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“The LORD by wisdom hath founded the earth; by understanding hath he

established the heavens. By his knowledge the depths are broken up, and the

clouds drop down the dew. My son, let not them depart from thine eyes; keep

sound wisdom and discretion: So shall they be life unto thy soul, and grace to

thy neck”. Proverbs 3,19-22
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Preface

This book is designed for students or researchers who are interested in dynamic

concepts of control systems. It presents classical concepts of control theory

integrated with a report about ongoing research on Conley theory for control

systems. We assume the reader knows the rudiments of differential equations,

real analysis, and topology. For theoretical purposes, we consider control

systems on differentiable manifolds. In this setting, we may include many

interesting cases of control systems in non-Euclidean spaces, for instance, tori,

spheres, and projective spaces. Readers who are not familiar with manifolds

may consider Euclidean state space instead. Otherwise, a brief appendix on

differentiable manifolds is provided for elementary definitions, notations, and

references. An appendix on dynamical systems is provided for references to

results from the Conley theory of flows.

This volume expands on the material presented in A Course on Geometric

Control Theory: Transitivity and Minimal Sets [93]. Its contents includes a

presentation of the fundamental theory of control systems, an exposition of

elementary concepts of orbits, invariance, periodicity, and a broad discussion

on various aspects of transitivity and controllability. The main part deals

with attractors and repellers, Morse decompositions, and chain transitivity.

Most concepts presented are illustrated by means of comprehensive examples

and figures. A list of problems is given in each chapter with the intention

of reinforcing the reader’s grasp of the material, amplifying and completing

proofs, applying theorems, and enabling the reader to discover important

facts, examples, and counterexamples. Notes and references are included at

the end of each chapter to indicate results not discussed in the text, remarks,

references for further reading, and historical notes.

The main contribution of the present work is the improvement of results

in dynamic Morse theory for control systems, which are now integrated in

xiii



xiv Preface

this unique volume. The text adds to our knowledge of various dynamical

concepts which compose the full ingredients of the central notion of Morse

decomposition. Having read this book, the reader will have the opportunity

to expand Conley’s ideas by means of open questions on Morse decompositions

for control system on noncompact manifolds.

Parts of the book may be useful in courses or seminars in mathematics

as well as control-theoretic engineering. The material may also be used as

a reference source for various topics in control systems, and serve as a basic

reference for academic or research projects.

Thanks are given above all to God for life and for the sciences. Special

thanks are due to José V. de Souza and Rita C. A. de Souza for moral support;

to Prof. Carlos J. Braga Barros, his collaboration and the donation of the

Colonius–Kliemann book; and to Prof. Luiz A. B. San Martin, his instructions

and our discussions on control theory and transformation semigroups. We

acknowledge all our coworkers: Prof. Ronan A. Reis, Prof. Hélio V. M.

Tozatti, Prof. Victor H. L. Rocha, and Stephanie A. Raminelli. We also

give thanks to João A. N. Cossich for part of the material on differentiable

manifolds.

Maringá, Brazil

March 2019



Introduction

The global dynamical behavior of a compact system is described by Morse

decomposition. This was stated by Charles C. Conley (1933–1984) in his

famous work, “Isolated Invariant Sets and the Morse Index” ([36]), and is

currently one of the most important statements in the study of asymptotic

behavior of dynamical systems. A Morse decomposition contains essential

information about the long-term behavior of a system, since each state con-

verges in forward as well as in backward time to some Morse set. This is

due to the attractor-repeller configuration of a Morse decomposition, which

provides attractive and repulsive properties for its components. Besides, the

attractor-repeller configuration implies an order among the Morse sets such

that the flow can be interpreted via its movement from the Morse sets with

lower indices toward those with higher ones. This means that, outside a Morse

decomposition, every trajectory of the system comes near some Morse set in

forward time, and other distinct Morse set in backward time. Consequently,

the system does not admit asymptotic transitivity outside a Morse decompo-

sition, or, in other words, any asymptotic transitive set resides in some Morse

set. Thus periodicity and recurrence occur only in the components of a Morse

decomposition; outside them, however, the system is transient.

In general, the transient part of a dynamical system consists of all states

which are not chain recurrent. The chain recurrence is a general type of recur-

rence based on returning trajectories with jumps. This defines an

equivalence relation - the chain transitivity - whose equivalence classes lie

in the components of a Morse decomposition. In his report entitled “The

gradient structure of a flow” ([37]), Conley proved the Fundamental Theorem

of Dynamical Systems that any flow on a compact metric space decomposes

into the chain recurrent part and the transient or ‘gradient-like’ part. This

means that, if each equivalence class of chain transitivity is identified to a

1



2 Introduction

point, then the resulting flow has a Lyapunov function that decreases along

all trajectories except the fixed points. This was the reason for Conley coining

the term, the ‘Morse decomposition’ of a system. The central result in this

direction characterizes a system with finitely many chain equivalence classes

as a system admitting the finest Morse decomposition. Conley’s ideas about

Morse decomposition concentrated in the topological considerations of con-

necting orbits between the Morse sets. His later studies result in the notion of

a ‘connection matrix’ ([78]), with the main applications being for the theory

of shock waves ([38, 39, 40, 41]).

In the Conley global view, the fundamental elements of a dynamical system

are the isolated invariant sets. An invariant set is called ‘isolated’ if it is the

maximal invariant set in some neighborhood of itself. This extends the well-

known concept of isolated singularity. Attractors, repellers, and Morse sets

are the main isolated invariant sets of a system. The ‘Morse index’ of an

isolated invariant set is the homotopy type of an n-dimensional sphere, where

n is the dimension of the unstable manifold, the set of points along the flow

which are sent away from the isolated invariant set as time moves forward.

Conley expanded the ideas about the Morse index by introducing the notions

of isolating blocks. An ‘isolating block’ is a set whose boundary has no internal

tangencies to the flow, that is, if the flow is tangential to the boundary of the

block, then the trajectories leave the block both forward and backward in

time. The ‘exit set’ is the set of points on the boundary where the flow leaves

the block. On the one hand, every isolated invariant set can be surrounded

by an isolating block and, on the other hand, every isolating block contains

an isolated invariant set in its interior. The ‘Conley index’ is the homotopy

type of the isolating block with the exit set identified to a point. If an isolated

invariant set is a non-degenerate rest point for a smooth flow on a compact

manifold, then the Conley index and the Morse index coincide.

An isolating block is structurally stable in the sense that it persists under

perturbations of the system. Conley believed that this property of isolating

blocks meant that they were the only dynamical objects which could be de-

tected in nature and that their properties reflected the important properties

of natural systems. This inspires his interest to explore new areas of science

with the intention of applying his theories. The Conley index was applied

to prove conjectures on the number of fixed points of sympletic maps ([42]).

It generalized the Hopf index theorem that predicts the existence of fixed

points of a flow inside a planar region in terms of information about its be-
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havior on the boundary. Other applications in the study of dynamics include

the existence of periodic orbits in Hamiltonian systems and traveling wave

solutions for partial differential equations, structure of global attractors for

reaction-diffusion equations and delay differential equations, proof of chaotic

behavior in dynamical systems, and bifurcation theory. We use the works

[8, 52, 62, 76, 77] to ensure complete information on and references for the

Conley index theory.

The proposal of the present book is to reproduce the Morse decomposition

part of the Conley theory for control systems. Put more simply, we start

with a dynamical system associated with a differential equation ẋ = X0 (x)

on a manifold (or Euclidean state space), and we then consider a family of

differential equations of the form

ẋ = X0 (x) +

n∑
i=1

ui (t)Xi (x)

where X1, ..., Xn are vector fields and u1, ..., un are real-valued functions such

that u (t) = (u1 (t) , ..., un (t)) is valued in a given subset U ⊂ Rn. The addi-

tional terms on the right hand side can be interpreted as control or perturba-

tion. In the control point of view, the set U ⊂ Rn is the given control range

and the vector fields X1, ..., Xn determine the input structure. This family

of differential equations defines a control affine system, or in other words, a

nominal dynamical system with additional control inputs. A fundamental fact

in this definition is that the solutions for the control system do not define a

flow on the adjacent state space. We then sought a sense or interpretation for

Conley theory in the control system set-up. The motivation for responding

to this question was the controllability, the main subject in control theory.

Indeed, a set is ‘controllable’ if its points are pairwise connected by trajec-

tories of the control system. This means that any point in a controllable set

has the property of returning trajectories. Thus dynamical concepts, such as

periodicity and recurrence could be related to both notions of controllability

for control systems and Morse decomposition for dynamical systems. This

perception indicated that controllability must relate to some notion of Morse

decomposition for control systems.

The book written by Fritz Colonius and Wolfgang Kliemann [34] con-

tained the first attempt to reproduce the Conley theory for control systems.

These authors used the strategy of associating a dynamical system with a

given control affine system, studying control-theoretic aspects together with

the analysis of the associated dynamical system. The so called ‘control flow’
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is an infinite dimensional dynamical system that lives on the product space of

admissible inputs and state space. It was extensively used in later works with

the purpose of transferring dynamical objects and results from the theory of

dynamical systems to the theory of control systems. For instance, the Con-

ley definition of attractor was transferred to control systems by means of the

control flow ([35]). Nevertheless, the Colonius–Kliemann definition for chain

transitivity of control systems does not use the control flow. Actually, chain

transitivity can be defined in general situations of control systems, where the

required conditions to constitute the control flow need not be satisfied. In fact,

Carlos C. Braga Barros and Luiz A. B. San Martin [20] realized that the chain

controllability depends on a family of ideals in the system semigroup associ-

ated with the control system. In a straightforward way, they extended the con-

cept of a chain control set to more general semigroup actions, where the chain

recurrence came to depend on a family of subsets of the acting semigroup.

This idea has been extensively used to generalize dynamical concepts for semi-

group actions, which, in particular, composed a basis for the Morse decom-

position part of the Conley theory for control systems (as references sources

we mention the papers [22, 23, 25, 27, 83, 94, 95, 96, 97, 99, 100, 101, 102]).

The present book unites the ideas from these papers and the Colonius–

Kliemann book to define the elements of the Conley theory for control sys-

tems. Although dynamical concepts are easily generalized by the semigroup

methodology, control systems need not satisfy important conditions as, for in-

stance, invariance of limit sets and attractors. Thus, extending Conley results

from dynamical systems to control systems is a nontrivial work. Faced with

the possibility of noninvariant attractors and repellers, two distinct notions

of Morse decomposition have been considered in the control system set up

([25, 96]). A ‘dynamic Morse decomposition’ is a finite collection of compact

isolated invariant sets (Morse sets) which consist of the residence of limit sets,

while the trajectories of an external point can not come near the same Morse

set for both forward and backward times. An ‘attractor-repeller Morse de-

composition’ is a finite collection of sets given by intersections of sets in a

sequence of attractors and complementary repellers. In a classical dynami-

cal system, Conley shows that these two notions of Morse decomposition are

equivalent. In the paper [25], the Conley results were proved in a special sit-

uation where control systems satisfied certain translation hypothesis. One of

the main tasks in this book is to relate dynamic and attractor-repeller Morse

decompositions for control systems without assuming the translation hypoth-
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esis. The strategy is based on invariance issues of attractor-repeller pairs.

In compact state space, one verifies that any dynamic Morse decomposition

has an attractor-repeller configuration. On the other hand, Morse decom-

positions determined by invariant attractor-repeller pairs are dynamic Morse

decompositions. Thus, dynamic and attractor-repeller Morse decompositions

are equivalent concepts for control systems with invariant attractor-repeller

pairs.

The other principal intention of this book is to reproduce the Conley

theorem that connects Morse decomposition and chain recurrence. Every

attractor-repeller Morse decomposition contains the chain recurrence set, which

is the set of all chain recurrent points of the control system. In a special case,

if the finest attractor-repeller Morse decomposition exists, then its Morse

sets coincide with the connected components of the chain recurrence set (or,

simply, chain components). On the other hand, if the chain recurrence set ad-

mits finitely many connected components then it determines a dynamic Morse

decomposition. Consequently, for a control system with invariant attractor-

repeller pairs, the existence of finitely many chain components is a necessary

and sufficient condition for the existence of the finest Morse decomposition.

The Conley theorems are concluded by constructing a Lyapunov function for

Morse decomposition and then proving the existence of a complete Lyapunov

function for control systems on compact manifolds.

Many things should be explained before proving the Conley theorems.

This effort provides particular results which are interesting in themselves. In

fact, outside a Morse decomposition, every trajectory of the system comes

close to some Morse set, in forward as well as in backward time. Thus the

control system does not admit asymptotic transitivity outside a Morse de-

composition, or in other words, any asymptotic transitive set resides in some

Morse set. This means that periodicity, recurrence, and controllability occur

in the components of a Morse decomposition. In view of this fact, full chap-

ters are dedicated to study all transitivity concepts, with the main intention

being to describe technically what happens inside Morse sets. The amount of

information about Morse decomposition will be completed with the study of

chain transitivity, contributing to an estimate of the global dynamic behavior

of a control system.

In view of the attractor-repeller configuration of Morse decomposition, a

full chapter is devoted to explaining attractors. There are various notions of

attraction in the theory of dynamical systems. The notion of an attractor
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for a singular point was used by E. Coddington and N. Levinson [32]. The

conception of an attractor for a closed set was first studied by J. Auslander,

N. Bhatia, and P. Siebert [4]. The concepts of attractors related to stability

theory were extensively studied by N. Bhatia et al. [11, 12, 13, 14], including

the notions of global weak attractors and global uniform attractors. Alterna-

tive concepts of attractors and global attractors were used by J. Hale [56] and

O. Ladyzhenskaya [70]. Finally, C. Conley [36] defined a special notion of an

attractor that generates Morse decompositions. All these concepts of attrac-

tors are studied in the control system framework. The main task consists of

proving the connection between the Conley attractor and the uniform attrac-

tor. In general, every compact Conley attractor is an asymptotically stable

set, which means a stable uniform attractor. This result yields an important

statement that the existence of the finest Morse decomposition implies the

existence of a chain component that is asymptotically stable.

This book has been written with a wide audience in mind: control-theoretic

engineers or mathematicians, post-graduate students, and graduate students

researching dynamical systems and geometry. Control theorists may go di-

rectly to Chapter 4. Readers who are not familiar with dynamical systems

are invited to consult Appendix A. The two first chapters of the book con-

tain elementary concepts of control affine systems, but they are not mere

preliminaries. Chapter 1 provides an introduction to the basic definitions and

properties of control affine systems. It presents detailed mathematical for-

mulations of integral curves, shift space, control flow, and system semigroup.

Chapter 2 studies the elementary concepts of invariance, orbits, equilibria, and

periodicity in the control system setting. Topological properties of invariant

sets and orbits are investigated. Characterizations of critical and periodic

points are presented with some new features (Theorems 2.3.1, 2.3.2, 1.2.1,

and Proposition 2.4.1).

The middle part of this book consists of studies into various aspects of

transitivity for control systems. The weak transitivity relation is defined to-

gether with the concept of minimal sets in Chapter 3. The main result shows

that the minimal sets are upper bounds for a dynamic order among the equiv-

alence classes of weak transitivity. Chapter 4 treats the concepts of limit sets

and prolongational limit sets for control systems. These are crucial for the

concepts of asymptotic transitivity and attraction. The notion of prolonga-

tion is used to describe compact equistable sets. Special attention is given to

minimal equistable sets, an extension of minimal sets. The notion of asymp-
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totic transitivity is presented in Chapter 5 as a relation among the Poincaré

recurrent points of the control system. The studies include the classical con-

trol sets and invariant control sets. A state point is positively recurrent if it

lies in its positive limit set. Two positively recurrent points are equivalent if

each one is a limit point of the other. This relation constitutes the asymptotic

transitivity and is proved to be an equivalence relation among the positively

recurrent points. The Poincaré recurrence theorem for control systems is re-

produced, stating that µ-almost every point is positively recurrent, with µ

an invariant probability measure. The notion of a nonwandering point is also

studied in Chapter 5. By definition, a nonwandering point lies in its prolonga-

tional limit set. The main result shows that every point closed to a recurrent

point is nonwandering. In view of this relation, a more general notion of con-

trollability is defined by prolongations and its relative prolongational control

sets are studied.

A new feature in this middle section concerns the relation between Poincaré

recurrence and periodicity. It is clear that a periodic point is recurrent. The

converse does not hold, except in very special situations. The Poincaré–

Bendixson theorem states that a nonempty compact limit set of a C1 planar

dynamical system, which contains no equilibrium point, is a periodic tra-

jectory ([60, Chapter 11]). In a higher dimension, however, it has no gen-

eralization or counterpart. A famous example of dynamical system on the

2-torus shows recurrent points which are not periodic (see a version for con-

trol system in Example 5.2.1). In the general set-up of control systems on

manifolds, recurrence and periodicity are equivalent concepts for points with

closed semi-orbits (Theorems 5.2.1, 5.2.2, 5.2.3, and 5.2.4).

Attractors, Morse decompositions, and chain transitive sets make up the

main part of the book. Chapter 6 deals with various notions of attrac-

tors and repellers for control systems. Since the Conley definition of at-

tractor approaches the uniform attraction, one gives special attention to the

properties of uniform attractor. Both the notions of global attractor and

global uniform attractor are studied in the chapter. A measure of noncom-

pactness is used to describe the asymptotic behavior of a control system ad-

mitting a global attractor. Conditions for the existence of a global attractor

are discussed. Conley theorems on chain recurrence are presented in Chapter

7. By contemplating trajectories with jumps, the chain transitivity gener-

alizes the asymptotic transitivity. This is also an equivalence relation and

its equivalence classes are described as maximal regions of chain transitiv-
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ity. One shows that asymptotic transitive and prolongational control sets are

contained in some chain transitive set. In order to present the main Conley

theorem of chain recurrence, the attractor-repeller pair paradigm is defined.

The Conley theorem describes the chain recurrence set as the intersection

of all attractor-repeller pairs of the control system. The last chapter of the

book studies dynamic and attractor-repeller Morse decompositions of control

systems separately. In compact state space, every dynamic Morse decompo-

sition admits an attractor-repeller configuration, while, on the other hand,

every invariant attractor-repeller Morse decomposition is a dynamic Morse

decomposition. The main Conley theorem of chain recurrence implies that

any Morse decomposition contains all chain recurrent points of the system.

The existence of finitely many chain transitivity classes is equivalent to the

existence of the finest Morse decomposition. The last important result shows

that the components of a Morse decomposition are connected by trajectories

which go through decreasing levels of some Lyapunov function. This implies

the existence of a complete Lyapunov function that decreases strictly on tra-

jectories outside the chain recurrence set and maps each chain equivalence

class onto a critical value.

Although these theorems on Morse decompositions are not new, they are

proved with the absence of translation hypothesis. This extends and improves

the results on dynamic Morse theory for control systems. The notion of a limit

compact control system is a new, and the relation between asymptotically

compact and limit compact control systems is thus a new result (Proposition

6.4.6). Another new feature is the use of a prolongational limit set to describe

the complementary repeller of a Conley attractor as well as the properties of

attractor-repeller pair (Theorem 7.2.3 and Proposition 7.2.4). Finally, it was

not known that nonwandering points are chain recurrent points (Proposition

7.1.7).

The dynamical concepts of a control system do not require compact state

space, but the main Conley theorems are assured under compactness. The

dynamic Morse theory on noncompact space the has many open questions

to be investigated. At the end of Chapter 8, a formulation of generalized

Morse decomposition is suggested for further discussion on Conley’s ideas in

noncompact state space.

Parts of the book may be used for one-semester courses or seminars in

mathematics or control-theoretic engineering, with the following suggestions:

• A first course in control system theory: Chapters 1 and 2, for students
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who are familiar with ordinary differential equations and basic notions

of real analysis and general topology.

• Controllability and asymptotic transitivity: Chapters 3, 4, and 5.

• Morse decompositions and chain transitivity: Chapters 6, 7, and 8.

• Seminar on periodicity: Sections 2.2, 2.3, 2.4, and 5.1.

• Seminar on Poincaré recurrence: Sections 4.1, 5.2, and 5.3.

• Seminar on attractors: Chapter 6.

• Introduction to Morse theory of dynamical systems: Appendix A.

The book may be also used as a reference source for various topics in

dynamical and control systems, contributing to the research of students in-

terested in the dynamics of control systems. Its contents may integrate basic

references for academic dissertations.

Implicitly, the book contains a survey about ongoing research into the

dynamics of control systems. It reproduces the Morse decomposition part of

the Conley theory, leaving the Conley index theorems to future work. The

dynamical concepts presented here might be viewed from different mathe-

matical problems. For instance, the family of differential equations given

by the formula ẋ = X0 (x) +
∑n
i=1 ui (t)Xi (x) can be interpreted as time-

dependent perturbations of an ordinary differential equation by the vector

fields X1, ..., Xn. In this case, one wants to study the Conley concepts of the

perturbed system relative to the Conley concepts of the nominal dynamical

system ẋ = X0 (x). An advanced mathematical problem considers X0, ..., Xn

as invariant vector fields on a Lie group. A task in this case is to investigate a

homogeneous structure for Morse decompositions and chain transitivity. An-

other mathematical problem discusses the relationship between periodicity

and Poincaré recurrence of control systems with the intention of establishing

a general Poincaré-Bendixson theorem.
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Chapter 1

Fundamental Theory of

Control systems

In the language of mathematics, the concept of a control system was formu-

lated with the purpose of regulating dynamical systems. Intuitively, a control

system is an undetermined dynamical system, in which appropriate functions

can be chosen to a given criterion, resulting in a system with desired proper-

ties. The possible model classes of control systems are, for instance, algebraic

differential models (e.g., Flies et al. [49]), input-output operators (e.g., Fran-

cis [51]), the behavioral approach (e.g., Willems [113]), or the classical system

model (e.g., Colonius and Kliemann [34]). The classical mathematical formu-

lation of a control system consists of a family of differential equations, which

are interpreted as models for distinct forms of operation of the same device.

A set of control functions (inputs) determines the differential equations and

then the behaviors (outputs) of the system.

This book considers the classical mathematical paradigm of control sys-

tems. This first chapter introduces the basic definitions and presents the main

properties of control systems used afterwards. Section 1.1 contains the general

definition of control systems. Section 1.2 defines the shift space, which often

determines the control index set. Section 1.3 introduces the class of control

affine systems, which is the model of control system studied throughout the

book. The flow point of view of a control affine system is described in Section

1.4 via the control flow. Section 1.5 describes the group structure of a control

affine system.

11
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1.1 Basic definitions

This first section contains basic notations and definitions of control sys-

tems. Throughout the book, the symbol M denotes a differentiable manifold

equipped with a compatible distance d; Rn stands for the n-dimensional Eu-

clidean space endowed with an inner product 〈·, ·〉 and associated norm ‖·‖.
The state space of a control system consists of a manifold M , where we

often deal with topological objects. In order to establish the basic notations

for topological concepts, for x ∈ M and ε > 0, we define the open ε-ball

B (x, ε) and the closed ε-ball B [x, ε] centered at x respectively as

B (x, ε) = {y ∈M : d (x, y) < ε} ,
B [x, ε] = {y ∈M : d (x, y) ≤ ε} .

For a given subset X ⊂ M , the notations int (X), cl (X), and fr (X) means

respectively the interior of X, the closure of X, and the boundary of X in M .

The same notations are used in any other case of metric space that appears

throughout the book.

In order to define admissible control inputs, we need the following ingre-

dients.

Definition 1.1.1 For a given real number s ∈ R and two functions u, v :

R→ Rn, the s-concatenation of u and v is the function w : R→ Rn defined

by

w(t) =

{
u(t), if t 6 s
v(t− s), if t > s

.

The s-shift of u is the function u · s : R → Rn given by u · s (t) = u (s+ t)

for all t ∈ R.

For sequences of functions u1, ..., uk and numbers s1, s2, ..., sk−1 with s1 <

s2 < ... < sk−1, we may define the (s1, ..., sk−1)-concatenation of u1, ..., uk by

u (t) =


u1(t), if t 6 s1

u2(t− s1), if s1 < t ≤ s2

...

uk(t− sk−1), if t > sk−1

.

Definition 1.1.2 Let U ⊂ Rn. A family of functions U = {u : R → U} is

said to be admissible if it satisfies the following properties:
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1. Each function u ∈ U is locally integrable, that is, u is Lebesgue integrable

on every bounded interval.

2. For each u ∈ U and s ∈ R, the s-shift u · s is contained in U .

3. For u, v ∈ U and s ∈ R, the s-concatenation of u and v is contained in

U .

A trivial admissible family is given by one constant function u (t) ≡ u0 ∈
Rn. A non-trivial admissible family is basically formed by piecewise constant

functions. A function u : R→ U to be piecewise constant means that the real

line R is decomposed into subintervals of length bounded below by a positive

number such that u is constant on each subinterval. The admissible family of

all piecewise constant functions is denoted by Upc.
The general definition of control systems is given in the following.

Definition 1.1.3 A control system Σ = (M,U,U ,X) is formed by

1. A state space M that is a d-dimensional C∞-differentiable manifold.

2. A control range U ⊂ Rn and an admissible family of control functions

U = {u : R→ U}.

3. A family of ordinary differential equations

ẋ = X (x, u (t))

depending on the control functions, where X : M × Rn → TM is a C∞

map from the product manifold M ×Rn into the tangent bundle TM of

M .

In the case M = Rd, one may consider a C∞ map X : Rd × Rn → Rd in

the definition of control systems.

Then each element u in the control range U corresponds to a constant

control function. In the trivial case of a unique constant control function, the

control system corresponds to a classical dynamical system. In the nontrivial

case, each control function u ∈ U determines a nonautonomous differential

equation ẋ = X (x, u (t)) on the manifold M . To guarantee solutions for this

equation, we can not apply the usual procedure to reduce the nonautonomous

differential equation to an autonomous one by introducing t as an additional
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state variable, since the dependence of u on t need not be differentiable.

However, we may locally analyze the associated integrated equation

x (t) = x+

∫ t

0

X (x (s) , u (s)) ds

and proceed with Carathéodory’s theory allowing measurable dependence on

t. In this case, a solution x (t) of the differential equation ẋ = X (x, u (t)) with

initial condition x (0) = x0 is a broken integral curve, that is, x (t) is absolutely

continuous, satisfies the differential equation almost everywhere, and satisfies

the initial condition. Here, x (t) absolutely continuous means that x (t) is

differentiable almost everywhere, its derivative is Lebesgue integrable, and

x (t) = x (0) +
∫ t

0
x′ (s) ds. We refer to Sontag [92] for the technical details in

Rd and to Coddington [32] for Carathéodory’s theory of differential equations.

The theory developed in this book requires solutions defined forward on

all positive times t ∈ R+. In fact, we study concepts which depend on the

action of a semigroup defined by positive time transitions. This is explained

in Section 1.5 and commented in the notes throughout the book. For technical

simplifications, however, we assume throughout that for each control function

u ∈ U and each point x ∈ M the preceding equation has a unique solution

ϕ (t, x, u), defined for all time t ∈ R, with ϕ (0, x, u) = x. In particular, we

assume that for every u in the control range U the C∞ vector field Xu : x ∈
M 7→ X (x, u) ∈ TM is complete, that is, the corresponding flow (t, x) →
ϕ (t, x, u) is defined globally on R×M .

Three special classes of control systems are extensively studied in mathe-

matics. They are:

Example 1.1.1 A linear control system takes the form

ẋ = A (x) +B (u(t))

where A is a d×d real matrix, B is a d×n real matrix, M = Rd, and U = Rn.

Example 1.1.2 A bilinear control system takes the form

ẋ = A0 (x) +

n∑
i=1

ui(t)Ai (x)

where u(t) = (u1(t), ..., un(t)) ∈ Rn, A0, A1, ..., An are d × d real matrices,

M = Rd, and U = Rn.
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Example 1.1.3 A control affine system on a C∞-manifold M takes the

form

ẋ = X0(x) +

n∑
i=1

ui(t)Xi(x)

where X0, X1, ..., Xn are C∞-vector fields on M . Both linear and bilinear

control systems are special cases of control affine system.

1.2 Shift Space

We shall now describe the shift space, the theoretic set of control inputs

considered throughout the book. It is a metrizable compactification of the

piecewise control functions and the shift map defines a dynamical system on

it. The results presented in this section are extracted from [34, Chapter 4].

Readers who are not familiar with concepts of functional analysis may consult

[84] or just consider the statements as preliminary assumptions.

Let Upc be a family of piecewise constant functions with a compact and

convex control range U ⊂ Rn. Let L∞ (R,Rn) be the vector space of all mea-

surable functions from R into Rn which are essentially bounded, i.e. bounded

up to a set of measure zero. Since the control range U ⊂ Rn is compact,

we have Upc ⊂ L∞ (R,Rn). It is well-known that L∞ (R,Rn) = L1 (R,Rn)
∗
,

where L1 (R,Rn) is the space of all functions from R into Rn for which the

absolute value is Lebesgue integrable, and L1 (R,Rn)
∗

is the dual space of

L1 (R,Rn) (see e.g. [33, Theorem 4.5.1]). For each α ∈ L1 (R,Rn), the

L1-norm of α is given by

‖α‖1 =

∫
R
‖α (t)‖ dt.

Define the linear functional fα : L∞ (R,Rn)→ R by

fα (u) =

∫
R
〈u (t) , α (t)〉 dt.

The weak* topology on L∞ (R,Rn) is the weak topology induced on

L∞ (R,Rn) by the collection {fα : α ∈ L1 (R,Rn)}, that is, the weakest topol-

ogy such that fα is continuous for all α ∈ L1 (R,Rn). This is the topology for

which the sets f−1
α ((a, b)), for α ∈ L1 (R,Rn) and (a, b) open interval in R,

form a subbase.

From now on, we assume that L∞ (R,Rn) is endowed with the weak*

topology and define the subspace U = cl (Upc) ⊂ L∞ (R,Rn).
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Lemma 1.2.1 The shift is an internal operation in U .

Proof. Let u ∈ U and t ∈ R. Suppose that u · t ∈
⋂k
i=1 f

−1
αi ((ai, bi)) with

α1, ..., αk ∈ L1 (R,Rn). Then fαi (u · t) ∈ (ai, bi) for each i. Since

fαi (u · t) =

∫
R
〈u (t+ s) , αi (s)〉 ds =

∫
R
〈u (τ) , αi (τ − t)〉 dτ = fαi·(−t) (u)

we have u ∈
⋂k
i=1 f

−1
αi·(−t) ((ai, bi)). Hence there is some v ∈ Upc such that

v ∈
⋂k
i=1 f

−1
αi·(−t) ((ai, bi)). This implies that v · t ∈

⋂k
i=1 f

−1
αi ((ai, bi)). Since

v · t ∈ Upc, it follows that u · t ∈ U . �

This enables us to define the shift map Θ : R× U → U by Θ (t, u) = u · t.
The shift space is given by the space U equipped with the shift map. We

can show that the shift space is a compact metrizable space and the shift map

is continuous. We need the following:

Lemma 1.2.2 The subspace U ⊂ L∞ (R,Rn) given by

U = {u : R→ Rn : u (t) ∈ U for a.a. t ∈ R, measurable}

is a compact metrizable space.

Proof. It should be noticed that L1 (R,Rn) is a separable Banach space,

which means there is a countable and dense subset {αk : k ∈ N} of L1 (R,Rn)

(see [33, Proposition 3.4.5]). Define

d (u, v) =

∞∑
k=1

1

2k
|fαk (u− v)|

1 + |fαk (u− v)|
(1.1)

for every pair u, v ∈ L∞ (R,Rn). By Alaoglu’s theorem, the unit ball of

L∞ (R,Rn) is compact and metrizable, and a metric is given by 1.1 (see [44,

Theorem 3, p. 434]). Since the control range U is compact, the set U is

bounded in L∞ (R,Rn). It remains to show that U is closed (weak* closed)

in L∞ (R,Rn). Indeed, for any compact interval I ⊂ R, consider the set

U|I = {u|I : u ∈ U} ⊂ L2 (I,Rn)

where L2 (I,Rn) is endowed with the L2-norm given by ‖u‖2 =
∫
R ‖u (t)‖2 dt.

Since U is convex, U|I is a convex set in L2 (I,Rn). Moreover, for a given se-

quence (un) in U|I that converges to u ∈ L2 (I,Rn) in the L2-norm, there


