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1 Preface

Scattering with one-particle targets is well developed in atomic and
nuclear physics, but its counterpart with macroscopic targets still ex-
hibits insufficiencies, in spite of the large amount of spectroscopical
techniques employed in condensed matter. This book is devoted to
an exploration of scattering in condensed matter. By condensed mat-
ter we mean large macroscopic targets, consisting of a large number
of scattering centres like atoms, molecules, and unit cells in crystals.
Scattering by inhomogeneities in continuous media (e.g., light sound)
is briefly treated. Also, we include a recent development of charge
scattering by laser pulses. Many other types of condensed matter,
like plasmas, soft matter, superfluids, etc, are left aside. As regards
the projectiles, we deal with pointlike charges like electrons or ions,
light and X- and gamma rays, neutrinos, neutrons. Many other types
of scattering in condensed matter are not included. The book focuses
on basic problems raised by scattering in condensed matter.

The first problem concerns the classical or quantum-mechanical na-
ture of the interaction of the projectile with a one-particle target.
If the range of the interaction is larger than the variation range of
the target wavefunction, the collision is classical. For instance, this
may happen for radiation scattering, where we can derive the cross-
section by classical electromagnetism. On the other hand, the inter-
action may vary abruptly over the range of the wavefunction, like
for neutron contact interaction, where the motion of the target is
quantum-mechanical. However, the corresponding energy transfer is
thermalized, such that the scattering is classical, as in diffraction.

The scattering process in condensed matter is a local process: a local
portion of the incoming wave (radiation, particle wave) interacts with
a local portion of the macroscopic target. In this respect, the scatter-
ing in condensed matter may have a quantum-mechanical character.
We may imagine that an incoming quantum particle is absorbed by
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1 Preface

the target and thereafter released, emitted by the target. Therefore,
the scattering interaction may carry a quantum phase. If the phase
is the same for all scatterers, the scattering is coherent, and the scat-
tering cross-section is proportional to N2, where N is the number of
scatterers. If the phase varies randomly from scatterer to scatterer,
the scattering is incoherent and the cross-section is proportional to
N . The difference between coherent and incoherent scattering is well-
known for multi-particle targets, but it is not sufficiently exploited in
condensed matter.

Although the scattering in condensed matter may be ultimately quan-
tum-mechanical, in some cases a quasi-classical description is valid.
However, a phase carried by interaction may also be present in these
cases. According to the interpretation of the scattering as an absorp-
tion/emission process, this phase has in fact a statistical character.

Another element which receives less attention, in spite of its impor-
tance, is the momentum and energy conservation in scattering in con-
densed matter. This conservation is emphasized throughout this book,
together with the force acting upon the target. An estimation of this
force, acting in the forward direction, is F = Φpσ, where Φ is the flux
density of the projectile (number of particles per unit time and unit
cross-section of the target), p is the momentum of the incident particle
and σ is the scattering cross-section. The momentum conservation in
coherent scattering may lead to diffraction peaks, infinitesimally ex-
tended for macroscopic targets; while the incoherent scattering does
not exhibit peaks; it proceeds by the conservation of the momentum
of individual scatterers, or elementary excitations like phonons. The
infinitesimal extension of the coherent peaks diminishes the scatter-
ing cross-section from ∼ N2 to ∼ N4/3. We call this scattering a
coherent diffraction. This is the usual point which receives the main
attention in scattering in condensed matter. It seems that only the
coherent diffraction and the incoherent scattering are known in con-
densed matter. We call these scatterings classical scatterings.

Here we encounter the first big problem. The cross-section of the
coherent diffraction is σ = N4/3σ0, where σ0 is the one-particle cross-
section. For all scatterings in condensed matter, with one exception,
this cross-section is larger than the cross-section A of the target. The
exception is neutrino scattering, which, anyway, raises other problems.

2



1 Preface

Now, the number of scattered particles (per unit time) cannot exceed
the number of incident particles, so the cross-section σ should always
be smaller than A. This condition is usually overlooked. It seems
that in X-ray diffraction it is implied that this condition would be
satisfied by the so-called dynamic X-ray scattering. However, this
dynamic scattering brings only small corrections to the cross-section.

The way out from this deadlock is provided by the coherence domains,
which we introduce in this book. Usually, the macroscopic target is
at thermal equilibrium. Under the action of the incident particles
the macroscopic target is taken out of equilibrium. Consequently, the
target tries to regain as much of its thermal equilibrium as possible.
This can only be done by developing a disorder, which would increase
the entropy. In these circumstances this disorder can only be asso-
ciated to phase factors. Being still under the action of an external
agent, the increase in entropy should be minimal, such that the cross-
section is maximal: it is reduced to the target cross-section A. The
target cross-section A is a macroscopic quantity in reasonable limits.
If the target is very large, then radiation extinction may appear, as
well as absorption, multiple scatterings, such that the description of
the scattering is not so simple anymore. We assume that a number
nd = N/Nd of (identical) domains appear in the target, where Nd is
the number of particles in each domain, 1 < Nd < N . In each domain
the scattering phase is constant and the domain phases are randomly
distributed. It follows that the cross-section becomes

σ = ndσd , (1.1)

where σd is the cross-section of one domain. For a coherent scat-
tering we have σd = N2

dσ0, for a coherent diffraction we have σd =

N
4/3
d σ0, such that we have σ = NNdσ0 for coherent scattering and

σ = NN
1/3
d σ0 for coherent diffraction. We note that for an incoherent

scattering Nd = 1 and both formulae give the same result σ = Nσ0.
It is convenient to introduce f = 1/Nd, where 1/N < f < 1. We get

σ =
Nσ0
f

(1.2)

3



1 Preface

for coherent scattering and

σ =
Nσ0
f1/3

(1.3)

for coherent diffraction. The condition

σ < A (1.4)

should be fulfilled for any scattering in condensed matter.

The above inequality should be satisfied for 1/N < f < 1. Now, there
is another circumstance which should be included in such an analysis.
The domains are regions of continuity of the scattering phase. The
phase is associated with the atomic constituents of the macroscopic
target. Any macroscopic target has a discrete structure. Therefore,
there should exist a critical extension of each continuity domain. We
show in this book that the critical number of particles in each (three-
dimensional) domain is given by Ndc = (a/a0)

9, where a is the mean
separation distance between the particles and a0 is the atomic dimen-
sion of each particle. For instance, for a = 4a0 we can take Ndc of the
order ≃ 106. In two dimensions Ndc = (a/a0)

4, which is of the order
≃ 103 for a = 4a0. Therefore, f should satisfy the condition f < 10−6

(f < 10−3). For f > 10−6 (f > 10−3) the domains are not well de-
fined; they are reduced to individual particles and the scattering is
incoherent (f = 1).

On the other hand, the principle of maximal cross-section requires
σ = A, i.e. f = Nσ0/A for coherent scattering and f = (Nσ0/A)

3 for
coherent diffraction. For neutrino scattering, with σ0 = 10−44cm2 and
N = 1022 (0.1mol) we get f = 10−22/A for coherent scattering, which
is less than 1/N for a macroscopic target. It follows Nd = N , i.e. a
coherent scattering may appear in the whole target. This is a novelty
for the scattering in condensed matter, which needs to be accommo-
dated by a theory. For σ0 = 10−24cm2 (X-, gamma rays, neutrons) we
get f = 10−2/A, which is not acceptable; a tendency exists towards
an incoherent scattering (f → 1). Therefore, a coherent scattering
cannot appear in this case. However, for a coherent diffraction we
have f = 10−6/A3, which is acceptable, and Nd = 106A3: a coherent
diffraction may appear in this case. The condition σ < A (σ = A) is a
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1 Preface

necessary condition for scattering. It remains to differentiate between
the coherent scattering and the coherent diffraction.

The above hypothesis of coherence domains leads, in certain con-
ditions (neutrino scattering), to a coherent scattering in the whole
macroscopic target. That means that the scattering phase is the same
in the whole macroscopic target. A constant scattering phase may ap-
pear in small targets, with a small number of particles, for incident
wavelengths much longer than the dimension of the target; indeed, the
phase variation over the dimension of such a target is small, so the
phase may be taken constant. In macroscopic targets the scattering
phase can only be constant if the incoming particles see the target as
a whole. This means that the macroscopic target, namely the con-
stituents of the macroscopic target, should be described in this case by
a quantum field (a distributed wavefunction). This is a macroscopic
quantum scattering, i.e. a scattering which is quantum-mechanical at
the macroscopic scale. As long as we introduce phase factors in de-
scribing the scattering we deal with a quantum scattering, which re-
quires quantum fields. The coherent diffraction does not employ such
fields, although a wavefunction of the whole target (center of mass)
is necessary. We may call the coherent diffraction a classical scatter-
ing. The macroscopic quantum scattering is introduced in this book.
For crystals, a field of the whole target implies the quasi-momentum
of the crystal. This is a coherent field (wavefunction). In addition,
for all types of targets, there exist fields (wavefunctions) associated
with the thermal motion of the atomic constituents. Basically, they
are reduced to the one-particle wavefunctions of the target. We call
them incoherent fields (wavefunctions). The coherent field has a sig-
nificant weight in comparison to the incoherent field for stiff crystals
with a high Debye temperature. The coherent field leads to a coher-
ent cross-section ∼ N2, while the incoherent fields give a cross-section
∼ N . In the former case the momentum transfer is taken by the
quasi-momentum, i.e. by the whole crystal, while in the latter case
the momentum is transferred to collective excitations like phonons.

A macroscopic quantum scattering is only possible if the collision time
τ is longer than the equilibrium time ∆teq ,

τ > ∆teq , (1.5)

5



1 Preface

such that the incident particle flux sees the target as a whole. The
collision time is the mean time between two succesive collisions. It
is given by τ = 1/Φσ, where Φ is the flux density of the incident
particles. The equilibrium time is the mean time needed by a target
particle to regain its equilibrium. It is given by ∆teq = ~/∆E, where
∆E is the energy transfer to a particle. The energy transfer is esti-
mated as ∆E = (v + p/M)p, where v is the thermal velocity of the
target particles, M is the mass of the target particles and p is the
momentum of the incident particles (of the order of the momentum
transfer). It is convenient to introduce a threshold given by p =Mv,
such that for p < Mv we may use ∆E = vp and for p > Mv we may
use ∆E = p2/M . The threshold energy of the incident particles with
mass m is E = p2/m = M

m T , while for radiation E = cp = c
√
MT ,

where T is the temperature. For instance, for M = 105me, where
me is the electron mass, and room temperature T = 300K we get
E ≃ 1eV for neutrons, E ≃ 1keV for electrons and E ≃ 10keV for
radiation (neutrino included).1 If τ < ∆teq the incident beam sees the
target particles as individual scatterers. This is a coherent diffraction
(classical scattering).

Let us apply inequality (1.5) for neutrino coherent scattering. To-
gether with condition (1.4) we have

f >
Nσ0
A

, f >
~ΦNσ0
∆E

. (1.6)

For an incident flux density Φ = 1012/cm2 · s we have ∆E/~Φ ≃
103∆E(eV ); for E = 1MeV the energy transfer is ≃ 20eV , such that
A ≪ ∆E/~Φ. Consequently, only the first inequality (1.6) needs to
be satisfied. This condition has been examined above, so we may con-
clude that neutrino coherent scattering appears in the whole macro-
scopic target (for the numerical data used here). The force acting
upon the macroscopic target is a measurable force, due to the large
cross-section of the sample. This may justify the claims of Weber
and others, in spite of many negative opinions, of the possibility of
neutrino detection by using a torsion balance with a stiff sapphire
crystal.

1me = 10−27g, neutron mass m ≃ 2 × 103me, c = 1010cm/s, 1eV = 1.6 ×
10−12erg, 1K = 1.38× 10−16erg, ~ = 10−27erg·s.
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For a coherent diffraction we need

Nσ0
A

< f1/3 <
~ΦNσ0
∆E

. (1.7)

First, we note that these inequalities imply a small energy transfer,
such that the energy of the incident neutrons, or radiation is low
(∆E < ~ΦA). Since, according to the principle of maximal cross-
section, we have Nσ0

A = f1/3, it follows that this coherent diffraction
is possible, with domain dimension as large as that found above (Nd =
106A3). However, the force acting upon the target is small, precisely
due to the domain occurrence. For higher energies the energy transfer
is larger and we need to apply the inequalities (1.6). Making use of
σ0 = 10−24cm2, we get f = 10−2/A, which indicates an incoherent
scattering (f → 1). The force acting upon the target is very small.

This book deals with such considerations. Their results depend on
the numerical data. Besides a large variety of the known input data,
serious uncertainties exist also in some input data. Many types of
scattering in condensed matter are not analyzed herein, both for vari-
ous projectiles and various macroscopic targets. For instance, a special
case is the electron scattering, which proceeds on small superficial lay-
ers; the coherence domains are two-dimensional. It is an incoherent
scattering with a weak coherent diffraction.

7





2 Scattering, Collisions

2.1 Born scattering

A quantum particle with mass m comes from somewhere at minus
infinity, where it starts at the moment of time t = 0, and collides with
a particle with mass M . The two particles interact with the potential
U(r), where r is the relative position of the two particles. The M -
particle is fixed and structureless. After collision the m-particle goes
somewhere at plus infinity, where it arrives at the infinitely long time
t. We assume that the potential U falls sufficiently rapidly at infinity,
such that the incoming particle at minus infinity and the outgoing
particle at plus infinity are free. The motion of the colliding particle
obeys the Schroedinger equation

− ~
2

2m
∆ψ + U(r)ψ = Eψ , (2.1)

where ψ is its wavefunction, E is the particle energy (and ~ is Planck’s
constant). The solution of equation (2.1) is a stationary solution, with
a constant energy, which means that the collision is elastic. We write
this energy as E = ~

2k2/2m, where k is the wavevector of the incom-
ing particle at minus infinity (and p = ~k is its momentum). The
particle wavefunction is ψi =

1√
V
eikr, where V denotes the volume.

It satisfies the Schroedinger equation

− ~
2

2m
∆ψi = Eψi , (2.2)

written also as
∆ψi + k2ψi = 0 . (2.3)

Let us assume that the potential U is sufficiently small, in a sense
which will be shortly specified, such that we seek a perturbation-
theory solution of equation (2.1), written as ψ = ψi + ψs, where the

9



2 Scattering, Collisions

small correction ψs satisfies the equation

∆ψs + k2ψs =
2m

~2
Uψi + ... . (2.4)

The solution is valid as long as | ψs |≪| ψi |. ψs is the scattered wave.
This is a Helmholtz equation. Its solution is given by

ψs(r) =
2m

~2

ˆ

dr′U(r′)ψi(r
′)G(r − r′) , (2.5)

where G is the Green function satisfying the equation

∆G+ k2G = δ(r) . (2.6)

By using Fourier transformations, we get

G(r) = − 1

(2π)3

ˆ

dq
eiqr

q2 − k2 = − 1

4π2ir

ˆ +∞

−∞
dq

qeiqr

q2 − k2 . (2.7)

In order to perform this integration, we need to give a sense to the
singularities q = ±k. Now, we remember that k2 ∼ E/~ = ω, and the
integration over frequency ω of the phase factor e−iωt should be zero
for t < 0, in order to satisfy the causality principle. Therefore, the
integration should be performed in the upper half-plane (for t < 0)
and the ω-poles must lie in the lower half plane, i.e. ω → ω + iε,
ε→ 0+. Therefore, the integral in equation (2.7) becomes

G(r) = − 1

4π2ir

ˆ +∞

−∞
dq

qeiqr

q2 − k2 − iε = − 1

4π

eikr

r
, (2.8)

and the solution of the Helmholtz equation (2.4) is1

ψs(r) = −
m

2π~2
√
V

ˆ

dr′U(r′)eikr
′ eik|r−r′|

| r − r′ | . (2.9)

Now, we can estimate the magnitude of ψs for the condition | ψs |≪
| ψi |. For a short range potential with magnitude U , extending over
a small range a, and low energies ka≪ 1 we get from equation (2.9)

m | U | a2
~2

≪ 1 ; (2.10)

1M. Apostol, Equations of Mathematical Physics, Cambridge Scholars Publish-
ing, Newcastle upon Tyne (2018).
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the potential should be smaller than the localization energy ~
2/ma2

over region of extension a. In the same conditions but for high energies
ka≫ 1, the condition reads, from equation (2.9),

m | U | a2
~2ka

≪ 1 , (2.11)

or

| U |≪ ~v

a
, (2.12)

where v = ~k/a is the velocity of the incoming particle; for a Coulomb
potential U = α/r, there is no a, and the evaluation of the integral
in equation (2.9) leads to m | α | /~2k ≪ 1, or | α |≪ ~v. These are
the validity conditions for the perturbation-theory treatment of this
collision problem.2

We are interested in the scattered wave at plus infinity. For r ≫ r′,
| r − r′ |≃ r − rr′/r, such that k′ = kr/r is the wavevector of the
scattered particle (Fraunhofer diffraction); the scattered wavefunction
given by equation (2.9) becomes

ψs(r) ≃ −
m

2π~2
√
V

eikr

r

ˆ

dr′U(r′)ei(k−k′)r′

; (2.13)

it is a spherical wave eikr/r distorted by the scattering amplitude

F (k − k′) = − m

2π~2

ˆ

dr′U(r′)ei(k−k′)r′

; (2.14)

it is a scattering length. This is Born’s formula.3 The scattering
amplitude is proportional to the Fourier transform of the potential.
The number of particles scattered in the solid angle at large distances
per unit time is

v′ | ψs |2 r2do =
~k

mV
| F |2 do , (2.15)

2L. Landau and E. Lifshitz, Course of Theoretical Physics, vol. 3, Quantum

Mechanics, Butterworth-Heinemann, Oxford (1993).
3M. Born, "Zur Quantenmechanik der Stossvorgaenge", Z. Phys. 37 863 (1926);

"Quantenmechanik der Stossvorgaenge", Z. Phys. 38 803 (1926).
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2 Scattering, Collisions

where v′ = ~k′/m, v′ = ~k/m; the flux density of the incoming
particle is v | ψi |2= ~k

mV (current density, number of particles per
unit area and unit time). The ratio of these two quantities gives the
(differential) cross-section

dσ =| F |2 do (2.16)

(it has the dimension of an area).

We note that the total number of scattered particles ∼| ψs |2 r3 ∼
σ/r2 in the volume V is much smaller than the total number of inci-
dent particles (1), due to the factor 1/r in equation (2.13).

For a screened Coulomb potential U = αe−γr/r we get F = (2mα/~2)/
(q2+γ2), where q = k−k′. The cross-section is much smaller than the
characteristic area 1/γ2 (mα/~2γ ≪ 1), precisely due to the condition
(2.10).

For the Coulomb potential (γ → 0) we get the Rutherford cross-
section4

dσ =
α2

16E2 sin4 θ
2

do , (2.17)

where E = ~
2k2/2m is the energy of the projectile and θ is the scat-

tering angle (the angle between k and k′). The total cross-section
is infinite, due to the singularity at θ = 0. The Coulomb potential
is an unrealistic case (a "pathological" case). The physical electric
potentials are screened.

For an atom with the nucleus charge −Ze, where e is the electron
charge, the potential is given by the Poisson equation

∆ϕ = 4πZeδ(r)− 4πen(r) , (2.18)

where n(r) is the electron density. The Fourier transformation gives
ϕ(q) = −4πe[Z−n(q)]/q2, where n(q) =

´

drn(r)e−iqr is the atomic
form-factor. For an incident charge Q the potential energy is U(q) =
−4πeQ[Z−n(q)]/q2 and the cross-section is dσ = (2meQ/~2q2)2[Z−
n(q)]2do.5

4E. Rutherford, "The scattering of α and β particles by matter and the structure
of the atom", Phil. Mag. 21 669 (1911).

5N. F. Mott, "The scattering of electrons by atoms", Proc. Roy. Soc. A127 658
(1930).

12



2 Scattering, Collisions

In order to get an estimate of the Coulomb cross-section we assume
an electron-electron collision with a screened Coulomb potential. The
cross-section is

σ = π

(
2me2

~2

)2
1

k2γ2
4k2/γ2

4k2/γ2 + 1
. (2.19)

The parameter γ is of the order γ = 1/aH , where aH = ~
2

me2 = 0.53Å
is the Bohr radius (~ = 10−27erg ·s, m = 10−27g, e = −4.8×10−10esu,
1Å = 10−8cm). For kaH ≪ 1 the cross-section is of the order a2H , for
kaH ≫ 1 the cross-section is of the order σ = 4π/k2 ≪ a2H (in both
these limiting cases the Born formula is valid).

The atomic structure factor can be written as

n(q) =

ˆ

drn(r)e−iqr =
∑

i

ˆ

drδ(r−ri)e
−iqr =

∑

i

eiqri , (2.20)

where the summation is peformed over all the positions ri of the elec-
trons in the atom (these positions are meaningful for heavy atoms,
where the Thomas-Fermi theory is valid). At the point r the in-
cident wave and the scattered wave interfere, with a phase factor
e−ik′(r−ri)eik(r−ri) = eiqre−iqri . We can see that the structure fac-
tor controls the interference of the two waves. The extension of the
heavy atoms is of the order aH (with most of the electrons localized
around the distance aH/Z1/3). For qaH/Z1/3 ≪ 1 the form-factor is
n(q) = Z; all the electrons contribute with the same (vanishing) phase
to the interference; we say that we have a coherent scattering. For
qaH/Z

1/3 ≫ 1 the form-factor decreases considerably as Z5/3/(qaH)2;
we say that we have an incoherent scattering. The Thomas-Fermi den-
sity is n(r) = (κ2/4π)Zr e

−κr, where κ ≃ 0.85Z1/3/aH is the Thomas-
Fermi screening wavevector.6

2.2 An exact solution

Let us assume a potential U given by a δ-function of the form

U(r) = a3U0δ(r) , (2.21)

6M. Apostol, Structure of Matter, Nova, NY (2019).
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2 Scattering, Collisions

where a is its range. Equation (2.1) reads

∆ψ + k2ψ =
2ma3U0

~2
δ(r)ψ , (2.22)

with the solution ψ = ψi + ψs, where the scattered wave is given by

∆ψs + k2ψs =
2ma3U0

~2
δ(r) [ψi(0) + ψs(0)] . (2.23)

The solution is

ψs(r) = −
ma3U0

2π~2
[ψi(0) + ψs(0)]

eikr

r
, (2.24)

whence

ψs(0) = −
ma2U0/2π~

2

1 +ma2U0/2π~2
ψi(0) (2.25)

and

ψs(r) = −a
ma2U0/2π~

2

1 +ma2U0/2π~2
ψi(0)

eikr

r
. (2.26)

The scattering amplitude is

F = −a ma2U0/2π~
2

1 +ma2U0/2π~2
. (2.27)

We can see that for a δ-potential the scattering is isotropic (it does not
depend on q = k′−k). Forma2 |U0| /2π~2 ≪ 1 we get the Born ampli-
tude F = −ma3U0/2π~

2 (equation (2.14)). For ma2 |U0| /2π~2 ≫ 1
the scattering amplitude is F = −a. It is worth noting that there ex-
ists a singularity in the scattering amplitude for a resonant scattering
by attractive potentials.

For resonant scattering it is important to keep the phase factor eika

in equation (2.25), especially for small values of ka. The scattering
amplitude becomes

F =
1

− 1+u
u a−1 − ik , (2.28)

where u = ma2U0/2π~
2. This is the Wigner formula. au/(1 + u) is

the scattering length.7

7See M. Apostol, Theory of Quanta, Nova, NY (2019) and the References therein.
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2.3 Momentum transfer

The scattered particle receives an additional momentum ~(k′ − k).
Since the total momentum is conserved the target receives a momen-
tum ~(k − k′). This is the momentum transfer to the target.

Let us assume two colliding particles, denoted by 1 and 2, with masses
m1,2, interacting with a potential energy U(1−2). Their wavefunction
satisfies the Schroedinger equation

(
− ~

2

2m1
∆1 −

~
2

2m2
∆2

)
ψ + U(1− 2)ψ = Eψ . (2.29)

The initial wavefunction is the product of two free plane waves ψi1,2 =
1√
v
eik1,2r1,2 ,

ψi = ψi1ψi2 =
1

V
eik1r1eik2r2 , (2.30)

which satisfies the Schroedinger equation
(
− ~

2

2m1
∆1 − ~

2

2m2
∆2

)
ψi1ψi2 =

= Eψi1ψi2 = (E1 + E2)ψi1ψi2 ,

(2.31)

where E1,2 = ~
2k21,2/2m1,2 are the energies of the two particles. We

assume that the collision is elastic, i.e. each particle preserves its
energy. In the first order of the perturbation theory the scattered
wave satisfies the Schroedinger equation
(

~
2

2m1
∆1 +

~
2

2m2
∆2

)
ψs + (E1 + E2)ψs = U(1− 2)ψi1ψi2 . (2.32)

We are interested in a solution for a large separation distance between
the particles, such that the scattered wave is separated, i.e. ψs =

ψs1ψs2, where ψs1,2 = 1√
V
eik

′

1,2r1,2 are two free plane waves. This
approximation brings small errors of higher orders in the interaction.
Let us assume that we are interested in the scattering of the particle
1 off the particle 2. Equation (2.32) becomes

~
2

2m1
∆1ψs1 · ψs2 + E1ψs1 · ψs2 = U(1− 2)ψi1ψi2 , (2.33)
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2 Scattering, Collisions

or

∆1ψs1 + k21ψs1 =
2m1

~2

ˆ

dr2ψ
∗
2sU(1− 2)ψi2 · ψi1 . (2.34)

The solution of this equation is

ψs1(r1) = − m1

2π~2
eik1r1

r1
·

·
´

dr
′

1dr2ψ
∗
2sU(r

′

1 − r2)ψi2 · ψi1(r
′

1)e
−ik

′

1r
′

1 ,

(2.35)

or
ψs1(r1) = − m1

2π~2V
√
V

eik1r1

r1
·

·
´

dr
′

1dr2e
−i(k

′

2−k2)r2U(r
′

1 − r2)e
−i(k

′

1−k1)r
′

1 ,

(2.36)

which can also be written as

ψs1(r1) = − m1

2π~2V
√
V

eik1r1

r1
·

·
´

dr
′

1dr2e
−i[(k

′

2−k2)+(k
′

1−k1)]r2U(r
′

1)e
−i(k

′

1−k1)r
′

1 .

(2.37)

The scattering amplitude is

F = − m1

2π~2
δ
k
′
2−k2,k1−k

′
1

ˆ

drU(r)e−i(k
′

1−k1)r
′

. (2.38)

We can see that the total momentum is conserved, i.e. k
′

1 + k
′

2 =
k1 + k2. The momentum transferred to the particle 2 (the target) is
q = k

′

2−k2 = k1−k
′

1. Leaving aside the factor of momentum conser-
vation, equation (2.38) gives the scattering amplitude of the particle
1. The deviation angle θ′ of the particle 2 with respect to the collision
direction, i.e. the angle between q and k1 (θ′ = (q,k1)) is given by
qk1 cos θ

′ = 2k21 sin
2(θ/2), where θ = (k

′

1,k1) is the deviation angle
of the scattered particle. From q = k1 − k

′

1 we get q = 2k1 sin(θ/2),
such that cos θ′ = sin(θ/2) and θ′ = 1

2 (π − θ).
The momentum transfer to the target is ~(k − k′). The number of
collisions per unit time in the solid angle do is ~k

mV | F |2 do. Therefore,
the force acting upon the target is

f =
~
2k

mV

ˆ

(k − k′) | F |2 do . (2.39)
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2 Scattering, Collisions

If the scattering amplitude depends only on the angle θ between k and
k′ (and k), then the force has only one component along the forward
direction, say the z-direction, given by

fz =
~
2k2

mV

ˆ

(1− cos θ) | F |2 do , (2.40)

or

fz =
~
2k2

mV

ˆ

(1− cos θ)dσ . (2.41)

The integral in this equation is called the transport cross-section. For
a δ-potential U = a3U0δ(r) the force is

fz =
~
2k2a2

πmV

(
ma2U0

~2

)2

; (2.42)

fz/a
2 is the pressure exerted by the projectile upon the target. The

volume V in the denominator of this equation arises from the nor-
malization of one particle in the volume V . If we have Ni incoming
particles in the volume V the factor ni = Ni/V appears in equation
(2.42) instead of 1/V . The flux density of the incoming particles is
S = vni, where v is the particle velocity. Usual values of the flux
density are of the order 1012/cm2 · s. For the collision of an electron
by an atom the force is fz ≃ 4πni(α

2/E) ln(2~v/e2), where α = Ze2,
E is the energy of the electron and v is its velocity (~v ≫ e2); the
screening coefficient is γ = 1/aH . This is related to the stopping
power of charged particles in matter.8

2.4 Beam

Usually, the particle beams are prepared as a set of identical, indepen-
dent particles, propagating along the beam direction, with the same
velocity for monoenergetic beams. Each particle has an uncertainty
along the transverse direction of the order of the atomic distance a,
at most, since they are extracted from solid targets. The dispersion

8H. Bethe, "Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch
Materie", Ann. Phys. 5 325 (1930).
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angle of the beam is θ ≃ λ/a ≪ 1, at most, where λ is the wave-
length along the beam direction. Being localized along the transverse
direction the statistics of the beam particles is irrelevant. Indeed, the
wavevector k in the wavefunction

e−i~k2

2m t+ikr (2.43)

has an uncertainty q, such that k = k0 + q, where k0 is the central
wavevector of the beam along the beam direction. The wavefunction
reads

e−i
~k2

0
2m t+ik0re−i(v0t−r)q−i ~t

2m q2 , (2.44)

where v0 = ~k0/m is the group velocity. For short times we may
leave aside the quadratic q2-term and integrate with respect to all q;
the wavefunction is proportional to

δ(r − v0t) ; (2.45)

we can see that the particle is localized and propagates with the veloc-
ity v0. This is a wavepacket. The δ-function in equation (2.45) should
be read as 1/a3 around the point r = v0t, where a is a distance of the
order of the atomic distances. Actually, for longer times we cannot
neglect the quadratic term, so the integration reads in fact

ˆ

dq⊥e
−i ~t

2m q2⊥ · eimR2

2~t ·
ˆ

dq‖e
−i ~t

2m (q‖−mR/~t)2 , (2.46)

where R = r − v0t, q‖ is the longitudinal component of q and q⊥ is
the transverse component of q with respect to R. This wavefunction
is proportional to

(m/~t)3/2ei
mR2

2~t ; (2.47)

it goes to zero for long times and has a relevant oscillation for distances
of the order ∆R = (~t/m)1/2. We can see that the localization is
lost, and the particle position exhibits a dispersion. The distance
∆R is very small for collision durations. The integration over the
whole range of q in the above equations brings small errors, since the
imaginary exponentials with quadratic exponents in q⊥,‖ vary very
rapidly.
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The wavefunction of the beam is a multiparticle wavefunction ψ =
ϕ(r1)ϕ(r2)..., with the same ϕ for each particle (monoenergetic beam)
where ri, i = 1, 2, ...Ni are the positions of the Ni particles in the
beam. The potential energy is

∑
i U(ri). The Schroedinger equation

(
− ~

2

2m∆1 − ~
2

2m∆2 − ...
)
ϕ(r1)ϕ(r2)...+

+
∑

i U(ri)ϕ(r1)ϕ(r2)... = NiEϕ(r1)ϕ(r2)...

(2.48)

is reduced to a one-particle Schroedinger equation

− ~
2

2m
∆ϕ(r) + U(r)ϕ(r) = Eϕ(r) . (2.49)

Alternatively, instead of multi-particle wavefunctions it is convenient
to use the field

ψ(r) =
√
Niϕ(r) (2.50)

normalized to the number of particles in the beam. The incident field
is

ψ(r) =

√
Ni

V
eikr . (2.51)

The field satisfies the Schroedinger equation (2.49). The one-particle
operators

∑
iO(ri) are written as

´

drψ∗(r)O(r)ψ(r). The scattered
field acquires a factor

√
Ni/V , the scattered current acquires a factor

ni = Ni/V , which is the density of particles in the beam. The same
factor appears in the incident current, such that the cross-section
remains unchanged, as expected. The number of collisions per unit
time acquires a factor ni, which appears, for instance, in equation
(2.39) (the momentum transfer and the force).

2.5 Quantum transitions

Apart from a momentum transfer there exists also an energy transfer
to the target. In order to account for the energy transfer we need the
time-dependent Schroedinger equation. Let us assume a target and an
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incident beam, described by a field ψi (or a one-particle wavefunction)
which satisfies the Schroedinger equation

i~
∂ψi

∂t
= (H0 +H1)ψi ; (2.52)

this equation includes the degrees of freedom of both the projectile
and the target, including the internal degrees of freedom. If the inter-
nal structure of these entities is not changed, the collision is elastic;
if their internal structure is changed, the collision is inelastic. The
hamiltonian H0 is the free hamiltonian, while H1 is the interaction
hamiltonian; H1 may depend on time. The label i stands for the ini-
tial state. We can check immediately that the solution of this equation
is

ψi = ψ0
i −

i

~
e−

i
~
H0t

ˆ t

0

dt1e
i
~
H0t1H1ψi , (2.53)

where ψ0
i is the initial field without interaction, satisfying the equation

i~
∂ψ0

i

∂t
= H0ψ

0
i ; (2.54)

we write this field as
ψ0
i = e−

i
~
Eitϕ0

i , (2.55)

where Ei is the initial energy of the assembly and ϕ0
i is the free initial

field without time dependence. The lower limit t = 0 in equation
(2.53) is misleading, because we still preserve the time dependence in
ψ0
i . However, for the upper limit going to infinity (t → ∞) this is a

correct assumption. The second term on the right in equation (2.53)
is the scattered wave. We are interested in the content of a final free
state ψf , with an energy Ef at t→∞,

ψf = e−
i
~
Ef tϕf , (2.56)

in the scattered state, i.e. we are interested in the matrix element

cfi = −
i

~

(
ψf , e

− i
~
H0t

ˆ t→∞

0

dt1e
i
~
H0t1H1ψi

)
. (2.57)
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This is the scattering matrix.9 We write iteratively the first two con-
tributions to cfi = c

(1)
fi + c

(2)
fi :

c
(1)
fi = − i

~

(
ψf , e

− i
~
H0t

ˆ t→∞

0

dt1e
i
~
H0t1H1ψ

0
i

)
(2.58)

and

c
(2)
fi =

(
− i

~

)2
(ψf , e

− i
~
H0t
´ t→∞
0

dt1e
i
~
H0t1H1e

− i
~
H0t1 ·

·
´ t1
0 dt2e

i
~
H0t2H1ψ

0
i ) ;

(2.59)

by introducing the temporal factors we get

c
(1)
fi = − i

~
(H1)fi

ˆ t→∞

0

dt1e
i
~
(Ef−Ei)t1 (2.60)

and
c
(2)
fi =

(
− i

~

)2 ∑
n(H1)fn(H1)ni·

·
´ t→∞
0

dt1e
i
~
(Ef−En)t1

´ t1
0
dt2e

i
~
(En−Ei)t2 ,

(2.61)

where n denotes the intermediate states. The energies include all
the contributions of the assembly. If H1 depends on the time through
factors like e±iωt, these factors appear in the time exponentials, which
read

e
i
~
(Ef−Ei∓~ω)t1 , e

i
~
(Ef−En∓~ω)t1 , e

i
~
(En−Ei∓~ω)t2 . (2.62)

The squared coefficients | cfi |2 are the number of transitions from the
initial state i to the final state f . The time factor in equation (2.60)
is

ˆ t

0

dt1e
i
~
(Ef−Ei)t1 =

ei∆ωt − 1

i∆ω
, (2.63)

where ∆ω = (Ef − Ei)/~; its square is

sin2(∆ωt/2)

(∆ωt/2)2
→t→∞ πtδ(∆ω/2) = 2π~tδ(Ef − Ei) , (2.64)

9J. A. Wheeler, "On the mathematical description of light nuclei by the method
of resonating group structure", Phys. Rev. 52 1107 (1937); W. Heisenberg,
"Die "beobachtbaren Grossen" in der Theorie der Elementarteilchen", Z. Phys.
120 513 (1943).
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which leads to a number of transitions per unit time

w
(1)
fi =

∣∣∣c(1)fi

∣∣∣ /t =
2π

~
|(H1)fi|2 δ(Ef − Ei) . (2.65)

This is Fermi’s golden rule.

The matrix element (H1)fi is of the order uδE/V , where u is the vol-
ume over which the perturbation δE is active. For a discrete spectrum
δ(Ef − Ei) is of the order of the inverse spacing 1/∆E of the energy
levels. The total number of transitions given by equation (2.65) is
of the order u2

V 2
δE
~

δE
∆E · l

v , where V = l3 and v is the velocity of the
scattered particles. The ratio δE/∆E is much smaller than unity,
because the interaction is a small perturbation; the ratio δE/~ is the
inverse of the time uncertainty 1/δt produced by interaction, which
is much smaller than the inverse time v/l, if the measurement of the
collision is realized. We can see that the total number of scattered
particles is much smaller than the total number of incident particles;
mainly, this is due to the very small factor u/V . For a continuous
spectrum we need to multiply by V k2∆k, such that, instead of δE

∆E ,
we get V

λ3 (δE/E), where λ is the particle wavelength and E is the
particle energy; we should have δE/E ≪ 1, because the interaction is
a small perturbation. The inequality loses a factor 1/V , but still it is
fulfilled. If the wavefunctions are normalized to the number of parti-
cles N , the above inequality reads N2u2

V 2
δE
~

δE
∆E · l

N1/3v
≪ N , which is

again fulfilled, in the limit N, V →∞, N/V = const.

For the second contribution c
(2)
fi the integration with respect to t2 is

over finite times, so the lower limit t2 = 0 is improper. Actually, the
interaction is vanishing at t→ −∞, which requires a factor eαt, where
α→ 0+. This is the adiabatic hypothesis. Equation (2.63) reads

ˆ t

−∞
dt1e

i
~
(Ef−Ei)t1+αt1 =

ei∆ωt+αt

i∆ω + α
, (2.66)

whose square is
e2αt

∆ω2 + α2
. (2.67)

In order to get the number of transitions per unit time we need to
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