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INTRODUCTION 
 
 
 
The articles in this book present the most interesting new results 

reported at the IX Moscow International Conference on Operations 
Research (ORM 2018). The Conference is the largest Russian meeting in 
this area.  Lomonosov Moscow State University and Computational 
Center of the Russian Academy of Sciences hold it every three years, and 
leading Russian scientists in Operations research take part in it. This time 
there were more than 330 participants from Russia, Germany, Italy, 
Sweden, Spain, Turkey, the USA and other countries. They gave 255 talks 
on the theoretical problems and current applications of Operations 
Research. Among the most interesting presentations, the Program 
Committee selected 18 for the publication in this proceedings’ volume. 

The papers contain new important results and are of interest for 
researchers and organizations specialized in OR, Game Theory, System 
Analysis, Macro- and Micro-economic Modelling, Finance and Actuarial 
Mathematics. The volume may be used for advanced courses in the 
specified areas for PhD and Master Students.  The proposed methods for 
optimal decision making will be useful for insurance and auditing 
companies, banks, producers of the software, and other industries. 

ORM 2018 was dedicated to the 100 years anniversary of Professor 
Yu. B. Germeyer (18.07.1918 - 24.06.1975), the founder of the 
Russian Operations Research School. Several papers in the volume 
develop his original approaches to optimization and game-theoretic 
problems. 

Yu. B. Germeyer made an outstanding contribution to the development 
of Operations Research. He formulated the principle of the maximal 
guaranteed result for decision making under random and uncertain factors, 
introduced the concept of hierarchical games and proposed efficient 
methods for computation of their solutions. His books “Introduction to 
Operations Research” (1971) and “Non-antagonistic games” (1976) 
remain basic textbooks for students at leading Russian universities, in 
particular, Lomonosov MSU and at Moscow Institute of Physics and 
Technology. In 1974 he organized a laboratory of Operations Research in 
Computing Center of the Academy of Sciences of the USSR. He was also 
a founder of Operations Research Department at Faculty of Computational 
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Mathematics and Cybernetics of MSU in 1970. Since that time, he had 
also been a head of that Department. 

The volume consists of three parts. The first one includes game-
theoretic models concerning economic interactions with endogenous 
formation of utility functions, hierarchical structures, global equilibrium 
with final-offer arbitration, repeated conflicts with variable discounting. 
The papers discuss different applications of developed models. In 
particular, they consider markets for derivatives and analyse stability of 
international environmental agreements. 

Next part is about operations research in economics and finance. The 
papers consider innovations and their possible opposite impact to the 
growth of GDP and social welfare, social dynamics determined by 
collective decisions in a society with an elite, the analysis of the prospects 
for the development of public-private partnerships in large-scale 
industry,  monopolistic competition under heterogeneous labor, 
interregional trade and different ways of the Russian banking system 
development. They also discuss new methods to improve reliability of 
banks’ credit risks. 

Third part contains papers on a wide range of optimization problems 
and their applications. The papers consider continuous optimization 
problems with infinite numbers of constraints, discrete problems related to 
computation scheduling, development of the Germeyer’s approach to 
decision-making problems in the presence of random and uncertain 
uncontrolled factors and to correction of improper linear programming 
problems, the problem of finding solutions of approximate systems of 
linear algebraic equations, the problem of interpretation of an infeasible 
solution for a large-scale problem of optimal production planning. 

 
Fuad Aleskerov and Alexander Vasin 
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Game-Theoretic Models 



CHAPTER ONE 

INFORMATION AND HIERARCHY 

FELIX ERESHKO AND MIKHAIL GORELOV 
 
 
 

Abstract 

The paper discusses the expediency of decentralizing the organizational 
system control. We consider the problem of decision-making in the 
presence of external uncertainty factors. Information about external 
uncertainty is available to the decision maker (the Center); however, the 
quantity l of information that the Center can timely receive and process is 
assumed to be limited. A combinatorial approach is used to estimate this 
quantity. The Center can either choose the controlling strategy on its own 
or entrust the choice of some controls to its agents. In the latter case, the 
agents make decisions based on their own utility functions. They are 
considered to be exogenously set. It is assumed that the decision maker 
retains the right of the first move. We study two systems of models that 
differ in the attitude of the decision maker towards uncertainty. One of 
them uses the principle of maximum guaranteed result. The other assumes 
that the decision maker is risk neutral, and a probability measure is given 
on the set of uncertainty factors. We prove that, if the interests of the 
agents are “poorly coordinated” with those of the Center, the centralized 
control is always more profitable. And if the interests of the Center and the 
agents are “well coordinated”, then, under large values of l, centralization 
of control is more profitable, and under small values of l, the decentralized 
control is preferable. 
 
Keywords: information theory of hierarchical systems, control 
decentralization, maximal guaranteed result 
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1. Introduction 

This chapter is devoted to answering the question: why is the 
management of complex systems carried out on a hierarchical basis? One 
of the answers to this question gives the information theory of hierarchical 
systems. In a nutshell, this answer looks like this: Hierarchy arises there 
and then, where and when, for effective centralized decision-making, it is 
necessary to process too large amounts of information. 

The main provisions of the information theory of hierarchical systems 
were developed in the 1970s, by Yu. B. Germeyer and N.N. Moiseev 
(Germeier, Moiseev 1971, Moiseev 1975, Moiseev 1981, Moiseev 1999, 
Moiseev 2003). But until recently, these ideas were developed on a 
qualitative, informal level. Last, but not least, this is connected with the 
concept of ‘volume of information’, which appears in the thesis 
formulated in the previous paragraph. 

Information aspects were considered in the first papers on game theory 
(see, for example, Von Neumann & Morgenstern 1953, Zermelo 1913). 
However, in classical game-theory models, the existence of restrictions on 
the amount of information was not explicitly taken into account, that is, in 
fact, models were considered without such limits. Such idealization is 
permissible at a particular stage in the development of the theory. But to 
discuss the issue under consideration is not acceptable. 

Several attempts have been made to formalize the existence of such 
restrictions (Aliev & Kononenko 2005, Gorelov 2002, Gorelov 2003, 
Gorelov 2003’, Gorelov 2004, Gorelov 2008, Gorelov 2011). Perhaps the 
most successful was the method proposed in (Gorelov 2011). It allowed 
the expanding of the range of issues investigated by methods of game 
theory. For example, it became possible to take into account the presence 
of errors in the transmission of information arising due to technical 
failures (Gorelov 2012, 2015), and as a result of purposeful actions by one 
of the players (Gorelov 2016). It has become possible to take into account 
the costs of information processing in the models (Gorelov 2017). 

In the context of this chapter, it became possible to build the first 
quantitative models that allow us to associate the expediency of the 
emergence of a hierarchy with the volumes of information processed 
(Gorelov & Ereshko 2019, Gorelov & Ereshko 2020). The models studied 
in (Gorelov & Ereshko 2019) and (Gorelov & Ereshko 2020) differ in the 
attitude of the operating party to uncertainty. In (Gorelov & Ereshko 
2019), it is assumed to be cautious, and in (Gorelov & Ereshko 2020) – 
risk-neutral. Below an ‘intermediate’ case will be considered. 
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Namely, this chapter assumes that the operating party uses the 
principle of ‘value at risk’. This principle is widely used in economic 
research (Dempster (ed.) 2002, Jorion 2006), but until recently, it was used 
only in ‘optimization’ models. It has appeared very recently in game-
theory models (Gorelov 2018, 2019). 

With all three variants of the attitude of the operating party to 
uncertainty, the main qualitative conclusion remains unchanged: the 
higher efficiency of hierarchical management can be explained by the 
presence of restrictions on the amount of information processed. 

2. Basics of the information theory of hierarchical systems 

In this section, we will discuss the main thesis of the information 
theory of hierarchical systems, on an informal level. The rest of this 
chapter will be devoted to one of the ways to formalize these ideas. 

To begin with, we explain how the term ‘hierarchy’ is understood in 
this theory. 

“When we use the term ‘hierarchical structure’ or ‘hierarchical 
organization’, it means only that the system is divided into separate 
subsystems, or units, with independent rights for information processing 
and decision-making” (Moiseev 1975). 

This understanding is not universally accepted. For example, 
Wikipedia gives the following definition: 

“Hierarchy is the order of subordination of lower elements to the 
highest, organizing them into a tree structure; the principle of management 
in centralized structures” (https://ru.wikipedia.org/wiki/Hierarchy). 

The last definition is perhaps the most common. In some cases, it may 
be adequate. But when studying decision-making tasks, it seems to us to 
be too narrow, because it reduces the diversity of interrelationships of the 
elements of organizational systems to the ‘boss – slave’ attitude, which 
impoverishes the model to be built and investigated. 

It may seem that the definition of Wikipedia is more constructive since 
it contains a specific mathematical object – a tree. However, if we analyze 
the existing decision-making models, we will see that only vertices 
‘remain’ in the tree in them. 

Thus, there is no ‘working’ definition of a hierarchy. Analysis of the 
studied decision-making models shows that the hierarchical structure, in 
one way or another, is modeled by the used principle of optimality. 
Roughly speaking, if Nash equilibria are studied, then we are talking about 
elements at the same level of the hierarchy; and if the principle of the 
maximum guaranteed result is applied, then systems such as Center–Agent 
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are considered. Unfortunately, in addition to the hierarchy itself, the 
principle of optimality usually includes the attitude of the subjects to 
uncertainty and, perhaps, something else. This introduces additional 
difficulties. 

In principle, the elements of the hierarchical structure should, 
probably, also include the procedures for the exchange of information, i.e., 
subsystem awareness (see definition above). 

In earlier times, the terms ‘hierarchical game’ and ‘game with a fixed 
order of moves’ were understood as synonyms. One could look here for a 
basis for a working definition of hierarchy, but the same problem arises. 
The ‘order of moves’ is used at the stage of building a model and its 
interpretation, and it is usually absent in the formal model. And, besides, 
any game can be considered as a game with a fixed order of moves: either 
moves are made simultaneously, or in turn. So, in a certain sense, the term 
‘game with a fixed order of moves’ is tautological. 

Also, of course, static decision-making models are a purely 
preliminary stage of research into inherently dynamic decision-making 
processes. And after the transition to dynamics, the very notion of the 
order of moves becomes necessarily blurred: if decisions are made 
continuously, it is difficult to speak of some ‘order’. 

However, it also contains a particular constructive moment. If we 
consider static models as a result of dynamic aggregation, then something 
falls into place. The phenomenon of the hierarchy of specific times in 
various dynamic processes is known. And if the top level element changes 
its decisions ‘rarely’, and the bottom level elements change ‘often’, then it 
turns out that, in general, the lower level elements select their controls 
when the controls of the top level element are already selected and fixed. 
With the proper aggregation of such processes, that ‘order of moves’ 
should arise. 

Of course, the task of synthesizing optimal hierarchical systems is of 
current interest. The lack of a ‘working’ definition is, apparently, the main 
obstacle in attempting to set such a task; one can’t look for ‘I don't know 
what’. Perhaps the only way out is to consider various pre-defined options 
for managing one system, analyze them, and compare the results obtained. 
Thus, from several methods, one can choose the best. This is the path 
currently being followed, mainly by research. In particular, this is what we 
will do next. 

We continue with another essential thesis. 

“As soon as the system becomes ‘quite complex’, a hierarchical structure 
inevitably arises in it. We do not know of any complex systems that do not 
have such an arrangement.” (Moiseev 1975). 
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This fact, perhaps, can be considered to be generally accepted. Here we 
focus on the word ‘complex’, which appears twice in the above quotation. 

‘Complexity’ is a particular mathematical concept. True, it refers to 
constructive, not to set-theory mathematics. Unfortunately, most decision-
making models are written in the language of set theory. One can see the 
reason for this is that the founders of the theory of decision-making, E. 
Zermelo, E. Borel, and J. Von Neumann, were prominent experts in set 
theory and actively promoted just such an approach. The title of one of the 
first works on game theory is characteristic: “On the application of set 
theory to the theory of a chess game” (1912) (Zermelo 1913). 

But the main reason is still not the case. Every model should be 
‘simple enough’ to be explored. A non-trivial decision-making model 
must take into account many factors (the possibilities and interests of the 
players, their awareness and attitude to uncertainty, etc.), and therefore 
must be sophisticated. To build constructive decision-making models 
which, on the one hand, are quite informative, and, on the other hand, are 
reasonably visible, is not possible so far. Such a task seems to be very 
important, but also quite difficult. 

To date, this problem ‘circumvents’, as follows. The models with some 
additional structures are considered. Structures are usually described in 
some language, say, in terms of the abstract structures of N. Bourbaki 
(Bourbaki 2004). Language constructs are quite constructive objects, and 
one can speak about their complexity quite definitely. 

Roughly speaking, if the set A is represented as a Cartesian product 
A = A1A2…An, then the number of factors can be considered as a 
measure of the complexity of the set. Here, however, one needs to be very 
careful: the collection of 100 objects located in the form of a square 1010 
is in some sense simpler then a set of the same 100 objects, but ‘heaped 
up’. 

In decision-making models, it is usually not structures of the Cartesian 
product type which work, but structures of functional spaces. This is 
because the players’ awareness in many cases is convenient to simulate 
using strategy-functions. For example, in the classic game 2 of Yu.B. 
Germeyer, the set of strategies for one of the players is a set of functions. 
In the game 3, the set of top-level player strategies is already a set of 
mappings, each of which is defined on a set of functions (Germeĭer 1986). 
Thus, a particular ‘hierarchy of difficulties’ arises. 

This idea can be used to define the term ‘theory of hierarchical games’ 
(Gorelov & Kononenko 1999). There are a large number of results, which, 
in general terms can be described as follow: The ‘complex’ decision-
making model is explored. The solution of the corresponding problem is 
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written in terms of another, simpler, model, which is connected with the 
first one. In this kind of research, there is a unity of results and methods. It 
gives reason to talk about a unified ‘theory of hierarchical games’. 

In this regard, it is worth mentioning one more thing. At a very early 
stage, game theory and optimization theory developed together. But at the 
moment they are different sections of mathematics. The difference lies just 
in the plane under discussion. Consider, for example, the simplest case of 
an antagonistic game. The main task is to calculate the maximum 
guaranteed result of one of the players 

max min ( , )
v Vu U

g u v


. 

Formally speaking, this is the task of optimizing a function 
( ) min ( , )

v V
u g u v


  on the set U, and only the particular structure of this 

function distinguishes game theory from the theory of optimization. 
Let us turn to, perhaps, the central question of the information theory 

of hierarchical systems: why is hierarchy necessary in control systems? 
The most general answer to this question, is that it is these systems that 

‘survive’ in the process of evolution, since they demonstrate greater 
efficiency. In practice, one can observe at least two ways of forming 
hierarchical systems. Some develop spontaneously (for example, the 
states). Others are created purposefully (say, when the ‘staff list’ is 
approved). In the first case, we can talk about survival in an aggressive 
‘market’ environment, in the second, about survival in this bureaucratic 
system. 

It is easy to argue in favor of higher efficiency of centralized 
management. To explain the greater efficiency of systems with 
decentralized control, the mechanism of increasing the efficiency of 
control with decentralization in the theory under consideration, is revealed 
as follows: 

“It may turn out that the fully centralized collection and processing of 
information are either technically impossible, or lead to a significant delay 
in decision making, i.e., to making decisions on outdated information. In 
both cases, this will lead to an increase in uncertainty in decision-making 
procedures, and, consequently, to a decrease in guaranteed estimates of the 
effectiveness of the management system. 

One of the ways to overcome the difficulties caused by a large amount of 
information and the complexity of its processing is ‘parallelization’ of its 
collection and processing procedures. However, the decentralization of 
information processing inevitably requires a certain level of 
decentralization of decision-making procedures as well, i.e., the creation of 
independently functioning subsystems.” (Moiseev 1975). 
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It is also worth mentioning the price of receiving and processing 
information. 

In the context of what was said above, it can be said that 
decentralization occurs when practical centralized control algorithms turn 
out to be too complicated. In some cases, decentralized control algorithms 
may be more simple, and therefore, more efficient. 

These two approaches to explaining the emergence of decentralization 
are quite close, although they do not entirely coincide. 

In connection with the above, let us dwell on another question. 
If we consistently use the above reasoning, we will come to the 

following conclusion: as the technique of transmitting information 
improves, the level of centralization should increase. In recent years, 
information technology is developing very rapidly. The centralization of 
management, at least as fast, is not noticeable. How can this paradox be 
explained? 

One can give an explanation. There are two parallel processes. On the 
one hand, information technologies are being improved. On the other 
hand, the controlled systems themselves become more complicated. 
Moreover, it is widely believed that they are becoming more sophisticated, 
in particular, due to the strengthening of the links between their elements. 
And, to a certain extent, the expansion of the set of implemented control 
procedures compensates for the improvement of information technologies. 

One of the central concepts in all the previous arguments was the 
concept of information. Unfortunately, a sufficiently strict and universal 
definition of the concept of information does not yet exist. It would seem 
that this presents an insurmountable barrier to the formalization of all the 
above thoughts. However, this is not entirely true. There is such a section 
of mathematics as information theory. And it has proven himself in 
practice. How did they do without a precise definition? The fact is, that in 
the theory of information, only the particular task of transmitting 
information is considered, and therefore, it is possible to carry out 
formalization. But after all, we are faced with a specific task. Therefore, 
there is hope that the problem will be managed. 

And in this sense, the situation is not so bad. 
There is an introduced by N.S. Kukushkin (Kukushkin & Morozov 

1984) the concept of quasi-informational expansion, giving a kind of 
‘external assessment’ of the concept of ‘information exchange’. It is 
designed in a purely set-theoretical spirit, and therefore is not quite 
suitable for the discussed purposes, but in many cases, it is very 
convenient. 
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On the other hand, it is possible to offer an ‘internal assessment’ of the 
same concept, since there are quite adequate ways to describe formally 
specific ways of exchanging information (for example, in the spirit of N. 
Howard’s meta-extensions (Howard 1966)). Moreover, this ‘assessment’ 
may well be made constructive. 

However, in the context of the issues discussed, the very concept of 
‘information’ is not so significant. One other concept is more important. 
When it comes to the time for ‘processing’ information, the price of such 
‘processing’ requires a quantitative measure of the amount of information. 
There are problems here, but also, not everything is hopeless. 

One of the works of A.N. Kolmogorov is called, “Three approaches to 
the definition of the concept ‘quantity of information’” (Kolmogorov 
1965). The article is quite old, but has not lost its relevance. It is clear that 
if there are three approaches, then none of them is entirely satisfactory. 
Besides, these general approaches need to be somehow adapted to specific 
decision-making tasks. 

In recent years, several meaningful models of this kind have been 
constructed, the results of the study of which can be interpreted well. In 
particular, examples are showing how the complexity of a control system 
affects the amount of information needed to manage this system 
effectively. 

And one more thesis. 

“As soon as a subsystem receives the right to make decisions, it becomes 
an independent organism, i.e., inevitably acquires its own goals, in the 
general case non-identical to the interests of other subsystems and the 
system as a whole” (Moiseev 1975). 

The process of forming goals is objective. Thus, even if some 
subsystem is artificially created by, say, an operating party, it cannot be 
assumed that the operating party has the right to set the goals of this 
subsystem. Of course, it will have the opportunity, by choosing its 
controls, to influence the value of the subsystem payoff, but the payoff 
function itself is a kind of exogenous element. 

“The question of the emergence of objective goals among social groups 
and systems is very complicated. In the final account, he is somehow 
connected with homeostasis. But all these ties are very mediated, refracted 
through the prism of the traditions of the social infrastructure, and it is far 
from easy to trace them” (Moiseev 1981). 

Thus, the question of the formation of goals seems is beyond 
mathematics. However, it is worth noting two results. 
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The first of them belongs to I.G. Pospelov (Pospelov 1986). Its essence 
is as follows: If a trader seeks to preserve homeostasis, that is, minimize 
the probability of his devastation, then he must maximize his profit. This 
result was obtained, of course, on one simplified model, but it gives hope 
that, similarly, it will be possible to describe the process of forming goals 
in some other situation. 

Thus, it can be assumed that the criterion of profit widely used in 
economic research can be explained in evolutionary terms. This, to some 
extent, describes the survival of the subject in a market environment. 

To describe the subject’s survival in the bureaucratic system N.N. 
Moiseev proposed another criterion (Moiseev 1975). 

One can describe it as follows: For the ‘managerial’ element of the 
hierarchical system, its head assigns a system of indicators P1, P2,..., Pm, 
by which he will evaluate his activity. The same head brings the desired 
values * * *

1 2, ,..., mP P P of these indicators to the element. Moiseyev expresses 
the hypothesis that, by striving for homeostasis, the element will maximize 

the function *1,2,...,
min i

i m
i

P

P
. 

Models of this kind have been little studied, but they are of 
considerable interest. 

3. Controlled object 

Let us proceed to the construction of a mathematical model that 
formalizes the statements made in the previous section. 

Consider the following controlled system model. The operating party 
can, at its discretion, choose any control w from the set W. In addition to 
this choice, a specific indefinite factor  from set A, the value of which is 
not controlled by the operating party, affects the result of the control. The 
control efficiency is estimated by the value ( , )g w  of the function 

:g W A    (as usual  is the set of real numbers). 
We assume that a probabilistic measure  is given on the set A , and 

this measure is known to the operating party. Further, theorems like the 
law of large numbers will not be used. Therefore, the probability given by 
the measure  can be considered as subjective. It will describe the attitude 
of the operating party to risk. 

Let us take another assumption reflecting the representation of the 
‘technological structuredness’ of the controlled system under consideration. 
We assume that the set W  can be represented in the form of a Cartesian 
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product 1 ... nW U V V    . Then, every element w W  can be written in 
the form 1( , ,..., )nw u v v , where , , 1,...,i iu U v V i n   . This form of 
recording, where it is convenient, will be used without additional 
reservations. 

We make the following standard assumptions. We assume that the sets 
, , 1,...,iU V i n  and A  are endowed with topologies in which these sets 

are compact. The function g will be considered continuous in the topology 
of the Cartesian product 1 ... nU V V A    . The measure will be 
regarded as Borel. 

Comment. Probably, these assumptions can be weakened without 
losing all the results obtained below. However, this leads to the need for 
more accurate, and, as a result, more extended considerations. Since it is 
not very clear whether there can be interpretations of this model, in which 
these assumptions will be restrictive, we will not go into these technical 
details yet.  

Topologies on sets , , 1,...,i iu U v V i n    induce topology on their 
product 1 ... nW U V V    . In the future, when it comes to topology on 
the set W we will keep in mind precisely the topology of the product. 

According to Tikhonov’s theorem (see (Engelking 1989)), the set W
will be compact. 

4. Model of centralized control 

Suppose that the operating party has the opportunity to receive 
information about the realized value of the indefinite factor, but the 
amount of information that it is capable of receiving, and timely about-
work, is limited. Namely, we will assume that the operating party can use l 
bit of information, and there are no other restrictions on the use of 
information. 

This is formalized as follows. Let’s introduce the notation. After this, 
we denote by ( , )X Y  the family of all functions that map a set X to a set 
Y . 

The assumption made means that all information on the uncertain 
factor available to the operating party can be encoded with words 

1( ,..., )ls s s of zeros and units of length l . A set  0,1 l   (Cartesian 

power of a set  0,1 ) is denoted by a letter S . Since the operating party 
has no restrictions on access to information on the uncertain factor, the 
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choice of the “coding method” :P A S  is its prerogative. Besides, 
depending on the information received s S , the operating party has the 
right to choose any control w W . That is, it can select a function 

* :w S W . If the operating party fixes the encoding method 
( , )P A S  and control selection rule * ( , )w S W  and the value of the 

uncertain factor A   is realized, then the operating party will receive a 
message  P  , select the control   *w P   and its payoff will be 

   * ,g w P   . 

Thus, we have described the set  , ( , )S W A S  of strategies (w*, 
P) of the operating party. To  complete the model, it is also necessary to 
express its attitude to uncertainty. We do this as follows. 

Fix the number   [0,1]. We will assume that the operating party is 
ready to exclude from consideration the very unfavorable values of an 
uncertain factor, the total probability of which is less than 1 – , and is 
otherwise cautious. Thus, the operating party chooses the set B  A and 
focuses on the result: 

   *inf , .
B

g w P


 


 

Since the set B can be chosen quite arbitrarily, when evaluating the 
strategy (w*, P), the operating side is oriented by result: 

   *sup inf , ,
BB

g w P



 
  

where  is the class of all measurable subsets B of the set A for which 
 B   . And then, the best result that the operating party can obtain is: 

 
     

   
*

0 *
, , ,

, sup sup inf , .
Bw P S W A S B

R l g w P



  

  
  

This formula contains a supremum in the functional space 
 , ( , )S W A S   and a supremum in the “complex” set . Therefore, 

the calculation of R0(l,)  directly by definition, is a complex variational 
problem. Let us simplify it. 

Of course: 
 

     
   

*
0 *

, , ,
, sup sup inf ,

BB w P S W A S
R l g w P




  
  

  

and 
 

   
   

*
0 *

, ,
, sup sup sup inf , .

BB w S W P A S
R l g w P




  
  

  
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Now we use the following well-known statement: if :f X Y  , 
then 

( , )
sup inf ( ( ), ) inf sup ( , )

y Y y YY X x X
f y y f x y




  
  

(see, for example, (Moulin 1981)). 
Applying this statement, we get 

 
 

  
*

0 *
,

, sup sup inf max ,
B s SB w S W

R l g w s



 

  
  

(the set S is finite; therefore the exact upper bound on s  S is attained). 
Fix the function * ( , )w S W . It takes 2lm   different values. Let a 

set of these values is  0 1 1, ,..., mw w w  . The message 1( ,..., )ls s s  can be 
considered as a binary record 0 1... ms s   of a natural number from the set 
 0,1,..., 1m . Bearing in mind such identification, it is possible, without 
limiting generality, to assume that * ( ) sw s w . 

With this in mind: 
 

 
 

0 1

0
,...,

, sup sup inf max , .
m

m

sB s SB w w W

R l g w



 


  

  

Rewrite this formula as: 
 

 
 

0 1

0
,...,

, sup sup inf max , .
m

m

sB s SBw w W

R l g w



 


 

  

Fix an arbitrary number  < R0(l,). Then there are (w0,…,wm–1)  Wm 
and B  , for which 

 inf max , .sB s S
g w


 

 
  

Consider the set  
    0 0 1; ,..., : max ,m s

s S
C w w A g w    

   . 

From standard calculus theorems, it follows that for fixed (w0,…,wm–

1)  Wm, the value  max ,s
s S

g w 


continuously depends on . Therefore, 

the set C0(; w0,…,wm–1)  is closed. And since the measure  is assumed 
to be Borel, this set is measurable. Since B  , the inequality  B    
holds. Also, by construction, B  C0(w0,…,wm–1). Hence 
 0 0 –1( ; , , )mC w w     and, therefore, C0( ;w0,…,wm–1)  . 

And conversely, if  0 0 –1( ; , , )mC w w    , then: 

 
0 0 –1( , , )
min max , ,

m
sC w w s S

g w


 
  

  

and especially, 
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 sup inf max , .sB s SB
g w




 
 

  

Define the function: 
1, if 0,

( )
0, if 0.

x
x

x



  

 

Then       0 0 –1( ; , , ) max ,m s
s S

C w w g w d    


     , and 

therefore, the last inequality is equivalent to the condition 
    max ,s

s S
g w d    


   . 

Since   is arbitrary, this implies the following assertion. 
 
Theorem 1. The number R0(l,)  is equal to the least upper bound of 

the numbers , for which one of the conditions is satisfied: 
1) the maximum in the following formula is achieved, and the 

inequality is true 

 
    

0 1,...,
max max , ;

m
m

s
s Sw w W

g w d    
 

    

2) the inequality holds 

 
    

0 1,...,
sup max , .

m
m

s
s Sw w W

g w d    



    

Comment. The upper bound in the last formula may not be achieved, 
because we have not made any assumptions about the continuity of the 
measure  . 

Further, we will need an analog of the considered problem without 
restrictions on the amount of available information. 

We assume that, at the moment of decision making, the operating party 
knows exactly the realized value of the uncertain factor . Then, formally, 
it selects the function w# from the set (A, W). If such a function is 
chosen, and the value of the uncertain factor  is realized, then the 
operating party will get the payoff g(w#(),). 

Suppose, as before, that the operating party is ready to neglect events 
whose total probability is less than 1 – , and is otherwise cautious. Then 
the effectiveness of the strategy w#  will be evaluated by 

  #sup inf , ,
BB

g w



 


 

and in general, the operating party can expect to get the result: 
 

 
  

#
0 #

,
, sup sup inf , .

Bw A W B
R g w




  
 

   



Information and Hierarchy 15

Let’s transform this formula. Obviously, 
 

 
  

#
0 #

,
, sup sup inf , .

BB w A W
R g w




  
 

   

Further, using the fact given in the proof of Theorem 1, we obtain 
   0 , sup inf max , .

B w WB
R g w




 
 

   

Fix the number  and consider the set 
    : max ,

w W
C A g w   


   . In the same way, as was done above, 

it is established that the condition 
 sup inf max ,

B w WB
g w




 
 

  

is equivalent to inequality   C     or inequality 

    max ,
w W

g w d    


   . 

This immediately yields the following result: 
 
Theorem 2. The value R0(,)  is equal to the least upper bound of the 

numbers   satisfying the condition 
    max , .

w W
g w d    


    

5. Model of decentralized control 

Consider another way to control the same system. 
Suppose that the operating party transfers the right to choose the 

controls iv  to n  agents: the agent with the number i gets the right to select 
the control ( 1,..., ).i iv V i n   The operating party (Center) reserves for 
himself the choice of control u U . 

As noted above, the emergence of the agent’s right to influence the 
situation inevitably leads to the appearance of his own goals. We will 
assume that the purpose of the agent is described by the desire to 
maximize the value of the function  , ,i ih u v  . It is essential that this 
function depends on its own control, the control of the Center, and the 
uncertain factor, but does not depend on the choices of the other agents. 

Comment. In Section 2, it was noted that, from purely mathematical 
considerations, in principle, it is impossible to understand what goals the 
specific agents will obtain. Therefore, in this model, goals are set 
exogenously. 
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The functions hi will be considered continuous. 
We assume that the Center still has the ability to receive and process l 

bit of information about the uncertain factor  . Thus, the strategy of the 
Center is a pair  * , ( , ) ( , )u P S U A S   of functions * :u S U and 

:P A S (the meaning of these constructions is the same as in the model 
of the previous section). 

Suppose that each of the agents at the time of decision-making has 
precise information about the uncertain factor. 

Suppose the Center reserves the right of the first move, i.e., he first 
chooses his strategy  * ,u P  and reports it to all agents. 

Under these conditions, for any agent i, no uncertainty remains. For 
him, all the controls v  V are divided into ‘reasonable’, by choosing 
whether he will receive a payoff greater or equal to a specific number i, 
and ‘unreasonable’, the choice of which promises him payoff less than i 
(of course, the number i depends on u and ). This principle of behavior 
is known to the first player, but he is cautious, and therefore counts on the 
worst result that can be obtained with a ‘reasonable’ choice of partners. 
But since the value of  for the Center is not known, for him, this result is 
a random variable. The attitude of the Center to this uncertainty is as 
follows: He agrees to exclude from consideration a certain number of 
‘force majeure’ events, the total probability of which is less than a given 
value 1 – . For the rest, he orients himself to the worst case for him, and 
wants to get the maximum guaranteed result. Thus, we arrive at the 
following definition: 

Definition 1. A number   is called an -guaranteed result of the 
Center in the model in question, if there is a measurable set BA for which 
 B   , the strategy  * ,u P  and for any B   there exist numbers 

1 2, ,..., n    such that the conditions are met: 
1.  For any i, there exists a control 0

i iv V  for which the inequality 

holds    * 0, ,i i ih u P v   ; 

2. For any  1 2 1 2, ,..., ...n nv v v V V V     either 
1 2

*( ( ( )), , ,..., , )ng u P v v v   , or there exists 1, 2,...,i n  for 

which    * , ,i i ih u P v   . 

The least upper bound R1(l,) of a set of -guaranteed results is called the 
maximal -guaranteed result of the Center. 
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One can express the value of R1(l,)  in more traditional terms. 
Define the sets 

 

        
*

* *

, ,

: , , max , , .
i i

i

i i i i i i

v V

BR u P

v V h u P v h u P v



   




 
 

By virtue of the compactness of the set Vi and the continuity of the 
function hi, such a set is not empty. 

The following statement is true: 
Theorem 3. The equality holds. 

   
1 1

**

*

1
( , , )( , ) ( , ) ( , )

1
*

( , , )

( , ) sup sup inf min ...

min , ,..., , .
n n

B v BR u PB u P S U A S

n

v BR u P

R l

g u P v v


 





 

   





 

Proof. Temporarily, we denote the right-hand side of the last equality 
by R. First, we prove the inequality R1(l,) R. 

Choose an arbitrary   < R. Then there exist a set B    and a 
strategy  * , ( , ) ( , )u P S U A S   for which: 

  
1 1

* *

1
*

( , , ) ( , , )
inf min ... min ( , ,..., , ).

n n

n

B v BR u P v BR u P
g u P v v

  
  

  
  

Fix an arbitrary B   and put    *max , ,
i i

i i i

v V
h u P v  


  

(i=1,…,n). 
With this choice of i, the inequality    * 0, ,i i ih u P v    holds 

for any vi belonging to the non-empty set BRi(u*,P,). Therefore, Item 1 of 
Definition 1 is fulfilled. 

On the other hand, with this choice of i, inequalities, 
   * 0, ,i i ih u P v   are satisfied only for viBRi(u*,P,). But for 

such vi, by choice of the number , the inequality 
1 2

*( ( ( )), , ,..., , )ng u P v v v    holds. This means that the second item of 
Definition 1 is also fulfilled. 

Thus   is the -guaranteed result of the Center in the game in question. 
Since   is arbitrary, this implies the inequality R1(l,) R. 

Now prove the reverse inequality R1(l,)R. 
Let  be an arbitrary number greater than R. Fix arbitrary B   and 

 * , ( , ) ( , )u P S U A S  . Then under the choice   there exists B   
for which 
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  
1 1

* *

1
*

( , , ) ( , , )
min ... min ( , ,..., , ).

n n

n

v BR u P v BR u P
g u P v v

 
  

 
  

Choose any point      1 1
0 0 * *,..., , , ... , ,n nv v BR u P BR u P     for 

which 
   

   
1 1 2 2

* *

*

1
* 0 0

( , , ) ( , , )

1
*

( , , )

, ,..., , min min ...

min , ,..., , .
n n

n

v BR u P v BR u P

n

v BR u P

g u P v v

g u P v v

 



 

 

 




 

Then    1
* 0 0( , ,..., , )ng u P v v   . 

If the numbers 1,…,n are such that    *max , ,
i i

i i i

v V
h u P v  


  for 

all i = 1, ..., n, then for all i the inequalities    * 0, ,i i ih u P v    hold, 

and besides, the inequality    1
* 0 0( , ,..., , )ng u P v v    holds. Therefore, 

Item 2  of Definition 1 is not satisfied with this choice of i. 
And if    *max , ,

i i

i i i

v V
h u P v  


  for some i, then for this i it is 

impossible to fulfill Item 1. 
Therefore, the number    is not a -guaranteed result of the Center in 

the game in question. By arbitrariness of , we obtain from this the 
inequality R1(l,)R. 

The two proved inequalities together give the desired equality. The 
theorem is proved. 

The proved theorem makes the formulation of the problem of 
calculating R1(l,) more familiar, but it does not solve the basic problems 
since the formula of Theorem 3 contains two ‘non-elementary’ operations 
at once: the supremum in B    and the supremum in 
 * , ( , ) ( , )u P S U A S  . Let us deal with their elimination. Here it is 
more convenient to use Definition 1 directly. But for brevity, we use the 
language of the predicate calculus. 

By definition, a number   is a -guaranteed result of the Center in the 
model under consideration, if and only if, the condition 
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       
   

 
        

1 2
*

0 * 0

1 2 1 2

1 2
* *

, , , , ,..., :

: , , &

, ,..., ...

, , ,..., , : , ,

n

i i i i i

n n

n i i i

B u P S U A S A

i v V h u P v

v v v V V V

g u P v v v i h u P v

    

  

     

       

     
    

    

 

is true. 
This condition can be rewritten as 

     
   

 
        

1 2
*

0 * 0

1 2 1 2

1 2
* *

, , , ,..., :

: , , &

, ,..., ...

, , ,..., , : , , .

n

i i i i i

n n

n i i i

B u S U P A S A

i v V h u P v

v v v V V V

g u P v v v i h u P v

    

  

     

        

     
    

    

 

Now, one can to rearrange the quantifiers of generality and existence: 
   

  
 

      

1 2
*

0 * 0

1 2 1 2

1 2
* *

, , ,..., :

: , , &

, ,..., ...

, , ,..., , : , , .

n

i i i i i

n n

n i i i

B u S U A s S

i v V h u s v

v v v V V V

g u s v v v i h u s v

    

 

   

        

     
    

    

 

To get rid of the function *u , we proceed in the same way as in Section 
3. Let’s put * ( ) su s u . Then the previous condition can be rewritten as 

   
 

 
    

1 2
0 1 1

0 0

1 2 1 2

1 2

, ,..., 0,1,..., 1 , ,..., :

: , , &

, ,..., ...

, , ,..., , : , , .

m n
m

i i i i i
j

n n

n i i i
j j

B u u u U A j m

i v V h u v

v v v V V V

g u v v v i h u v

    

 

   

         

     
    

    

 

In this formula, there remains one ‘non-elementary’ operation 
associated with the quantifier B   . To eliminate it, apply the same 
idea that was used in the proof of Theorem 1. 

Rearrange the existence quantifiers: 
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   
 

 
    

1 2
0 1 1

0 0

1 2 1 2

1 2

, ,..., 0,1,..., 1 , ,..., :

: , , &

, ,..., ...

, , ,..., , : , , .

m n
m

i i i i i
j

n n

n i i i
j j

u u u U B A j m

i v V h u v

v v v V V V

g u v v v i h u v

    

 

   

         

     
    

    

 

Let C1( ;u0,…,um–1) be the set   A, for which the condition holds 
   
 

    

1 2
0 0

1 2 1 2

1 2

0,1,..., 1 , ,..., : : , , &

, ,..., ...

, , ,..., , : , , .

n i i i i i
j

n n

n i i i
j j

j m i v V h u v

v v v V V V

g u v v v i h u v

    

   

         
    

    

(1) 

Replacing the quantifiers  and  with minimum and maximum 
operators, we can rewrite condition (1) as inequality 

  
    

1
0

1 1

01,...,0,1,..., 1 ( ,..., )

1

( ,..., ) ...

max max min min max , , ,

min max , ,..., , , , , 0.

n i i

n n

i i i
ii nj m v V

n i i i
j j

v v V V

h u v

g u v v h u v

 
 

   

  

  



    

 

From the standard calculus theorems, it follows that under the assumptions 
about continuity and compactness, all the maxima and minima in this 
formula are reached. From the same theorems, it follows that the function 

    
    

1
0

1 1

01,...,0,1,..., 1 ( ,..., )

1

( ,..., ) ...

max max min min max , , ,

min max , ,..., , , , ,

n i i

n n

i i i
ii nj m v V

n i i i
j j

v v V V

h u v

g u v v h u v

 
   

   

  

  

 

   

 

is continuous, and hence the set C1( ;u0,…,um–1)  is closed. Since the 
measure   is assumed to be Borel, the set C1(; u0,…,um–1) is measurable. 
Its measure can be represented as 

     1 0 –1( ; , , ) .mC u u d        

The set C1( ;u0,…,um–1)  is the most extensive set of class , for 
which condition (1) is satisfied. From this we get the following result: 

Theorem 4. The number R1(l,)  is equal to the least upper bound of 
the numbers , for which one of the conditions is satisfied: 

1) the maximum in the following formula is achieved, and the 
inequality is true 

 
   

0 1,...,
max ;

m
mu u U

d   
 

   


