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MAIN DESIGNATIONS 
 
 
 
N – set of natural numbers. 
R - set of real numbers; numerical straight line. 
Rn  – arithmetic real n-dimensional space;  
         Euclidean n-dimensional space;  
{a, b, c, x, y, …} – the set consisting of elements a, b, c, x, y, … 
 - generality quantifier: "for all.” 
 - existential quantifier: "exists." 
 - empty set. 
 - sign of an accessory to a set. 
 - sign of an inclusion of a set. 
AB – a product of the sets of A and B. 
AB– a union of the sets of A and B. 
X={x1,…, xj,…, xN} – the set consisting of N elements or                   
      X={xj, j=1, …, N}, or X={xj, j= N,1 }, where j – number of the index 
(object), N – number (number of the last index), N – a set of indices 1. 
 - identically equal. 
lim – a limit. 
max X – the greatest (maximal) element of a great number of Х. 
min X – the least (minimum) element of a great number of Х. 

)(max Xf
Xx

 - the greatest (maximal) value of function f on a great number of 

Х. 
)(min Xf

Xx
 - the least (minimum) value of function f on a great number of 

Х. 
FXf

Xx



)(max  - the greatest (maximal) value of function f to which 

the functional value F, on a great number of X is identically appropriated. 

 
1 Each number, for example 100=N, can designate a set of N, and an element in 
this set with number N is allocated with writing (the set is designated by the 
aliphatic and sloping code - N). 
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FXf
Xx




)(min  - the least (minimum) value of function f to which the 

functional value F, on a great number of X is identically appropriated. 
max F(X)={max fk(X), k= K,1 } - vector criterion of maximizing with 

which each component is maximized, K – number, а K K,1 - a set of 
criterion indices. 
max F1(X)={max fk(X), k=1 1, K } - vector criterion of maximizing with 

which each component is maximized, K1 – number, а K11 1, K - a subset 
of indices of criterion of K1K. 
min F2(X)={fk(X), k= KK ,11  } - vector criterion of minimization, K2

KK ,11   2,1 K - a subset of indices of criterion, K2 – number,  K2K,  

K1K2=K. 
 





INTRODUCTION 
 
 
 
At the beginning of the 20th century, during research into commodity 

exchange, Vilfredo Pareto [1] mathematically formulated the criterion of 
optimality, the purpose of which is to estimate whether the proposed 
change improves common welfare in an economy. Pareto’s criterion 
claims that any change which does not inflict loss on anyone and brings 
benefit to some is an improvement. 

Despite some imperfections, Pareto’s criterion broadly makes sense 
(e.g., in the creation of development plans for an economic system when 
the interests of its constituent sub-systems or groups of economic objects 
are considered). According to Pareto’s theory, the distribution of resources 
is optimum for the conditions of a perfect competitive market structure. In 
other words, perfect competitive markets guarantee that an economy will 
automatically reach points of optimality. However, the distribution of 
resources being Pareto-optimal does not always mean they are socially 
optimal, as a society can choose (by means of the state’s economic policy) 
to limit any point’s accessible usefulness, and it may or may not be the 
point answering to social optimality. Resources can be effective 
(according to Pareto) if distributed, even in situations of extreme 
inequality. This is promoted, as a rule, by the economic policy directions 
of the state which provides benefits to one group of the population at the 
expense of another. 

The Pareto criterion was later transferred to optimization problems 
with a set of criteria, where problems were considered in which 
optimization meant improving one or more indicators (criteria), provided 
that others did not deteriorate. Multi-criteria optimization problems arose. 
As a rule, a set of criteria was represented as a vector of criteria (hence 
vector optimization problems or vector problems in mathematical 
programming (VPMP)). It immediately became clear that there were 
optimum points of Pareto in VPMP but, as a rule, there were fewer of 
these than sets of admissible points. 

Further interest in the problems of vector optimization increased in 
connection with the development and widespread use of computer 
technology in the work of economists and mathematicians. The 
functioning of the majority of economic systems depends on a set of 
indicators (criteria), i.e., the substance of economic systems includes 
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multi-criteria and only the lack of mathematical methods in solving the 
problems of vector optimization (the cornerstone of the specified models) 
has constrained their use, both in theory and in practice. 

 
It later became clear that multi-criteria (vector) problems arose not 

only in the economy, but also in technology, e.g., in the projection of 
technical systems, the optimum projection of chips, and in military 
science. 

The solution to the problem of vector optimization creates a number of 
difficulties and, apart from their conceptual character, the principal aim of 
them is to understand what it means to solve a problem of vector 
optimization (i.e., to create the principle of optimality showing why one 
decision is better than another, and defining a choice rule for the best 
decision). This aim of this book is to find a solution to this problem. 

This monograph will present a systemic analysis of the theory and 
methods of vector optimization and the practical applications, first in the 
modelling and forecasting of the development of economic systems, and 
secondly in problems of projection and the modelling of technical systems. 
These models are used during the development and adoption of 
management decisions, on the basis of what is developed in the MATLAB 
system (the software used in solving linear and non-linear vector 
problems).  

The monograph includes two volumes. The first volume, The Theory 
and Methods of Vector Optimization, includes seven chapters and 
considers the methods for solving vector problems in linear and non-linear 
programming. The main focus is on the author's theory and methods of 
vector optimization. Bases and design methods for solving vector (multi-
criteria) problems in mathematical programming are also presented. The 
main difference from the standard approaches to solving vector problems 
is that they are constructed on axiomatics and the principles of an optimal 
solution. This demonstrates the way in which one decision is more 
optimum than another. As the decision is carried out on a set of several 
(system) criteria, the system analysis and systemic decision-making, in 
total, are put into the decision algorithm. The algorithm allows us to solve 
linear and non-linear problems with equivalent criteria and at the given 
priority of the criterion. Theoretical issues with the duality of vector 
problems in linear programming are investigated, and the interrelation 
between the theory of the adoption of an administrative decision and 
vector optimization is also presented. Problem-solving in decision-making 
is shown under conditions of certainty and uncertainty. The majority of 
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mathematical methods are followed not only by concrete numerical 
examples but also by their categorisation in the MATLAB system. 

The second volume, Vector Optimization Modelling of Economic and 
Technical Systems, presents the practical use of the theory and methods of 
vector optimization in the field of mathematical modelling and simulations 
of economic and technical systems. The second volume of the work is 
divided into two parts: economic systems; and technical systems. 

In the first part of the second volume, “Vector Optimization in the 
Modelling of Economic Systems,” the following is considered: the theory, 
modelling, forecasting and adoption of administrative decisions at the 
level of production, market and regional systems. This is divided into three 
chapters where questions around the creation of mathematical models at 
the level of the firm, the market and the region are explored. An analysis is 
carried out of the “theories of the firm”, on the basis of which the 
mathematical model of prediction and decision-making across many 
criteria (purposes) of the development of the firm is constructed. 
Modelling and the adoption of production decisions on the basis of such 
models can be carried out for small, medium-sized and major companies. 
At the level of the market, a mathematical model is constructed which 
includes the purposes of all consumers and producers in total, in the form 
of a vector problem in linear programming. The constructed mathematical 
market model allows research to be conducted into the structure of the 
market and helps make decisions while taking purposefulness into 
account. Such a model resolves issues of equality of supply and demand in 
the dynamics of a competitive economy. At the level of the region, a 
mathematical model is constructed which includes economic targets for all 
sectors of the region and defines the dynamics of the development of the 
regional economy within investment processes. 

In the second part, “Vector Optimization in the Modelling of Technical 
Systems,” questions are considered around the theory, modelling, 
development practice and adoption of management decisions in technical 
systems. This is presented in three chapters. The complexity of modelling 
technical systems is defined by the fact that, in the functioning of a 
technical object, a system is defined by a set of characteristics that depend 
on the parameters of a technical system. An improvement in one of these 
characteristics leads to a deterioration in another. There is a problem in 
determining such parameters which would improve all functional 
characteristics of the technical system at the same time, i.e., the solution to 
a vector (multi-criteria) problem is necessary. 

These problems are now being solved at both technical (experimental) 
and mathematical (model) levels. The costs associated with the experimental 
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level are much higher than those at the information level. The methods 
being offered also solve this problem. The concept of optimal design in a 
technical system is developed, as well as the organization of this under 
conditions of certainty and uncertainty. Theoretical modelling problems 
are accompanied by numerical simulations of technical systems. 

The two volumes of this monograph are based on research and analysis 
of similar literature in the field of the theory and methods of vector 
optimization (1-126). The first volume is constructed on the basis of 
research into foreign literature (1, 2, 26-59), domestic authors (3-10), and 
the author's own developments (11-23). In the second volume, analysis 
and research are conducted first in the field of economics, i.e., the theory 
of the firm, market theory, and decision-making in the regional economy 
(59-96); secondly in the field of technical research and decision-making 
(97-126); and thirdly from experience of teaching both the theory of 
management and the development of management decisions at Far Eastern 
Federal University. 

The book is designed for students, graduate students, scientists and 
experts dealing with theoretical and practical issues in the use of vector 
optimization, the development of models and predictions of developments 
in economic systems, and the designing and modelling of technical 
systems.   

 



  

VOLUME  1. THE THEORY AND 
METHODS OF VECTOR 

OPTIMIZATION 
 
 
 

This volume presents a theory and methods for solving vector 
optimization problems; the common difficulties surrounding the definition 
of vector optimization; a development of the axiomatics of vector 
optimization on the basis of which the principles of optimality in solving 
vector problems are formulated; a consideration of the theoretical 
questions related to the principles of optimality; methods for solving 
vector problems in mathematical programming, allowing for solutions at 
equivalent criteria and with the given prioritized criterion; and an 
investigation into the theory of duality in vector problems of linear 
programming. 

Further, the Appendix presents a comparison of the known approaches 
with the developed method, which is based on a normalization of criteria 
and the principle of a guaranteed result.  
 



CHAPTER 1 

VECTOR PROBLEMS IN MATHEMATICAL 
PROGRAMMING (VPMP) 

 
 
 

1.1. Problems in defining vector optimization 
 
A vector problem in mathematical programming (VPMP) is a standard 

mathematical-programming problem including a set of criteria which, in 
total, represent a vector of criteria.  

It is important to distinguish between uniform and non-uniform 
VPMP: a uniform maximizing VPMP is a vector problem in which each 
criterion is directed towards maximizing; a uniform minimizing VPMP is 
a vector problem in which each criterion is directed towards minimizing; a 
non-uniform VPMP is a vector problem in which the set of criteria is 
shared between two subsets (vectors) of criteria (maximization and 
minimization respectively), e.g., non-uniform VPMP are associated with 
two types of uniform problems.  

According to these definitions, we will present a vector problem in 
mathematical programming with non-uniform criteria [11, 27] in the 
following form: 

Opt F(X) = {max F1(X) = {max fk(X), k = 1,1 K },                     (1.1.1) 
                     min F2(X) = {min fk(X), k = 2,1 K }},                     (1.1.2) 
                      G(X)B,                                                                   (1.1.3) 
                      X0,                                                                        (1.1.4) 

where X={xj, j= N,1 } - a vector of material variables, N-dimensional 
Euclidean space of RN, (designation j= N,1   is equivalent to j=1,...,N); 

F(X) - a vector function (vector criterion) having K – a component 
functions, (K - set power K), F(X) ={fk(X), k= K,1 }. The set К consists of 
sets of K1, a component of maximization and К2 of minimization; 
К=K1K2 therefore we enter the designation of the operation "opt," which 
includes max and min (a definition of the operation "opt" is given in 
section 2.3);  
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F1(X) = {fk(X), k= 1,1 K } – maximizing vector-criterion, K1 – number 

of criteria, and K1 1,1 K  - a set of maximizing criteria (a problem (1.1.1), 
(1.1.3), (1.1.4) represents VPMP with the homogeneous maximizing 
criteria). Let's further assume that fk(X), k= 1,1 K  - the continuous concave 
functions (we will sometimes call them the maximizing criteria); 

F2(X)={fk(X), k= KK ,11  } - vector criterion in which each 
component is minimized, K2 KK ,11   2,1 K  - a set of minimization 
criteria, K2 – number, (the problems (1.1.2)-(1.1.4) are VPMP with the 
homogeneous minimization criteria). We assume that fk(X), k= KK ,11  - 
the continuous convex functions (we will sometimes call these the 
minimization criteria), i.e., K1K2 = K, K1K, K2K. 

G(X)   B, X0  - standard restrictions, gi(X)  bi, i=1,...,M where bi - 
a set of real numbers, and gi(X) are assumed continuous and convex. 

S = {XRN | X0, G(X)  B} , where the set of admissible points set 
by restrictions (1.1.3)-(1.1.4) is not empty and represents a compact. 
where X={xj, j= N,1 } - a vector of material variables, N-dimensional 

Euclidean space of RN, (designation j= N,1   is equivalent to j=1,...,N); 

F(X) - a vector function (vector criterion), F(X)={fk(X), k= K,1 }. The set 
К consists of sets of K1, a component of maximizing and К2 of 
minimization; К=K1K2 therefore we enter the designation of the 
operation "opt" including max and min; F1(X) = {fk(X), k= 1,1 K } - vector 

maximizing criterion, K1 – number of criteria, and K1 1,1 K  - a set of 
indexes of criterion; K2 KK ,11   2,1 K  - vector minimization 
criterion. K1K2 = K, K1K, K2K. 
G(X)   B, X0  - standard restrictions, gi(X)  bi, i=1,...,M where bi - a 
set of real numbers, and gi(X) are assumed continuous and convex. 

S = {XRN | X0, G(X)  B}, where the set of admissible points set 
by restrictions (1.1.3)-(1.1.4) is not empty and represents a compact. 

The vector minimization function (criterion) F2(X) can be transformed 
to the vector maximization function (criterion) by the multiplication of 
each component of F2(X) to minus unit. The vector criterion of F2(X) is 
injected into VPMP (1.1.1)-(1.1.4) to show that, in a problem, there are 
two subsets of criteria of K1, K2 with, in essence, various directions of 
optimization. 
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We assume that the optimum points received by each criterion do not 
coincide for at least two criteria. If all points of an optimum coincide 
among themselves for all criteria, then we consider the decision trivially.  

1.2. A case study of vector optimization 

The information analysis on VPMP (1.1.1)-(1.1.4) that we will carry 
out assumes there is a possibility of the decision being made separately for 
each component of vector criterion. 

1) We show that exact upper and lower boundaries exist for any of the 
criteria for all kK on the admissible set S. 

So, really: 
a) In accordance with the Weierstrass theorem on the achievement of a 

continuous function, on the compact of its exact faces for the set of 
admissible points S   an optimum (best point) exists for each k-th 
component (k = K,1 ) of the vector criterion, i.e., X *

k RN is the optimum 
point and the value of the objective function (criterion) at this point: f *

k   
fk(X *

k ) will be obtained to solve VPMP (1.1.1) - (1.1.4) separately for 
each component of the vector criterion, with kK1, which of course are 
solved for a maximum; and for criteria with kK2 - at a minimum. 

b) According to the same Weierstrass theorem, on a point set of S it is 
possible to find the worst point by each criterion of k = K,1 , i.e., X 0

k RN 
- the worst point and f 0

k  fk(X 0
k ) is the value of the criterion in this point, 

VPMP (1.1.1)-(1.1.4) is received with the decision made separately for 
each component of vector criterion, (the problems with k K1 are solved at 
a minimum of  f 0

k   f min
k , and with kK2 respectively at a maximum of      

f 0
k  f max

k ). From here, it follows that each criterion of kK1K on an 

admissible set of S can change from f 0
k  f min

k   to f *
k  f max

k : 
f 0

k   fk(X)   f *
k , k = 1,1 K ,                                                     (1.2.1) 

and the criteria kK2K on the admissible set S vary from the maximum 
value f 0

k =f k
max , k= 2,1 K to f *

k , k = 2,1 K : 
 f 0

k   fk(X)   f *
k , k = 2,1 K .                                                      (1.2.2) 

In (1.2.1), (1.2.2) f 0
k , k = K,1  is what we call the worst part of the k-th 

criterion. 
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2) We recall the definition of the set of Pareto optimal points. 
Definition (condition of optimality of a point on Pareto): 
In VPMP, the point of Хo S is Pareto-optimal if it is admissible and 

there is no other point of X' S for which: 
 f(X')  f(X 0

k ), k= 1,1 K , fk(X')   fk(Xo), k= 2,1 K   
and at least for one criterion is carried out with strict inequality. 

The point set of So for which the condition of optimality of a point on 
Pareto is satisfied is called a point set, Pareto-optimal, by So S. This is 
also called a set of “not-improved points”. 

The theorem (concerning the existence of Pareto-optimal points):  
In VPMP (1.1.1)-(1.1.4), if the set of admissible points of S is not 

empty and represents a compact, and vector criterion (1.1.1) - concave 
functions, and vector criterion (1.1.2) – convex functions, then a point set 
of Sо, Pareto-optimal, is not empty: Sо, Sо S. The proof is in [24]. 

Point set, being Pareto-optimal, are somewhat between optimum points 
which are received as a result of the solution to VPMP separately by each 
criterion. For example, in two criteria of VPMP, as shown in Fig. 1.1, Sо 
represents some curve X 1

* X 2
* . 

 
                        So  
                 S 0

1             Xo  
            X 1

*                    S 0
2          

                                         X 2
     

                         S       S'             
                     
                       S1        S2  
       X 0

2                              

                                           X 0
1  

 

Fig. 1.1. Geometrical interpretation of 
an example of the solution to two-
criteria VPMP:  
X 1

* , X 2
*  - optimum points in the 

solution to VPMP in the first and 
second criteria; X 0

1 , X 0
2 - the worst 

points, respectively;  
Xo - the decision at equivalent criteria;  

S - an admissible point-set in VPMP;  
So - points, Pareto-optimal (subset);  
S1, S2 - admissible points (subsets) 
which are the priority for the first and 
second criterion respectively.                  

 
Let's note that such path limits (sides) of change for any criterion can 

be found on a Pareto set: for criterion to maximize qK1 its minimum size 
is defined by viewing all optimum points on a set of maximizing criteria 
for the first type: 
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f min
q  = 

qKk
f

1

min


(X *
k

), q = K,1 1, 

where X *
k  - an optimum point which is received in the solution to VPMP, 

separately to the k-th criterion; for minimization criteria for the second 
type there is the maximal size, which is defined by viewing all optimum 
points on the corresponding set of maximizing criteria:  

f max
q = )(max *

2
kqKk

Xf


, q= KK ,11  . 

Thus, the values of criterion fq(X) received on a Pareto set lie in 
borders: 

f min
q   fq(X)   f *

q , q = 1,1 K ,                                                (1.2.3) 

f max
q   fq(X)  f *

q , q = KK ,11  .                                            (1.2.4) 

Let's notice that f min
q  

can be the very worst decision and f 0
q , i.e. f 0

q
  f

min
q , qK1, f max

q   f 0
q , qK2 is similar. 

3) There is a natural question about whether the point can, if it’s 
Pareto-optimal, be the solution to VPMP (1.1.1)-(1.1.4). 

The answer is no. 
Generally speaking, in VPMP (1.1.1)-(1.1.4), the point set of Sо is 

commensurable or can even coincide with a set of admissible points of S. 
Below are two examples illustrating this premise. 

Example 1.1. Let's consider a vector problem with two linear criteria. 
max F(X) = {max f1(X)  2x1 + x2,  
                     max f2(X)   x1 + 2*x2},                                           (1.2.5) 

                             x1 + x2 = 1, x1, x2 0. 
The Pareto set of Sо and the set of admissible points of S are equal 

among themselves and represent a point set, lying on a straight line X *
1 X

2
*  (see Fig. 1.2, a) with coordinates: 

X *
1 ={x *

1  = 1, x 2
* = 0}, X 2

* ={x *
1 =0, x 2

* =1}. 
The points of X 1

* and X 2
*  are the solution to VPMP (1.2.5), separately, 

with the corresponding criterion. Moving forward, we will note that the 
solution to VPMP (1.2.5), on the basis of criteria normalization and the 
principle of the maximine (a guaranteed result), with a condition of an 
equivalence of criteria, only has the following appearance:  

о = 0,5, Xо = {x1 = 0,5, x2 = 0,5}. 
Example 1.2. Let's consider a vector problem with three linear criteria: 
opt F(X) = {max F1(X) = {max f1(X)  2x1 + x2,   
                                           max f2(X)  x1 + 2*x2}, 
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                     min F2(X) = {min f3(X)  x1 + x2}},                       (1.2.6) 
                                            x1 + x2  1, x1, x2 0 . 
Sets of Sо and S are equal among themselves and represent point sets, 

lying on the plane X 1
* X 2

*X 3
*  (see Fig. 1.2, b) with coordinates: 

X 1
* ={x 1

* =1, x 2
*=0}, X 2

* = {x 1
* =0, x 2

*=1}, X 3
*={x 1

* =0, x 2
*= 0}. 

Points of X 1
* and X 2

* , to X 3
*  submit the solution to VPMP (1.2.6) for 

each criterion respectively.  
The result of the solution to a vector task (1.2.6) at equivalent criteria: 
о = 0,43, Xо = {x1 = 0,285, x2 = 0,285}, 
о = 1(Xо) = 2(Xо) = 3(Xо) = 0,429. 
 

         x2                                                            a 
X 2
  

 
                                                          
                      S0=S 
  
                           Xо 
                                      S 
 
                               
   
   0                                                 
                                             X 1

   x1  

  x2                                                     b 
X 2
                                             

                  
 
 
 
                                        
                 
          S0=S     Xо 
 
 
  X 

3                                                  x1 
        0                                             X 1

    
 
Fig. 1.2. Geometrical interpretation of distribution point-sets in VPMP: a) with 
two, and b) three criteria. 

 
The given examples show that if Pareto-optimal is found in VZMP 

(1.2.5) and (1.2.6) points, then only the admissible point is found, and no 
more. The answer to the question of what this is better than, other than 
points from a Pareto set, remains open. 

Generally, for VPMP (1.1.1)-(1.1.4), there is a problem not only with 
the choice of a point, Pareto-optimal XоS , but also with definition, in 
that a point of XоSоS is "more optimum" than another point of XSo, 
XX, i.e., the choice of the principle of optimality on a Pareto set. 

Let's consider the example of VPMP with two criteria and the question 
of the preferences (or priorities) of the person making the decisions.  
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Apparently, if the decision-maker considers the first criterion to be the 
priority, then the greatest priority will be at a point of an optimum of X 1

* ; 
further from X 1

* , the first criterion’s priority concerning the second 
decreases. If the decision-maker considers the second criterion to be the 
priority, then the greatest priority for it, apparently, will be at a point of X 2

*

; with removal from it, the priority of the second criterion concerning the 
first decreases. At some distance from X 1

*
 and X 2

*  there has to be a 
compromise point of Xо in which neither the first nor second criterion have 
priority, i.e., they are equivalent. 

Thus, the question of the preferences (or priorities) of the decision-
maker demands a more precise definition in terms of the area of priority 
according to this or that criterion, and the areas where criteria are 
equivalent. 

Generally, we will try to formulate the problem of finding the solution 
to VPMP (1.1.1)-(1.1.4). 

According to us, the problem with finding the solution to VZMP is in 
the ability to solve three problems: 

• First, to allocate any point from a set of So  S and to show its 
optimality concerning other points belonging to a Pareto set; 

• Secondly, to show by what criterion of qK  it (the point) is more of 
a priority than other criteria of k = K,1   and by how much; 

• Thirdly, if there are changes to the limits of the prioritized criterion in 
the Sо Pareto set, and these are known (and it is easy to state these in ratios 
(1.2.3), (1.2.4)), then under the given numerical value of the criterion, to 
be able to find a point at which the mistake does not exceed the given. 

 
The efforts of most vector-optimization researchers have been directed 
towards solving this problem in general, as well as its separate parts. For 
the last three decades, a large number of articles and monographs have 
been devoted to methods for solving vector (multi-criteria) tasks. These 
have detailed the theoretical research and methods in the following ways: 
 

1. VPMP solution-methods based on the folding of criteria;  
2. VPMP solution-methods using criteria restrictions;  
3. Methods of target-programming;  
4. Methods based on searching for a compromise solution;  
5. Methods based on human-machine procedures for decision-making. 
 
Research and analysis of these methods is presented in Chapter Four. 

Analysis is carried out by comparing the results of the solution to the test 



Vector Problems in Mathematical Programming (VPMP) 13

example using these methods, to a method based on the normalization of 
criteria and the principle of a guaranteed result [11, 14, 17], which is the 
cornerstone of this book.  

 



CHAPTER 2  

THE THEORETICAL BASES OF VECTOR 
OPTIMIZATION 

 
 
 
This chapter presents the basic concepts and definition used in the creation 
of methods to solve the problems of vector optimization; the principles of 
optimality in solving vector problems; the theoretical results characterizing 
the formulated principles of optimality in vector optimization problem-
solving; and conclusions on the theoretical bases and methods of vector 
optimization. 

2.1. The basic concepts and definitions of vector 
optimization 

To develop the principles of optimality and methods for solving the 
problems of vector optimization, we will look at the following concepts: 

 
•  the relative assessment; 
•  the relative deviation; 
•  the relative level; 
•  a criterion prioritized in VPMP over other criteria; 
•  a criterion prioritized vector in VZMP over other criteria; 
•  the given vector of a criterion prioritized in VPMP over other 

criteria [11, 27]. 
 
From this, we will derive a number of definitions that allow us to 

formulate the principles of optimality in solving vector-optimization 
problems. 

2.1.1. The normalization of criteria in vector problems. 

Normalizing criteria (mathematical operation: the shift plus rationing) 
presents a unique display of the function fk(X), k = K,1 , in a one-
dimensional space of R1(the function fk(X),kК represents a function of 
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transformation from a N-dimensional Euclidean space of RN in R1). To 
normalize criteria in vector problems, linear transformations will be used: 

  fk(X) = ak f '
k (X) + ckkК,                                                (2.1.1) 

or fk(X) = (f '
k (X) + ck)/akkK,                                             (2.1.2) 

where f '
k (X), k = K,1  - aged (before normalization) value of criterion; 

fk(X), k = K,1  - the normalized value, ak, ck  - constants.  
Normalizing criteria (2.1.2) in an optimizing problem does not 

influence the result of the decision, i.e., the point of an optimum of X *
k , k 

= K,1  is the same for non-normalized and normalized problems. 
There are two basic requirements in the mathematical operation known 

as "the normalization of criteria" when applied to vector problems in 
mathematical programming: 

a) the criteria should be measured in the same units;  
b) at the optimum points X 

k , k = K,1  all criteria must have the same 
values (e.g., equal to 1 or 100%). These requirements are reflected in the 
following definitions. 

2.1.2. The relative evaluation of criterion. 

Definition 1. In a mathematical-programming vector problem (1.1.1)-
(1.1.4) k(X) is the relative estimate which represents the normalized 
criterion: fk(X), kK in XS point, with a normalization of the following 
type: 

k(X) =
o

k
*

k

o
kk

ff
 (X) - ff


,kK,                                                        (2.1.3) 

where at the point XS the value of the k-th criterion is fk(X); f *
k - the 

criterion value k-th at a point of optimum of XS is received in solving a 
vector problem (1.1.1)-(1.1.4) separately to the k-th criterion; f o

k - the 
worst size of the k-th criterion in an admissible set of S in a vector 
problem (1.1.1)-(1.1.4). 

It follows from normalization (2.1.3) that any relative estimate of a 
point of X S on the k-th criterion conforms to both requirements imposed 
on normalization: first, that criteria are measured in the relative units; 
secondly, that the relative estimate of k(X) k K in an admissible set 
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changes from zero at a point of X o
k , kK

o
kXX 

lim k(X)=0 to the unit at an 

optimum point X *
k ,kK

*
kXX 

lim k(X)=1:  

kK  0 k(X)  1, XS.                                                           (2.1.4) 
 
2.1.3. The relative deviation. 

Definition 1a. The relative deviation, (X)λ k , k= K,1 , is also the 
normalized criterion of kK  at a point of XS VPMP (1.1.1)-(1.1.4), but 
with normalization of the type: 

)( Xk = (f k  -  fk(X))/(f k  - f o
k ),k  K,                                   (2.1.5)          

where fk(X), f k , f o
k  - the values defining the k-th criterion are also 

described above. 
From (2.1.3) it follows that any relative deviation )( Xk  at a point of 

X  S on the k-th criterion also conforms to both requirements of 
normalization:  

k  K
*

lim
kxx 

)( Xk =0; kK
o
kXX 

lim )( Xk =1.                 (2.1.6) 

Between k(X), )( Xk , k= K,1 , XS there exists a one-to-one 
association:  

k(X) = 1 - k (X), k= K,1 , XS.                                          (2.1.7) 
The relative estimates and deviations within the corresponding types of 

normalized criteria, taking into account types of VPMP and types of 
restrictions, are given in Table 2.1 where designated: (X), k = K,1 - the 
relative estimates of the k-th criterion; )( Xk , k = K,1 - the relative 
deviation from XS optimum by criterion.    
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Table 2.1: The normalization of criteria in problems of vector 
optimization. 
 
Type of 
VPMP 

Type of 
restrictions 

Type of normalized 
criteria 
 

Limits of 
normalization 
criterion 

The 
Homogeneous 
criteria of 
maximizing 
(1.1.1),(1.1.3)- 
(1.1.4) 

*)(0 kk fXf   
k(X) = fk(X)/f k  0 k(X)  1  

 k (X) = (f k  - fk(X) /f k  1  k (X) 0 

*min )( kkk fXff   
k(X)=(fk(X)-f min

k )/(f k -f min
k ) 0 k(X)  1 

 k (X)=(f k -fk(X)/(f k - f min
k ) 1  k (X) 0 

The 
homogeneous 
criteria of 
minimization 
(1.1.2)-(1.1.4) 

*)( kk fxf   
*/)()( kkk fXfX   1 k(X) < 

 k (X) = (fk(X) - f k )/fk 0   k (X) < 

*max )( kkk fXff 
k(X) = (fk(X) - f min

k ) 0 k(X)   1 

 k(X)=(f k  - fk(X) /(fk - f min
k ) 0   k (X)  0  

Non-
uniform 
criteria 

(1.1.1)-(1.1.4) 

*min )( kkk fXff   k(X)=(fk(X) - f o
k )/(f k  - f o

k ) 0  k(X)  1 

*max )( kkk fXff   k(X) =(f k  - fk(X)/(f k  - f o
k ) 1  k (X)  0 

2.1.4. The relative level 

In an operation that compares the relative estimates or their relative 
deviations, we introduce an additional numerical characteristic of , which 
we will call the relative level.  

Definition 2. The relative level  in VPMP is the lower assessment 
(bound) of a point of XS among all relative estimates of k(X), k = K,1 , 
i.e.,  is an essence-lower, bending around the k(X) functions:  

XS    k(X), k = K,1 ,                                                         (2.1.8) 
and the lower level for the realization of a condition (2.1.8) at an 
admissible point is defined by the formula: 

XS   =
Kk

min k(X).                                                                 (2.1.9) 

Ratios (2.1.8) and (2.1.9) are mutually coherent and serve as a 
transition from the operation of the definition min (max) to the 
restrictions, and vice versa. 
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The introduction of the  level unites all the criteria of VPMP in one 
numerical characteristic and “makes over” its particular operations, 
thereby carrying them out with all criteria measured in the relative units. 
The  level functionally depends on the XS variable – in changing it, it’s 
possible to also change . From here, the rule of searching for an optimal 
solution can also be formulated. 

2.1.5. Prioritizing one criterion over others in VPMP 

Definition 3. The criterion of qK in VPMP at a point of XS is 
prioritized over other criteria of k = K,1  if assessment by this criterion is 
more relative or equal to other relative criteria estimates, i.e., 

q(X)  k(X), k = K,1 ,  
and a rigorous priority, for at least one tK criterion, 

q(X) > t(X), tq, 
and for other criteria of q(X)  k(X), k= K,1 , ktq. 

Introduction of definition 3 — a criterion prioritized in VPMP executes 
a redefinition of an early concept of a priority. In earlier definitions, the 
intuitive concept about the importance of this criterion was invested in the 
term "priority", but this "importance" is now defined by a mathematical 
concept: the more the relative assessment of the q-th criterion over others, 
the more important it is (it has more of a priority), and is the highest 
priority at the point of an optimum of X 

k , q  K. 
2.1.6. The vector criterion prioritized over other criteria in VPMP. 

If the definition of a prioritized criterion is qK  in VPMP, it follows 
that it is possible to reveal a point set of SqS which is characterized by 
q(X)k(X)  kq  XSq. But the question of whether the criterion of 
qK  in this, or in another point of a set of Sq, is more prioritized than the 
others, remains open. 

For clarification of this question, we will look at a coupling coefficient 
between a couple of the relative estimates of q and k which, in total, 
represent a vector: 

Pq(X) = {p q
k  (X)  k= K,1 }  qK   XSq. 

Definition 4. In VPMP, with the q-th criterion prioritized over other 
criteria of k = K,1 , for XSq, the vector of Pq(X), which each 
component shows in how many times the relative assessment of q(X), 
qK  is more than other relative estimates of k(X), k= K,1 =, we will call 


