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PREFACE 
 
 
 

Robotics have been used in industry and other fields for the past decade, 
however human-robot interaction is at its early stage. This book, Human – 
Robot Interaction: Control, Analysis, and Design, will focus on the topics 
of human-robot interaction, its applications and current challenges.  

We would like to thank all the authors for their contributions to the book. 
We are also grateful to the publisher for supporting this project. We hope 
the readers find this book informative and useful. 

This book consists of 7 chapters. Chapter 1 takes trust to be a set of 
expectations about the robot’s capabilities and explores the risks of 
discrepancies between a person’s expectations and the robot’s actual 
capabilities. The major sources of these discrepancies and ways to mitigate 
their detrimental effects are examined. Chapter 2 has concentrated primarily 
on diver to robot communication. Communication from the robot to the 
diver, especially when approaches such as gesture-based are used, is also an 
issue. Chapter 3 reviews recent advancements in the field of passive and 
hybrid haptic actuation. The authors highlight the design considerations and 
trade-offs associated with these actuation methods and provide guidelines 
on how their use can help with development of the ultimate haptic device. 
Chapter 4 introduces an extended HRI research model, which is adapted 
from communication and mass communication studies, and focuses on the 
social dimension of social robots. Chapter 5 highlights some existing 
methods for interpreting EEG and EMG signals that are useful for the 
control of wearable mechatronic devices. These methods are focused on 
modelling motion for the purpose of controlling wearable mechatronic 
devices that target musculoskeletal rehabilitation of the upper limb. Chapter 
6 discusses a training method for patient balance rehabilitation based on 
human-robot interaction. Chapter 7 develops a wearable exoskeleton suit 
that involves human-robot interaction to help the individuals with mobility 
disorders caused by a stroke, spinal cord injury or other related diseases.  

Finally, the editors would like to acknowledge all the friends and 
colleagues who have contributed to this book. 

 
Dan Zhang, Toronto, Ontario, Canada    

Bin Wei, Sault Ste Marie, Ontario, Canada  
February 25, 2020 
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Chapter 1 2 

Abstract 

From collaborators in factories to companions in homes, social robots 
hold the promise to intuitively and efficiently assist and work alongside 
people. However, human trust in robotic systems is crucial if these robots 
are to be adopted and used in home and work. In this chapter we take trust 
to be a set of expectations about the robot’s capabilities and explore the 
risks of discrepancies between a person’s expectations and the robot’s 
actual capabilities. We examine major sources of these discrepancies and 
ways to mitigate their detrimental effects. No simple recipe exists to help 
build justified trust in human-robot interaction. Rather, we must try to 
understand humans’ expectations and harmonize them with robot design 
over time. 

Introduction 

As robots continue to be developed for a range of contexts where they 
work with people, including factories, museums, airports, hospitals, and 
homes, the field of Human-Robot Interaction explores how well people 
will work with these machines, and what kinds of challenges will arise in 
their interaction patterns. Social robotics focuses on the social and 
relational aspects of Human-Robot Interaction, investigating how people 
respond to robots cognitively and emotionally, how they use their basic 
interpersonal skills when interacting with robots, and how robots 
themselves can be designed to facilitate successful human-machine 
interactions.  

Trust is a topic that currently receives much attention in human-robot 
interaction research. If people do not trust robots, they will not collaborate 
with them or accept their advice, let alone purchase them and delegate to 
them the important tasks they have been designed for. Building trust is 
therefore highly desirable from the perspective of robot developers. A 
closer look at trust in human-robot interaction, however, reveals that the 
concept of trust itself is multidimensional. For instance, one could trust 
another human (or perhaps robot) that they will carry out a particular task 
reliably and without errors, and that they are competent to carry out the 
task. But in some contexts, people trust another agent to be honest in their 
communication, sincere in their promises, and to value another person’s, 
or the larger community’s interests. In short, people may trust agents 
based on evidence of reliability, competence, sincerity, or ethical integrity 
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[1], [2]1. What unites trust along all these dimensions is that it is an 
expectation—expecting that the other is reliable, competent, sincere, or 
ethical. Expectations, of course, can be disappointed. When the other was 
not as reliable, capable, or sincere as one thought, one’s trust was 
misplaced. Our goal in this chapter is to explore some of the ways in 
which people’s expectations of robots may be raised too high and 
therefore be vulnerable to disappointment.  

To avert disappointed expectations, at least two paths of action are 
available. One is to rapidly expand robots’ capacities, which is what most 
designers and engineers strive for. But progress has been slow [3], and the 
social and communicative skills of artificial agents are still far from what 
seems desirable [4], [5]. Another path is to ensure that people trust a robot 
to be just as reliable, capable, and ethical as it really is able to; that is, to 
ensure that people understand the robot’s actual abilities and limitations. 
This path focuses on one aspect of transparency: providing human users 
with information about the capabilities of a system. Such transparency, we 
argue, is a precondition for justified trust in any autonomous machine, and 
social robots in particular [6], [7]. 

In this chapter, we describe some of the sources of discrepancies 
between people’s expectations and robots’ real capabilities. We argue the 
discrepancies are often caused by superficial properties of robots that elicit 
feelings of trust in humans without validly indicating the underlying 
property the person trusts in. We therefore need to understand the complex 
human responses triggered by the morphology and behaviour of 
autonomous machines, and we need to build a systematic understanding of 
the effects that specific design choices have on people’s cognitive, 
emotional, and relational reactions to robots. In the second part of the 
chapter we lay out a number of ways to combat these discrepancies. 

Discrepancies Between Human Expectations and Actual 
Robot Capabilities 

In robot design and human-robot interaction research, the tendency to 
build ever more social cues into robots (from facial expressions to 
emotional tone of voice) is undeniable. Intuitively, this makes sense since 
robots that exhibit social cues are assumed to facilitate social interaction 
by leveraging people’s existing social skill sets and experience, and they 

 
1 The authors have provided a measure of these multiple dimensions of trust and 
invite readers to use that measure for their human-robot interaction studies: 
http://bit.ly/MDMT_Scale  
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would fit seamlessly into social spaces without constantly being in the way 
[8]. However, in humans, the display of social cues is indicative of certain 
underlying mental properties, such as thoughts, emotions, intentions, or 
abilities. The problem is that robots can exhibit these same cues, through 
careful design or specific technologies, even though they do not have the 
same, or even similar, underlying properties.  

For example, in human interaction, following another person’s gaze is 
an invitation to joint attention [9]; and in communication, joint attention 
signals the listener’s understanding of the speaker’s communicative 
intention. Robots using such gaze cues [10] are similarly interpreted as 
indicating joint attention and of understanding a speaker’s instructions 
[11], [12]. However, robots can produce these behaviors naïvely using 
simple algorithms, without having any concept of joint attention or any 
actual understanding of the speaker’s communication. Thus, when a robot 
displays these social cues, they are not symptoms of the expected 
underlying processes, and a person observing this robot may erroneously 
attribute a range of (often human-like) properties to the robot [13].  

Erroneous assumptions about other people are not always harmful. 
Higher expectations than initially warranted can aid human development 
(when caregivers “scaffold” the infant’s budding abilities; [14], can 
generate learning success [15], and can foster prosocial behaviors [16]. 
But such processes are, at least currently, wholly absent with robots. 
Overestimating a robot’s capacities poses manifest risks to users, 
developers, and the public at large. When users entrust a robot with tasks 
that the robot ends up not being equipped to do, people may be 
disappointed and frustrated when they discover the robot’s limited actual 
capabilities [17]; and there may be distress or harm if they discover these 
limitations too late. Likewise, developers who consistently oversell their 
products will be faced with increasing numbers of disappointed, frustrated, 
or distressed users who no longer use the product, write terrible public 
reviews (quite a significant impact factor for consumer technology), or 
even sue the manufacturer. Finally, the public at large could be deprived of 
genuine benefits if a few oversold robotic products cause serious harm, 
destroy consumer trust, and lead to stifling regulation.  

Broadly speaking, discrepancies between expectations and reality have 
been well documented and explored under the umbrella of “expectancy 
violation,” from the domains of perception [18] to human interaction [19]. 
In human-robot interaction research, such violations have been studied, for 
example, by comparing expectations from media to interactions with a real 
robot [20] or by quantifying updated capability estimates after interacting 
with a robot [21]. Our discussion builds on this line of inquiry, but we do 
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not focus on cases when an expectancy violation has occurred, which 
assumes that the person has become aware of the discrepancy (and is 
likely to lose trust in the robot). Instead, we focus on sources of such 
discrepancies and avenues for making a person aware of the robot’s 
limitations before they encounter a violation (and thus before a loss of 
trust). 

Sources of Discrepancies 

There are multiple sources of discrepancies between the perceived and 
actual capacities of a robot. Obvious sources are the entertainment 
industry and public media, which frequently exaggerate technical realities 
of robotic systems. We discuss here more psychological processes, from 
misleading and deceptive design and presentation to automatic inferences 
from a robot’s superficial behavior to deep underlying capabilities. 

Misleading design 

Equipping a robot with outward social cues that have no corresponding 
abilities is, at best, misleading. Such a strategy violates German designer 
Dieter Rams’ concept of honest design, which is the commitment to design 
that “does not make a product more innovative, powerful or valuable than 
it really is” [22]; see also [23], [24]. Honest design is a commitment to 
transparency—enabling the user to “see through” the outward appearance 
and to accurately infer the robot’s capacities. In the HRI laboratory, 
researchers often violate this commitment to transparency when they use 
Wizard-of-Oz (WoZ) methods to make participants believe that they are 
interacting with an autonomous, capable robot. Though such misperceptions 
are rarely harmful, they do contribute to false beliefs and overly high 
expectations about robots outside the laboratory. Moreover, thorough 
debriefing at the end of such experiments is not always provided [25], 
which would reset people’s generalizations about technical realities.  

Deception 

When a mismatch between apparent and real capacities is specifically 
intended—for example, to sell the robot or impress the media—it arguably 
turns into deception and even exploitation [26]. And people are 
undoubtedly vulnerable to such exploitation. A recent study suggested that 
people were willing to unlock the door to a university dormitory building 
for a verbally communicating robot that had the seeming authority of a 
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food delivery agent. Deception is not always objectionable; in some 
instances it is used for the benefit of the end user [27], [28], such as in 
calming individuals with dementia [29] or encouraging children on the 
autism spectrum to form social bonds [30]. However, these instances must 
involve careful management of the risks involved in the deception—risks 
for the individual user, the surrounding social community, and the 
precedent it sets for other, perhaps less justified cases of deception. 

Impact of norms 

At times, people are well aware that they are interacting with a 
machine in human-like ways because they are engaging with the robot in a 
joint pretense [31] or because it is the normatively correct way to behave. 
For example, if a robot greets a person, the appropriate response is to 
reciprocate the greeting; if the speaker asks a question, the appropriate 
response is to answer the question. Robots may not recognize the 
underlying social norm and they may not be insulted if the user violates 
the norm, but the user, and the surrounding community (e.g., children who 
are learning these norms), benefit from the fact that both parties uphold 
relevant social practices and thus a cooperative, respectful social order 
[32]. The more specific the roles that robots are assigned (e.g., nurse 
assistant, parking lot attendant), the more these norms and practices will 
influence people’s behavior toward the robot [33]. If robots are equipped 
with the norms that apply to their roles (which is a significant challenge; 
[34], this may improve interaction quality and user satisfaction. Further, 
robots can actively leverage norms to shape how people interact with it, 
but perhaps even in manipulative fashion [35]. Norm-appropriate behavior 
is also inherently trust-building, because norms are commitments to act, 
and expectations that others will act, in ways that benefit the other (thus 
invoking the dimension of ethical trust; [36], norm violations become all 
the more powerful in threatening trust.   

Expanded inferences 

Whereas attributions of norm competence to a robot are well grounded 
in the robot’s actual behavior, a robot that displays seemingly natural 
communicative skills can compel people to infer (and genuinely assume to 
be present) many other abilities that the robot probably is unlikely to have 
[37]. In particular, seeing that a robot has some higher-level abilities, 
people are likely to assume that it will also possess more basic abilities 
that in humans would be a prerequisite for the higher-level ability. For 
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instance, a robot may greet someone with “Hi, how are you?” but be 
unable itself to answer the same question when the greeting is reciprocated, 
and it may not even have any speech understanding capabilities at all. 
Furthermore, a robot’s syntactically correct sentences do not mean it has a 
full-blown semantics or grasps anything about conversational dynamics 
[38]. Likewise, seeing that a robot has one skill, we must expect people to 
assume that it also is has other skills that in humans are highly correlated 
with the first. For example, a robot may be able to entertain or even tutor a 
child but be unable to recognize when the child is choking on a toy. People 
find it hard to imagine that a being can have selected, isolated abilities that 
do not build upon each other [39].  

Though it is desirable that, say, a manufacturer provides explicit and 
understandable documentation of a system’s safety and performance 
parameters [40], [41], making explicit what a robot can and cannot do will 
often fail. That is because some displayed behaviors set off a cascade of 
inferences that people have evolved and practiced countless times with 
human beings [32]. As a result, spontaneous reactions to robots in social 
contexts and their explicit beliefs on what mental capacities robots possess 
can come apart [42], [43]. 

Automatic inferences 

Some inferences or emotional responses are automatic, at least upon 
initial encounters with artificial agents. Previous research has shown that 
people treat computers and related technology (including robots) in some 
ways just like human beings (e.g., applying politeness and reciprocity), 
and often do so mindlessly [44]. The field of human-robot interaction has 
since identified numerous instances in which people show basic social-
cognitive responses when responding to humanlike robots—for example, 
by following the “gaze” of a robot [45] or by taking its visual perspective 
[46]. Beyond such largely automatic reactions, a robot’s humanlike 
appearance seems to invite a wide array of inferences about the robot’s 
intelligence, autonomy, or mental capacities more generally [47]–[49]. But 
even if these appearance-to-mind inferences are automatic, they are not 
simplistic; they do not merely translate some degree of humanlikeness into 
a proportional degree of “having a mind.” People represent both 
humanlike appearance and mental capacities along multiple dimensions 
[50]–[52], and specific dimensions of humanlike appearance trigger 
people’s inferences for specific dimensions of mind. For example, features 
of the Body Manipulator dimension (e.g., torso, arms, fingers) elicit 
inferences about capacities of reality interaction, which include perception, 
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learning, acting, and communicating. By contrast, facial and surface features 
(e.g., eyelashes, skin, apparel) elicit inferences about affective capacities, 
including feelings and basic emotions, as well as moral capacities, 
including telling right from wrong and upholding moral values [53].  

Variations 

We should note, however, that people’s responses to robots are neither 
constant nor universal. They show variation within person, manifesting 
sometimes as cognitive, emotional, or social-relational reactions, can be in 
the foreground or background at different moments in time, and change 
with extended interactions with the robot [8], [32]. They also show substantial 
interpersonal variation, as a function of levels of expertise [54], personal 
style [55], and psychosocial predispositions such as loneliness [56]. 

Status quo 

The fact remains, however, that people are vulnerable to the impact of 
a robot’s behavior and appearance [57]. We must expect that, in real life as 
in the laboratory, people will be willing to disclose negative personal 
information to humanoid agents [58], [59], trust and rely on them [60], 
empathize with them [61], [62], give in to a robot’s obedience-like 
pressure to continue tedious work [63] or perform erroneous tasks [64]. 
Further, in comparison to a mechanical robot, people are more prone to 
take advice from a humanoid robot [65], trust and rely on them more [60], 
and are more likely to comply with their requests [66]. None of these 
behaviors are inherently faulty; but currently they are unjustified, because 
they are generated by superficial cues rather than by an underlying reality 
[57]. At present, neither mechanical nor humanoid robots have more 
knowledge to share than Wikipedia, are no more trustworthy to keep 
secrets than one’s iPhone, and have no more needs or suffering than a 
cartoon character. They may in the future, but until that future, we have to 
ask how we can prevent people from having unrealistic expectations of 
robots, especially humanlike ones.   

How to Combat Discrepancies 

We have seen that discrepancies between perceived and actual 
capacities exist at multiple levels and are fed from numerous sources. How 
can people recover from these mismatches or avoid them in the first place? 
In this section, we provide potential paths for both short- and long-term 
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solutions to the problem of expectation discrepancy when dealing with 
social robots. 

Waiting for the future 

An easy solution may be to simply wait for the robots of the future to 
make true the promises of the present. However, that would mean an 
extended time of misperceived reality, and numerous opportunities for 
misplaced trust, disappointment, and non-use. It is unclear whether 
recovery from such prolonged negative experiences is possible. Another 
strategy to overcome said discrepancies may be to encourage users to 
acquire minimally necessary technical knowledge to better evaluate 
artificial agents, perhaps encouraging children to program machines and 
thus see their mechanical and electronic insides. However, given the 
widespread disparities in access to quality education in most of the world’s 
countries, the technical-knowledge path would leave poorer people misled, 
deceived, and more exploitable than ever before. Moreover, whereas the 
knowledge strategy would combat some of the sources we discussed (e.g., 
deception, expanded inferences), it would leave automatic inferences 
intact, as they are likely grounded in biologically or culturally evolved 
response patterns.   

Experiencing the cold truth 

Another strategy might be to practically force people to experience the 
mechanical and lifeless nature of machines—such as by asking people to 
inspect the skinless plastic insides of an animal robot like Paro or by 
unscrewing a robot’s head and handing it to the person. It is, however, not 
clear that this will provide more clarity for human-robot interactions. A 
study of the effects of demonstrating the mechanistic nature of robots to 
children in fact showed that the children still interacted with the robot in 
the same social ways as children to whom the robotic side of robots had 
not been pointed out [67]. Furthermore, if people have already formed 
emotional attachments, such acts will be seen as cruel and distasteful, 
rather than have any corrective effects on discrepant perceptions.   

Revealing real capacities 

Perhaps most obvious would be truth in advertising. Robot designers 
and manufacturers, organizations and companies that deploy robots in 
hotel lobbies, hospitals, or school yards would signal to users what the 
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robot can and cannot do. But there are numerous obstacles to designers 
and manufacturers offering responsible and modest explanations of the 
machine’s real capacities. They are under pressure to produce within the 
constraints of their contracts; they are beholden to funders; they need to 
satisfy the curiosity of journalists and policy makers, who are also keen to 
present positive images of developing technologies.  

Further, even if designers or manufacturers adequately reveal the 
machine’s limited capabilities, human users may resist such information. 
If the information is in a manual, people won’t read it. If it is offered 
during purchase, training, or first encounters, it may still be ineffective. 
That is because the abovementioned human tendency to perceive agency 
and mind in machines that have the tell-tale signs of self-propelled motion, 
eyes, and verbal communication is difficult to overcome. Given the 
eliciting power of these cues, it is questionable (though empirically testable) 
whether explicit information can ever counteract a user’s inappropriate 
mental model of the machine.  

Legibility and explainability 

An alternative approach is to make the robot itself “legible”—
something that a growing group of scholars is concerned with [68]. But 
whereas a robot’s intentions and goals can be made legible—e.g., in a 
projection of the robot’s intended motion path or in the motion itself— 
capabilities and other dispositions are not easily expressed in this way. At 
the same time, the robot can correct unrealistic expectations by indicating 
some of its limits of capability in failed actions [69] or, even more 
informative, in explicit statements that it is unable or forbidden to act a 
certain way [70].  

A step further would be to design the robot in such a way that it can 
explicate its own actions, reasoning, and capabilities. But whereas giving 
users access to the robot’s ongoing decision making and perhaps offering 
insightful and human-tailored explanations of its performed actions may 
be desirable [71], “explaining” one’s capacities is highly unusual. Most of 
this kind of communication among humans is done indirectly, by 
providing information about, say, one’s occupation [72] or acquaintance 
with a place [73]. Understanding such indirect speech requires access to 
shared perceptions, background knowledge, and acquired common ground 
that humans typically do not have with robots. Moreover, a robot’s 
attempts to communicate its knowledge, skills, and limitations can also 
disrupt an ongoing activity or even backfire if talk about capabilities 
makes users suspect that there is a problem with the interaction [32]. There 
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is, however, a context in which talk about capabilities is natural—
educational settings. Here, one agent learns new knowledge, skills, 
abilities, often from another agent, and both might comment freely on the 
learner’s capabilities already in place, others still developing, and yet 
others clearly absent. If we consider a robot an ever-learning agent, then 
perhaps talk about capabilities and limitations can be rather natural. 

One potential drawback of robots that explain themselves must be 
mentioned. Such robots would appear extremely sophisticated, and one 
might then worry which other capacities people will infer from this 
explanatory prowess. Detailed insights into reasoning may invite 
inferences of deeper self-awareness, even wisdom, and user-tailored 
explanations may invite inferences of caring and understanding of the 
user’s needs. But perhaps by the time full-blown explainability can really 
be implemented, some of these other capacities will too; then the 
discrepancies would all lift at once. 

Managing expectations 

But until that time, we are better off with a strategy of managing 
expectations and ensuring performance that matches these expectations 
and lets trust build upon solid evidence. Managing expectations will rely 
on some of the legibility and explainability strategies just mentioned along 
with attempts to explicitly set expectations low, which may be easily 
exceeded to positive effect [74]. However, such explicit strategies would 
be unlikely to keep automatic inferences in check. For example, in one 
study, Zhao et al. (submitted) showed that people take a highly humanlike 
robot’s visual perspective even when they are told it is a wax figure. The 
power of the mere humanlike appearance was enough to trigger the basic 
social-cognitive act of perspective taking.  

Thus, we also need something we might call restrained design—
attempts to avoid overpromising signals in behavior, communication, and 
appearance, as well as limiting the robot’s roles so that people form 
limited, role- and context-adequate expectations. As a special case of such 
an approach we describe here the possible benefit of an incremental robot 
design strategy—the commitment to advance robot capacities in small 
steps, each of which is well grounded in user studies and reliability testing.  

Incremental Design 

Why would designing and implementing small changes in a robot 
prevent discrepancies between a person’s understanding of the robot’s 
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capacities and its actual capacities? Well-designed small changes may be 
barely noticeable and, unless in a known, significant dimension (e.g., 
having eyes after never having had eyes), will limit the number of new 
inferences that would be elicited by it. Further, even when noticed, the 
user may be able to more easily adapt to a small change, and integrate it 
into their existing knowledge and understanding of the robot, without 
having to alter their entire mental model of the robot.  

Consider the iRobot Roomba robotic vacuum cleaner. The Roomba has 
a well-defined, functional role in households as a cleaning appliance. From 
its first iteration, any discrepancy between people’s perceptions of the 
robot’s capacities and its actual capacities were likely related to the robot’s 
cleaning abilities, which could be quickly resolved by using the robot in 
practice. As new models hit the market, Roomba’s functional capacities 
improved only incrementally—for example, beep-sequence error codes 
were replaced by pre-recorded verbal announcements, or random-walk 
cleaning modes were replaced by rudimentary mapping technology. In 
these cases, the human users have to accommodate only minor novel 
elements in their mental models, each changing only very few parameters. 

Consider, by contrast, Softbank’s Pepper robot. From the original 
version, Pepper was equipped with a humanoid form including arms and 
hands that appeared to gesture, and a head with eyes and an actuated neck, 
such that it appeared to look at and follow people. Further, marketing 
material emphasized the robot’s emotional capacities, using such terms as 
“perception modules” and an “emotional engine.” We can expect that 
these features encourage people to infer complex capacities in this robot, 
even beyond perception and emotion. Observing the robot seemingly gaze 
at us and follow a person’s movements suggests attention and interest; the 
promise of emotional capacities suggests sympathy and understanding. 
However, beyond pre-coded sentences intended to be cute or funny, the 
robot currently has no internal programmed emotional model at all. As a 
result, we expect there to be large discrepancies between a person’s 
elicited expectations and the robot’s actual abilities. Assumptions of deep 
understanding in conversation and willingness toward risky personal 
disclosure may then be followed by likely frustration or disappointment.  

The discrepancy in Pepper’s case stems in part from the jump in 
expectation that the designers invite the human to take and the actual 
reality of Pepper’s abilities. Compared with other technologies people may 
be familiar with, a highly humanoid appearance, human-like social 
signaling behaviors, and purported emotional abilities trigger a leap in 
inference people make from “robots can't do much” to “they can do a lot.” 
But that leap is not matched by Pepper’s actual capabilities. As a result, 
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encountering Pepper creates a large discrepancy that will be quite difficult 
to overcome. A more incremental approach would curtail the humanoid 
form and focus on the robot’s gaze-following abilities, without claims of 
emotional processing. If the gaze following behavior actually supports 
successful person recognition and communication turn taking, then a more 
humanoid form may be warranted. And only if actual emotion recognition 
and the functional equivalent of emotional states in the robot are achieved 
would Pepper’s “emotion engine” be promoted.  

Incremental approaches have been implemented in other technological 
fields. For example, commercial car products have in recent years 
increasingly included small technical changes that point toward eventual 
autonomous driving abilities, such as cruise control, active automatic 
breaking systems, lane violation detection and correction, and the like. 
More advanced cars, such as Tesla’s Model S, have an “auto-pilot” mode 
that takes a further step toward autonomous driving in currently highly 
constrained circumstances. The system still frequently reminds the user to 
keep their hands on the steering wheel and to take over when those 
constrained circumstances no longer hold (e.g., no painted lane 
information). However, the success of this shared autonomy situation 
depends on how a product is marketed. Other recent cars may include a 
great deal of autonomy in their onboard computing system but are not 
marketed as autonomous or self-driving but are called “Traffic Jam Assist” 
or “Super Cruise.” Such labeling decisions limit what the human users 
expects of the car and therefore what they entrust it to do. A recent study 
confirms that labeling matters: People overestimate Tesla cars’ capacities 
more than other comparable brands [75]. And perhaps unsurprisingly, the 
few highly-publicized accidents with Teslas are typically the result of vast 
overestimation of what the car can do [76], [77]. 

Within self-driving vehicle research and development, a category 
system is in place to express the gradually increasing levels of autonomy 
of the system in question. In this space, however, the incremental approach 
may still take steps that are too big. In the case of vehicle control, people's 
adjustment to continuously increasing autonomy is not itself continuous 
but takes a qualitative leap. People either drive themselves, assisted up to a 
point, or they let someone else (or something else) drive; they become 
passengers. In regular cars, actual passengers give up control, take naps, 
read books, chat on the phone, and would not be ready to instantly take the 
wheel when the main driver requests it. Once people take on the 
unengaged passenger role with increasingly (but not yet fully) autonomous 
vehicles, the situation will result in over-trust (the human will take naps, 
read books, etc.). And if there remains a small chance that the car needs 
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the driver’s attention but the driver has slipped into the passenger role, the 
situation could prove catastrophic. The human would not be able to take 
the wheel quickly enough when the car requests it because it takes time for 
a human to shift attention, observe their surroundings, develop situational 
awareness, make a plan, and act [78]. Thus, even an incremental approach 
would not be able to avert the human’s jump to believing the car can 
handle virtually all situations, when in fact the car cannot.  

Aside from incremental strategies, the more general restrained design 
approach must ultimately be evidence-based design. Decisions about form 
and function must be informed by evidence into which of the robot’s 
signals elicit what expectations in the human. Such insights are still rather 
sparse and often highly specific to certain robots. It therefore takes a 
serious research agenda to address this challenge, with a full arsenal of 
scientific approaches: carefully controlled experiments to establish causal 
relations between robot characteristics and a person’s expectations; 
examination of the stability of these response patterns by comparing young 
children and adults as well as people from different cultures; and 
longitudinal studies to establish how those responses will change or 
stabilize in the wake of interacting with robots over time. We close our 
analysis by discussing the strengths and challenges that come with 
longitudinal studies. 

Longitudinal Research 

Longitudinal studies would be the ideal data source to elucidate the 
source of and remedy for discrepancies between perceived and actual 
robot capacities. That is because, first, they can distinguish between initial 
reactions to robots and more enduring response patterns. We have learned 
from human-human social perception research that initial responses, even 
if they change over time, can strongly influence the range of possible long-
term responses; in particular, initial negative responses tend to improve 
more slowly than positive initial reactions deteriorate [79]. In human-robot 
encounters, some responses may be automatic and have a lasting impact, 
whereas others may initially be automatic but could be changeable over 
time. Furthermore, some responses may reflect an initial lack of 
understanding of the encountered novel agent, and with time a search for 
meaning may improve this understanding [80]. Longitudinal studies can 
also track how expectations clash with new observations and how trust 
fluctuates as a result.   

High-quality longitudinal research is undoubtedly difficult to conduct 
because of cost, time and management commitments, participant attrition, 
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ethical concerns of privacy and unforeseen impacts on daily living, and the 
high rate of mechanical robot failures. A somewhat more modest goal 
might be to study short-term temporal dynamics that will advance 
knowledge but also provide a launching pad for genuine longitudinal 
research. For the question of recovery from expectation-reality 
discrepancies we can focus on a few feasible but informative paradigms. 

A first paradigm is to measure people’s responses to a robot with or 
without information about the true capacities of the robot. In comparison 
to spontaneous inferences about the robot’s capacities, would people 
adjust their inferences when given credible information? One could 
compare the differential effectiveness of (a) inoculation (providing the 
ground-truth information before the encounter with the robot) and (b) 
correction (providing it after the encounter). In human persuasion 
research, inoculation is successful when the persuasive attempt operates at 
an explicit, rational level [81]. By analogy, the comparison of inoculation 
and post-hoc correction in the human-robot perception case may help 
clarify which human responses to robots lie at the more explicit and which 
at the more implicit level. 

A second paradigm is to present the robot twice during a single 
experimental session, separated by some time delay or unrelated other 
activities. What happens to people’s representations formed in the first 
encounter that are either confirmed or disconfirmed in the second 
encounter? If the initial reactions are mere novelty effects, they would 
subside independent of the new information; if they are deeply entrenched, 
they would remain even after disconfirmation; and if they are 
systematically responsive to evidence, they would stay the same under 
confirmation and change under disconfirmation [82]. In addition, different 
response dimensions may behave differently. Beliefs about the robot’s 
reliability and competence may change more rapidly whereas beliefs about 
its benevolence may be more stable.   

In a third paradigm, repeated-encounter but short-term experiments 
could bring participants back to the laboratory more than once. Such 
studies could distinguish people’s adjustments to specific robots (if they 
encounter the same robot again) from adjustments of their general beliefs 
about robots (if they encounter a different, but comparable robot again). 
From stereotype research, we have learned that people often maintain 
general beliefs about a social category even when acquiring stereotype-
disconfirming information about specific individuals [83]. Likewise, 
people may update their beliefs about a specific robot they encounter 
repeatedly without changing their beliefs about robots in general [82].   
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Conclusion 

Trust is one agent’s expectation about the other’s actions. Trust is 
broken when the other does not act as one expected—is not as reliable or 
competent as one expected, or is dishonest or unethical. In all these cases, 
a discrepancy emerges between what one agent expected and the other 
agent delivered. Human-robot interactions, we suggest, often exemplify 
such cases: people expect more of their robots than the robots can deliver. 
Such discrepancies have many sources, from misleading and deceptive 
information to the seemingly innocuous but powerful presence of deep-
seated social signals. This range of sources demands a range of remedies, 
and we explored several of them, from patience to legibility, from 
incremental design to longitudinal research. Because of people’s complex 
responses to artificial agents, there is no optimal recipe for minimizing 
discrepancies and maximizing trust. We can only advance our 
understanding of those complex human responses to robots, use this 
understanding to guide robot design, and monitor how improved design 
and human adaptation, over time, foster more calibrated and trust-building 
human-robot interactions. 
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Effective human-robot interaction can be complex at the best of times 
and under the best of situations but the problem becomes even more 
complex underwater. Here both the robot and the human operator must be 
shielded from the effects of water. Furthermore, the nature of water itself 
complicates both the available technologies and the way in which they can 
be used to support communication. Small-scale robots working in close 
proximity to divers underwater are further constrained in their 
communication choices by power, mass and safety concerns, yet it is in this 
domain that effective human-robot interaction is perhaps most critical. 
Failure in this scenario can result in vehicle loss as well as vehicle operation 
that could pose a threat to local operators. Here we describe a range of 
approaches that have been used successfully to provide this essential 
communication. Tethered and tetherless approaches are reviewed along 
with design considerations for human input and display/interaction devices 
that can be controlled by divers operating at depth.  

Introduction 

Effective human-robot communication is essential everywhere, but 
perhaps nowhere is that more the case than when a human is communicating 
with a robot that is operating underwater. Consider the scenarios shown in 
Figure 2.1. Here two different robots are shown operating in close proximity 
to an underwater operator. Effective operation of the robot requires a mechanism  


