28) 
𝑣(𝑡) = 1+⃗(3)

13
 (1-29) 

�⃗�(𝑡) = 156⃗ (3)
13
	 (1-30) 

 
where 𝑆* = position vector at time 𝑡* and 𝑆0 = position vector at 

time 𝑡0. Eqs. (1-29) and (1-30) both provide the expression of dt 
and, thus, can be equated, leading to 

 
1+⃗(3)
56⃗ (3)

= 156⃗ (3)
76⃗ (3)

	 (1-31) 
 
or simply 
 
�⃗�𝑑𝑠 = 𝑣𝑑�⃗� (1-32) 
 
which is valid regardless of any given space or time condition.  
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By definition, displacement is the change of position between 
two time instants (in this case, 𝑡0 and 𝑡*). Velocity is the 
instantaneous change of displacement between two time instants 
with infinitesimal difference in time. Acceleration is the 
instantaneous change of velocity between time instants with 
infinitesimal difference in time. This suggests that  

 
𝜖 = 𝑡* − 𝑡0 (1-33) 
 

where 𝜖 = infinitesimal difference in time. Should the difference 
between two time instants become significant, the average version 
of linear dynamic parameters is used.  

 
𝑠89:(∆𝑡) = 𝑆* − 𝑆0 (1-34) 
𝑣89:(∆𝑡) =

∆+⃗(∆3)
∆3

 (1-35) 

�⃗�89:(∆𝑡) =
∆56⃗ (∆3)
∆3

 (1-36) 
 

where ∆𝑡 = time difference and ∆𝑡 ≫ ϵ. 𝑠89: is the average 
linear displacement, �⃗�89: the average linear velocity, and �⃗�89: the 
average linear acceleration. Eqs. (1-28) to (1-30) and Eqs. (1-34) to 
(1-36) are all in the time domain.   

 
In some cases, it is useful to express these parameters in the 

space domain. To do so, the conversion between space and time 
variables is needed. Three examples are provided to demonstrate 
such conversion in linear motion.  

 
I. Constant displacement (static problem) 

 
𝑠 = 𝑐* (1-37) 
𝑣 = 0 (1-38) 
𝑎 = 0	 (1-39) 
 
where 𝑐* = constant. In static problems, no space-time 
conversion is possible.  
 

II. Constant velocity 
 
𝑠(𝑡) = 𝑐* + 𝑐%𝑡 (1-40) 
𝑣 = 𝑐% (1-41) 
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𝑎 = 0	 (1-42) 
 
where 𝑐% = constant. Eq. (1-40) leads to 
 
𝑡(𝑠) = *

<#
(𝑠 − 𝑐*) (1-43) 

 
III. Constant acceleration 

 
𝑠(𝑡) = 𝑐* + 𝑐%𝑡 + 𝑐=𝑡% (1-44) 
𝑣(𝑡) = 𝑐% + 2𝑐=𝑡 (1-45) 
𝑎 = 2𝑐=	 (1-46) 
 
where 𝑐= = constant. Applying the quadratic formula to Eq. (1-
44) leads to  
 
𝑡(𝑠) = *

%<&
eB𝑐%% − 4𝑐=(𝑐* − 𝑠) − 𝑐%f (1-47) 

 
Furthermore,  
 
𝑣(𝑠) = B𝑐%% − 4𝑐=(𝑐* − 𝑠) (1-48) 

 
Example 1-1: Constant acceleration in a gravitational field. 
 

In a gravitational field, motion of objects is in constant acceleration 
such that 𝑎 = 𝑎> = gravitational acceleration. Therefore, from Eq. (1-
44), 𝑎> = 2𝑐= or 𝑐= =

*
%
𝑎>. Equation (1-45) then becomes 

 

𝑡(𝑠) = *
7'
gh𝑐%% − 2𝑎>(𝑐* − 𝑠) − 𝑐%i (E1-1) 

 
As for Eq. (1-43), the dimension of 𝑐% must be same as 𝑣(𝑡), 
suggesting that 𝑐% = 𝑣0. 
 
𝑣(𝑡) = 𝑣0 + 𝑎>𝑡 (E1-2) 
 
Substituting 𝑐% = 𝑣0 and 𝑐= =

*
%
𝑎> into Eq. (1-42), we have 

 
𝑠(𝑡) = 𝑐* + 𝑣0𝑡 +

*
%
𝑎>𝑡% (E1-3) 
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Dimensional consistency demands the unit of 𝑐* to be same with 𝑠(𝑡), 
suggesting that 𝑐* = 𝑣0. Finally,  
 
𝑠(𝑡) = 𝑠0 + 𝑣0𝑡 +

*
%
𝑎>𝑡% (E1-4) 

 
Eqs. (E1-2) and (E1-4) can also be derived by integrating Eqs. (1-44) and 
(1-43), respectively.  

 
2) Rotational/angular motion – In angular motion, three angular 

dynamic parameters are used in describing the motion of an 
object; namely angular displacement q, angular velocity w, and 
angular acceleration a. In the vector form, relationships among 
these parameters are defined by 
 
𝜃(𝑡) = 𝜃(𝑡*) − �⃗�(𝑡0) = �⃗�* − �⃗�0 (1-49) 
𝜔66⃗ (𝑡) = 1'66⃗ (3)

13
 (1-50) 

�⃗�(𝑡) = 1?666⃗ (3)
13

	 (1-51) 
 

where 𝜃* = angular position vector at time 𝑡* and �⃗�0 = angular 
position vector at time 𝑡0. Eqs. (1-50) and (1-51) both provide the 
expression of dt and can be equated, leading to 

 
1'66⃗ (3)
?666⃗ (3)

= 1?666⃗ (3)
@66⃗ (3)

	 (1-52) 
 
or simply 
 
�⃗�𝑑�⃗� = 𝜔66⃗ 𝑑𝜔66⃗  (1-53) 
 
which is valid regardless of any given space or time condition.  

 
By definition, angular displacement is the angular change of 

position between two time instants (in this case, 𝑡0 and 𝑡*). Angular 
velocity is the instantaneous change of angular displacement 
between two time instants with infinitesimal difference in time. 
Angular acceleration is the instantaneous change of angular velocity 
between time instants with infinitesimal difference in time. Similar 
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discussion in Eqs. (1-33)~(1-36) for linear motion applies to 
angular motion.  

 
The space-time conversion in linear motion can also be carried 

out in angular motion. Three examples are provided to demonstrate 
such conversion in angular motion.  

 
I. Constant displacement (static problem) 

 
𝜃 = 𝑐* (1-54) 
𝜔 = 0 (1-55) 
𝛼 = 0	 (1-56) 
 
where 𝑐* = constant. As expected, no space-time conversion is 
possible in static problems. 
 

II. Constant velocity 
 
𝜃(𝑡) = 𝑐* + 𝑐%𝑡 (1-57) 
𝜔 = 𝑐% (1-58) 
𝛼 = 0	 (1-59) 
 
where 𝑐% = constant. Eq. (1-57) leads to 
 
𝑡(𝜃) = *

<#
(𝜃 − 𝑐*) (1-60) 

 
III. Constant acceleration 

 
𝜃(𝑡) = 𝑐* + 𝑐%𝑡 + 𝑐=𝑡% (1-61) 
𝜔(𝑡) = 𝑐% + 2𝑐=𝑡 (1-62) 
𝛼 = 2𝑐=	 (1-63) 
 
where 𝑐= = constant. Applying the quadratic formula to Eq. (1-
61) leads to  
 
𝑡(𝜃) = *

%<&
eB𝑐%% − 4𝑐=(𝑐* − 𝜃) − 𝑐%f (1-64) 

 
Furthermore,  
 
𝜔(𝑠) = B𝑐%% − 4𝑐=(𝑐* − 𝜃) (1-65) 
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3) General motion (translation and rotation) – In general motion, 

an object carries both linear and angular components of dynamic 
parameters. The result of this superposition is the difference 
between the linear dynamic parameters at the center of rotation and 
everywhere else. In general motion, we have the following six 
equations to use.  
 
𝑣(𝑡) = 1+⃗(3)

13
 (1-29) 

�⃗�(𝑡) = 156⃗ (3)
13
	 (1-30) 

�⃗�𝑑𝑠 = 𝑣𝑑�⃗� (1-32) 
𝜔66⃗ (𝑡) = 1'66⃗ (3)

13
 (1-50) 

�⃗�(𝑡) = 1?666⃗ (3)
13

	 (1-51) 
�⃗�𝑑�⃗� = 𝜔66⃗ 𝑑𝜔66⃗  (1-53) 
 
Superposition of linear and angular components at the center of 
rotation applies because there is no linear motion at the center of 
rotation. The general motion at the locations other than the center of 
rotation will be discussed in Chapter 7 Two-dimensional General 
Motion. 
 
 

1.5 Mass Moment of Inertia 
 
Recall Newton’s Second Law of Motion. 
 
“Force is equal to the change in momentum per change in time. For a 

constant mass, force equals mass times acceleration.” 
 

–––– Issac Newton (1686),  
“Principia Mathematica Philosophiae Naturalis” 

 
When moving from rest in linear motion, an object needs to overcome 

its linear inertia (mass m) by introducing a force F.  
 
𝐹 = 𝑚𝑎 (1-51) 
 
where a = linear acceleration (m/s2 or ft/s2). To determine how much 

force is needed to achieve a given acceleration, the mass must be known. 
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When moving from rest in angular motion, an object needs to overcome its 
angular inertia (mass moment of inertia, denoted by I) by introducing a 
force moment M.  

 
𝑀 = 𝐼𝛼 (1-52) 
 
where a = angular acceleration (rad./s2). To determine how much 

moment is needed to achieve a given angular acceleration, the mass 
moment of inertia must be known. Mass moment of inertia carries the unit 
of kg-m/s2 in the SI Unit and slug-ft/s2 in the FPS system.  

 
The value of mass moment of inertia of an object is calculated by the 

following two properties.  
 
1) Reference point – It indicates the centre of rotation; with respect to 

(w.r.t.) a specific point. 
2) Axis of rotation – It indicates the direction of rotation; w.r.t. a 

specific axis. 
 

As a result, mass moment of inertia should be denoted by (𝐼A)B where 
subscript 𝑖 denotes a reference point and subscript 𝑗 the axis of rotation. 
Therefore, an object has many values of mass moment of inertia, 
depending on the selected reference point and the selected axis of rotation. 
Consequently, a complete description of mass moment of inertia is, for 
example, 𝐼"0 or (𝐼0)" where 0 denotes a reference point and x an axis of 
rotation.  
 

There are two approaches to calculate I. 
 
1) Integration – By definition, mass moment of inertia is found by the 

general form.  
 

𝐼 = ∫ 𝑟%𝑑𝑚C  (1-53) 
 
where V = volume of the object, r = distance variable perpendicular to 

the axis of rotation,  dm = derivative of mass. For instance, y and z can be 
used to find (𝐼0)" and x and z to find (𝐼0)#, depending on the mathematical 
ease of integral.  
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2) Parallel axis theorem – The mass moment of inertia w.r.t. any 
reference point other than the centre of mass (or centre of gravity 
if uniform density) can be found by  

 
(𝐼*)A = (𝐼0)A +𝑚𝑑% (1-54) 

 
where (𝐼*)A = mass moment of inertia w.r.t. the i-axis passing through 

point 1, (𝐼0)A = mass moment of inertia w.r.t. the i-axis passing through 
the centre of mass (point 0 in this case), 𝑚 = mass, and 𝑑 = distance 
between two parallel axes. i could be x or y or z in a Cartesian coordinate 
system.  

 
Since 𝑑% ≥ 0 and 𝑚 ≥ 0 , it is evident that the mass moment of inertia 

at the centre of mass must be the minimum of all possible values of (𝐼*)A 
w.r.t. any point else. Meanwhile, since the i-axis passing through point 1 
must be in parallel with the i-axis passing through the centre of mass (they 
are both i-axis), hence the name parallel axis theorem.  

 
Eq. (1-54) can also be written as  

 
(𝐼D)A = (𝐼E)A +𝑚𝑑% (1-55) 

 
where (𝐼D)A = mass moment of inertia w.r.t. the i-axis passing through 

point O (center of rotation), (𝐼E)A = mass moment of inertia w.r.t. the i-
axis passing through the center of mass. Both Eq. (1-54) and (1-55) 
represent the mathematical form of parallel axis theorem.  
 

The following principles provide instrumental values to calculating 
mass moment of inertia.  
  

• Principle of symmetry – From the definition of mass moment of 
inertia in Eq. (1-53), positive or negative sign of variable 𝑟 does 
not make any difference in the value of I. This leads to the 
principle of symmetry in the calculation of mass moment of 
inertia. 

  
∫ (+𝑟)%𝑑𝑚C = ∫ (−𝑟)%𝑑𝑚C  (1-56)  
 
Fig. 1-6 provides examples of symmetric objects (with identical 
mass moment of inertia) w.r.t. to X and Y axes in a Cartesian 
coordinate system. 
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Fig. 1-6. Objects with identical mass moment of inertia due to 

symmetry  
 
• Principle of equivalence – For some geometries, they have 

identical mass moment of inertia if change of shapes does not 
change the center of mass. In Fig. 1-7, all three triangles have 
same mass moment of inertia w.r.t y axis.  
 

 
 

Fig. 1-7. Objects with identical mass moment of inertia due to 
equivalence  

 
• Principle of superposition – By utilizing parallel axis theorem, an 

object can be considered as an assembly of small objects of regular 
shape. This is written by 
 
(𝐼D)A = ∑ u(𝐼E)AF +𝑚𝑑F%vG

FH*  (1-57) 
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where (𝐼E)AF = mass moment of inertia w.r.t. the i-axis passing 
through the center of mass of the kth small object, 𝑑F  = parallel 
distance from the mass center of the kth small object to the axis of 
rotation. For example, the leftmost triangle in Fig. 1-8 can be 
considered as the assembly of small objects 1 and 2.  

 

 
Fig. 1-8. Superposition of objects  

 
One last note on mass moment of inertia is the significance of density 

r.  Since mass is the product of density r and volume V, Eq. (1-53) can be 
written as 

 
𝐼 = ∫ 𝑟%(𝜌𝑑𝑉)C  (1-58) 
 
Should we assume homogeneous objects, density is constant.  
 
𝐼 = 𝜌 ∫ 𝑟%𝑑𝑉C  (1-59) 
 
However, most engineering structures are not homogeneous and do not 

have constant density. Therefore, Eq. (1-58) must re-written into the 
following for composite sections and structures.  

 
𝐼 = ∑ ∫ 𝑟%(𝜌A𝑑𝑉A)C

G
AH*  (1-60) 

 
where n = total number of materials, 𝜌A = density of the ith material, and 

𝑑𝑉A = unit volume of the ith material. Furthermore, also from Eq. (1-58), a 
small object may possess greater values of mass moment of inertia than a 
large object, if the small object is made of denser/heavier material.  
 



1 
 

 

18 

Example 1-2: Mass moment of inertia of a triangular plate in various 
orientations. 

 
To better understand the concept and calculation of mass moment of 
inertia, we consider three orientations of a triangular plate in this 
example.  
 
(a) Orientation I 
Consider orientation I as shown in Fig. E1-1. The thickness of the plate 
is w, and the density is r. Determine 𝐼# and 𝐼$. 

 
Fig. E1-1. Orientation I of a triangular plate 

 
𝐼# = ∫ 𝑧%𝑑𝑚C  (E1-5) 

𝐼$ = ∫ 𝑦%𝑑𝑚C  (E1-6) 
 

Consider the integration scheme in Fig. E1-2 (a) for 𝐼# and Fig. E1-2 
(b) for 𝐼$. 

 


