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FOREWORD 
 
 
 

Analysis of worldwide aeronautical equipment enhancements 
convinces us of the necessity to design and implement new types of 
aircraft crew support systems. Such systems should provide new functions 
for crew monitoring and intellectual support, based on the automatic 
analysis of the information, obtained from the onboard equipment, yet 
maintaining the crew’s role as the main aircraft control element. 

The issue of flight safety remains a priority all over the world, 
including the EU countries. Nevertheless, consideration is given mainly to 
the systems designed to avoid air collisions, and on the ground and at 
ground proximity. Less work has been dedicated to aircraft actual status 
monitoring systems and the intellectual support of the crew in abnormal 
situations [1-15]. 

In our opinion, none of the Russian or foreign analogs of such systems 
fully implement the crew support functions by detecting and forecasting 
abnormal situations, incurred by the following: 

- the non-normal functioning of the aircraft systems: despite the 
equipment developers’ significant efforts to increase the equipment 
elements’ reliability, their malfunctioning and failures remain the 
most frequently encountered reasons for abnormal flight situations, 
amounting to about 20% of flight accidents and catastrophes; 

- the insufficient attentiveness of the pilot, which means that he/she 
does not pay attention to or even ignores certain signals while 
handling the aircraft: the instrumental pattern of flight, which the 
pilot forms, does not correspond to the current flight situation, 
which incurs irrelevant control actions; insufficient attentiveness is 
also one of the most frequently encountered reasons for flight 
accidents, amounting to 22% of accidents due to human factors; 

- the insufficient coherence of the pilot’s actions, which is evidenced 
by the incoherent displacement of control devices (the throttle 
lever, the control stick, the pedals); according to the statistics, the 
insufficient coherence of control device displacements was the 
cause of flight accidents and catastrophes in 18% of cases.  
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In this study we develop a concept, built upon applying a so-called 
ellipsoidal model of the aircraft-pilot closed ergatic system (APCES), as 
the intellectual basis for the crew support. This ellipsoidal model is 
developed and then refined, using the flight data accumulated during 
simulated or real-life flight modes, executed normally. In other words, 
such a model defines, for any instant of a typical flight mode, the 
statistical connection between the aircraft status parameters and the control 
devices’ displacements, which guarantees the normal execution of a 
typical flight mode. It turns out that applying the APCES ellipsoidal model 
allows us to realize the following monitoring and crew support functions 
in order to decrease the human factor impact in flight safety: 

1)  identification of the moment when an abnormal situation, due to the 
above-listed reasons, initiates; 

2)  identification of the exact source of its initiation (non-normal 
functioning of the onboard systems, insufficient pilot attentiveness, 
insufficient coherence of control actions) and forecasting of the 
flight safety hazard generated by it; 

3)  implementation of the relevant crew support measures. 

Let us note that the problem of building up such an ellipsoidal model is 
not trivial and may be interpreted as a fundamental problem associated 
with the building up of dynamic systems’ attainability sets. Its rigorous 
solution in the case of non-linear dynamic systems does not exist, and we 
can only speak of using this or that attainability set approximation method. 
One of the most attractive methods is ellipsoidal approximation, allowing 
us to take account of the statistical relations between the APCES 
parameters most fully. The situation is intensified by the absence of 
relevant mathematical models, allowing us to account for and describe the 
pilots’ control actions by mathematical means. This fact makes it 
practically impossible to use the existing theoretical and algorithmic 
groundwork, based on mathematical models, in order to build up the 
APCES confidence model. 

In these conditions, the data obtained from simulated or real flights, 
allowing us to take into account all specifics of the pilot’s control actions 
during a typical flight mode execution, might be the only reliable base to 
form the APCES ellipsoidal model. 

These data, when duly processed, allow us to set up the statistical 
characteristics of the non-controllable factors, influencing the system. In 
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practice, the volume of this information, growing during the aircraft 
operation, is limited. As a result, the building up of a completely relevant 
statistical model turns out to be impossible. 

The solution in this situation is to use the so-called probability-
guaranteeing (confidence) approach, the theoretical basis of which is 
described briefly in Chapter 1. This approach makes it possible to take into 
account the objective physical nature of the factors influencing the APCES 
status in operation. It is important that, in this case, it is not necessary to 
introduce a fully relevant statistical model, describing the characteristics of 
the non-controllable factors. Formulation of the problem of the APCES 
status evaluation in the process of operation is presented in the same 
chapter. 

The models and algorithms, providing the foundations for the 
ellipsoidal model in question, using the flight data collected by the flight 
data registration system (FDR), are considered in the next chapter. The 
authors suggest a method for the compact parametric representation of the 
ellipsoidal model, as well as the algorithms, providing an evaluation of its 
parameters. Using the real flight data to evaluate the ellipsoidal model 
parameters allows us to refine it continuously, taking into account the 
growth of the statistics accumulated during the aircraft operation. 
Moreover, these data may be accumulated during many repeats of the 
same typical flight mode on an aircraft of a certain type by different pilots. 
In this case, the APCES ellipsoidal model will focus on the support 
offered an “average” pilot executing this typical flight mode on a certain 
type of aircraft. However, if the data are accumulated as a result of 
multiple repeats of the same typical flight mode by one and the same pilot, 
the ellipsoidal model becomes individually adapted and reflects the 
specifics of this pilot’s control actions during the typical flight mode. 

In Chapter 3 we describe the methods and algorithms, allowing us to 
identify the exact sources of flight safety hazards, based on the APCES 
ellipsoidal model. Let us underline that using the ellipsoidal model as the 
intellectual base for the crew support system allows us to unify the 
procedures to detect the moments of abnormal situations’ initiation and the 
identification their reasons. This unification is achieved by an analysis of 
the ellipsoidal model flat sections and positions of the points in the phase 
space, the coordinates of which are defined by the current aircraft status 
parameters and control devices displacements. 

As a result of such analysis, it becomes possible for us to: 



Foreword 
 

x

- evaluate the hazard of abnormal situations due to the non-normal 
functioning of aircraft equipment; 

- evaluate the hazard of abnormal situations caused by the 
insufficient attentiveness of the pilot; 

- identify the signals which the pilot ignores in the process of 
operation; 

- evaluate the hazard of abnormal cases caused by the insufficient 
coordination of the pilot’s controlling actions; 

- identify the control devices that are not duly coordinated by the 
pilot.  

In order to support the crew in the abnormal situations incurred by the 
equipment elements’ non-normal functioning, we suggest an expert system 
with a knowledge base, formed with reference to the aircraft Flight 
Operation Manual (FOM). The novelty of this expert system is that it uses 
a combined hierarchical model of knowledge representation which applies 
a formalized criteria, based on the ellipsoidal model, in order to identify 
the moment of an abnormal case initiation and its source, and the 
production rules, based on the FOM, in order to elaborate the crew support 
measures. 

In Chapter 4 we describe the architecture of the functional-program 
prototype (FPP) of the APCES status monitoring and crew support system, 
based on the APCES ellipsoidal model. 

The FPP intellectual core is the so-called electronic passport of the 
APCES, which includes two main elements: 

 1) the flight database, growing during aircraft operation, containing 
the implementations of the APCES status vector, accumulated up to 
the current moment of operation; 

2) the parameters of the APCES ellipsoidal model, formed under the 
conditions of the normal execution of the typical flight mode in 
question. 

Interaction between the FPP and the FDR is carried out in two modes: 
post-flight and online. 

In the post-flight processing mode the data, related to the APCES 
status, are downloaded from the flight data files contained in the blackbox, 
and are recorded in the database. Then the information, accumulated in the 
database, is used to refine the parameters of the APCES ellipsoidal model. 
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In the online mode, i.e. only during the flight, the abnormal situation 
hazards are evaluated, their sources are identified and the crew support 
measures are elaborated continuously based on the current APCES status 
parameters with the assistance of the ellipsoidal model. 

Let us point out the special features of the suggested system, which 
introduce some new functions in respect of crew support:   

1)  the possibility of evaluating the flight safety hazards, incurred by 
the equipment’s non-normal functioning, insufficient pilot 
attentiveness and the insufficient coherence of the pilot’s actions, 
by applying the unified formal base; 

2)  expansion of the potentials of the “simplified” and “minimal” back-
up control modes, implemented in the fly-by-wire system of the 
civil aircraft, with the assistance of the following: 

-  the indication, attracting the pilot’s attention to the information 
signal, which he/she ignores in the process of control; 

-  adaptive limitations of the control device displacements, based 
on the APCES ellipsoidal model, not only preventing it from 
entering critical flight modes, but also providing execution of 
the typical flight mode, meeting the existing accuracy 
requirements. 

3)  continuous refinement of the APCES ellipsoidal model, based on 
the data, accumulated in the process of a certain type of aircraft 
operation.  

We provide the preliminary evaluation of the consistency of the 
suggested concept and the workability of the algorithms implementing it 
using a hardware-software flight simulator. 
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CHAPTER ONE 

PROBABILITY-GUARANTEEING APPROACH  
TO DYNAMIC SYSTEMS’ ANALYSIS: 

EVALUATION OF THE APCES CURRENT STATE 
 
 
 
As we know, both experimental practice and the further normal 

operation of the aircraft require continuous monitoring of the aircraft-pilot 
closed ergatic system (APCES) status based on the information supplied 
by the FDR. 

When duly processed, these data allow us to reveal the statistical 
characteristics of the uncontrolled factors which influence the system. In 
practice, the flight data volume, gathered during the aircraft operation, is 
limited. As a result, it becomes impossible to build a fully relevant 
statistical model for the uncontrolled factors. 

In this situation, the solution is to use the so-called probability-
guaranteeing (confidence) approach [1.1]. This approach allows us to take 
into account the objective physical nature of the factors which influence 
the APCES status in operation. It is noticeable that a fully relevant 
statistical model, describing the uncontrolled factors properties, is not 
required in this case [1.2-1.6]. The problem of the operating APCES status 
evaluation, based on the probability-guaranteeing approach, is set up 
mathematically in Section 1.1.  

1.1 Formalization of the problem of the APCES status 
probability-guaranteeing evaluation 

The final purpose of the APCES status evaluation is to analyze the 
possibility of the system to fulfill its mission successfully in accordance 
with the flight plan. Further on we suppose that the entire aircraft 
trajectory consists of separate stages (typical flight modes) mj ,...,1 , 
and their consecutive and successful execution allows for the fulfilment of 
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the flight mission, i.e. lead the aircraft to the specified destination point 
with the required quality (precision) (Fig. 1.1). 

Let us introduce a block vector )(tZ
j which describes the APCES 

status during m typical flight modes, j = 1,..,m: 
















(t)U
.........

(t)X
(t)Z

j

j

j      (1.1), 

where block )(tХ
j

 is 1n  vector of the aircraft motion and the 

onboard systems’ state parameters at an arbitrary instant t  of a typical 
flight mode; 

block jU (t)  is 5 1  vector of the control devices (the roll, the pitch, 
the throttle lever, two pedals) positions. The FDR is the source of the 
current ( )jZ t  vector component values. 

It is obvious that the APCES status vector )(tZ
j

 is subject to random 
variations, emerging because of the environmental influence and changes 
in the aircraft systems’ status, as well as the pilot’s actions. Let us 
emphasize that the pilot’s actions are also subject to random variations 
depending on his/her psychophysiological status, the level of 
informational load and the flight conditions. 

Let (t)Е
j

 be an area in the space of the APCES state parameters at any 

instant t of the typical flight mode, moving out of which the flight mode 
is executed successfully at a confidence probability  , close to unity. 

Such areas are called the attainability sets. The precise definition of 
these sets, for large-scale non-linear systems in particular, such as the 
APCES, is a complex problem. Theoretical and computational difficulties 
arise while seeking the solutions to such problems. 
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Figure 1.1. The geometry of the APCES status probability-guaranteeing 
evaluation. 
 

Multiple studies are dedicated to the research of the attainability sets’ 
properties, detailed analysis of which is made, for example, in [1.11]. The 
methods of the attainability sets’ definition for linear dynamic systems are 
most fully elaborated [1.7 – 1.10]. 

The problems, related to the attainability sets’ specification in the 
presence of random and random-indeterminate factors, called the 
confidence sets in this case, are considered in books [1.11, 1.12]. The 
guaranteeing (minimax) approach to the confidence sets’ specification is 
developed in these studies. 

All the above methods of the confidence sets’ specification are united 
by the fact that they are based on the existence of a relevant mathematical 
model of the dynamic system in question. This fact limits substantially the 
potential of using the existing apparatus to specify the APCES attainability 
sets. The point is that the building-up of the relevant mathematical models, 
allowing us to account for and describe the pilots’ actions, still remains an 
unresolved problem. This fact makes it practically impossible to use the 
existing theoretical and algorithmic groundwork, based on mathematical 
models, to specify the confidence sets for the APCES. 

Thus several ways are possible for the confidence set approximation, 
acceptable for experimental purposes [1.11]. It is feasible to consider a 
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parallelepiped in the space of controlled parameters with a specified 
probability measure, a sphere or a correlation ellipsoid. 

For the purposes of the parametric representation, the confidence set 
(t)Е

j
 at any instant t  of a typical flight mode depends on parameter 

max
r  and is designated analytically as a description of its boundary: 

maxj
r(t))Φ(Z      (1.2). 

Furthermore, 

 
maxjjmaxj

r(t))Φ(Z:(t)Z)r(t,Е      (1.3). 

The examples of this parametrical representation could be the 
following: 

- a cube in the space of controlled parameters, 
max

r  on edge; 

- a sphere with radius max
r  (in this case )(t(t)ZZ(t))Φ(Z

j

T

jj
   

and  2

maxj

T

jjmaxj
r(t)(t)ZZ:(t)Z)r(t,E  ); 

- a correlation ellipsoid (in this case 
)(t(t)Z(t)KZ(t))Φ(Z

j

-1

Z

T

jj
  and 

 2

maxj

-1

Z

T

jjmaxj
r(t)(t)Z(t)KZ:(t)Z)r(t,E  ). 

Further on, in Chapters 2 and 3, we shall consider the particular 
methods of specifying the confidence sets (1.3), reflecting the features of 
the APCES control application problem. 

The characteristic dimension max
r of the confidence set is defined so 

that maxj
r(t))Φ(Z   with a specified probability  , defined by the 

aircraft safe operation requirements: 
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  
maxj

r(t))Φ(ZP     (1.4). 

As a result, we can assess the APCES state at an instant t  by vector 

(t)Z
j

 belonging to set )r(t,Е
maxj : 

)r(t,E(t)Z
maxjj

     (1.5). 

(t)Z
j

 components being outside the )r(t,Е
maxj

area may be considered 
as an integrated factor of the APCES non-normal functioning. The pilot’s 
incorrect actions, jeopardizing flight safety, might be one of the reasons 
for such a situation. 

Taking into account that (t)Z
j

 vector is formed under the influence of 
many random factors, the most relevant base for testing condition (1.5) are 
the probabilistic criteria, which have the following sense in the problem 
under consideration [1.2]: 

1) Direct (probability) criterion )(tP
j

 is the probability that )(tZ
j

vector’s components at an instant t of the j-th typical flight mode are 
within the attainability set: 

 
maxjj

r(t))Φ(ZPtP )(     (1.6). 

In this case, the current APCES status may be evaluated based on 
testing the condition: 

)(tP
j    (1.7). 

Condition (1.7) not holding means that the functioning of the APCES 
elements during the j-th typical flight mode does not meet the specified 
safety requirements.  

2) Indirect (quantile) criterion )(t
j

 defines the minimum dimension 
of the APCES parameters’ dispersion area at an instant t of the j-th typical 
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flight mode, which ensures the specified probability condition of the 
aircraft safe operation: 

    r(t))Φ(ZPt
jrj

min)(     (1.8). 

In other words, condition (1.8) defines the probability-guaranteeing 
dispersion of the APCES parameters, corresponding to its status. As a 
result, the condition, under which the APCES status at an instant t of the j-
th typical flight mode meets the specified safety requirements, is defined 
by the following inequality: 

maxj
rt )(

    (1.9). 

The APCES status integral estimation by testing conditions (1.7) or 
(1.9) refers to applying certain calculation methods in respect of the 
probability criteria (1.6), (1.8). 

At this point, we have to emphasize that the computation of direct and 
indirect criteria comes into sharp focus from the point of view of the flight 
safety improvement issue for large-scale problems with hundreds or 
thousands of parameters under control. 

This key Chapter of this book presents a detailed description of the 
approaches, methods and algorithms of the probability criteria evaluation. 

The next part describes the related methods of the probability criteria 
evaluation with respect to APCES status. 

1.2. Probability criteria evaluation algorithms 

The known computation algorithms for criteria (1.6) and (1.8) are quite 
fully described in the modern bibliography [1.1, 1.12, 1.13]. In this book, 
we narrow it down in order to analyze the potential of their 
implementation in the APCES status evaluation problem. 

In order to unify further formal records, we assume that the APCES 
status vector (t)Z

j
 at an instant t of a typical flight mode is represented 

as a random vector 
mnR  . 
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In this case, condition of the APCES normal operation is: 

max
r)Φ(      (1.10). 

The direct probability criterion (1.6) for the conditional test (1.10), 
taking into account the above designation, is written as 

   )Φ(PP     (1.11) 

with maxr . 

The indirect criterion (1.8) is written as 

    r)Φ(P
r

min     (1.12). 

We shall describe the particular numerical algorithms, providing 
criteria (1.11) and (1.12) evaluation, below. 

1.2.1. Probability criteria evaluation algorithms  
based on probability density integration 

This group of algorithms is based on resolving the problem (1.11) 
through computation of the multidimensional integral of the density 
function )p( which is written as follows: 

( )
E

P p d


 


      (1.13), 

where    )Φ(E :  is a set in the space of random factors  , 
limited by the contour line  )Φ( . 

This approach may be of unconditional interest in cases when we 
succeed in obtaining an exact resolution of the above integral equation. In 
particular, this is possible when   is a scalar random value with 
distribution falling under one of the available statistical laws. The class of 
distributions, the properties of which were studied fully enough and their 
distribution function values were tabulated, is rather wide. First of all, it’s 
the normal distribution, the t-distribution (or Student distribution), the 2-
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distribution, the F-distribution and others. Moreover, analytical 
dependencies, describing the probability density function, are available, 
which significantly facilitates further integral computation. Up-to-date 
mathematical statistics apparatuses possess a number of goodness 
measures (KS-test, 2, 2), allowing us to confirm the fact of the 
experimental distribution correspondence to a certain theoretical statistical 
law. If such a confirmation is obtained we can use the direct approach to 
obtain rather precise evaluations of the probability criteria in question. 

For example, if   is a scalar random value with distribution suiting 
the normal statistical law with mathematical expectation m and variance 

2

 : ),( 2

  mN , then the problem of the probability functional P  
(1.11) computation resolves itself to the evaluation of the probability that 
 belongs to interval   : 

  






 








 









 




 m
F

m
FPP , 

where  F  is the standard normal distribution function (the Laplace 
function), with tabulated values. 

Let us note that finding the quantile functional (1.12) in this case 
supposes resolving a transcendental equation written as follows: P  . 

In situations when   is a vector random value, we can also 
distinguish a limited number of cases for which implementing the direct 
approach in question is possible based on the acquainted analytical 
solutions. Nevertheless, all these solutions may be applied only when   
is a normally distributed random vector with mathematical expectation 

m  and covariance matrix K , i.e. ),(  KmN . In particular, an 
analytical solution may be obtained if the range of integration E is a sphere 

in 
mnR 

:  

 )()(:   mmE T  . 
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We can calculate the probability and the quantile, based on the 
analytical relation between sphere radius  and probability P that the 
normal Gaussian variable belongs to it, by transition from the initial 
random vector  N(m, К) to its normally distributed analog * N(0, 
En), where En is a unity matrix; *= К

-1/2 ( - m ); К
-1/2 К

-1/2 = К . 

This relation is defined by the following equations, depending on the 
dimension of the space of random factors n: 

1) odd n,  n=2k, k=1,2,…. 

2
2

2
2 1

0

1 exp( )
22 ( 1)!

n

k t
t dt P

k





 
  ; 

2) even n,  n=2k+1, k=0,1,2, 

2


1
(2 1)!k 

2
2

0

exp( )
2

k t
t dt P



  . 

Another analytical solution is related to the case when the integration 
range E  is represented as a correlation ellipsoid in Rn: 

 )()(: 1

  mKmE T   . 

In the majority of cases, however, calculation of the integral over 
probability-density function p() is possible only by the numerical 
approach. As it is noted in [1.14], the scheme with the integration range E 

subdivision into a class of non-intersecting elementary ranges turns out to 
be the most effective. This scheme allows us to obtain numerical solutions 
for both direct (1.11) and indirect (1.12) problems. 

At the same time, it is noted that the volume of computational load 
increases with the growth of the random factors’ space dimensionality 
n+m. Ref. [1.14] shows that this functional connection is exponential: 
Vn+m, where V is the amount of computational work in a one-dimensional 
case. This feature of the algorithms, based on the direct approach, restricts 
their usability for the APCES status evaluation problems significantly. 
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1.2.2 Probability criteria computation algorithms  
based on Monte Carlo sampling 

This group of algorithms is based on the statistical test method which 
is focused on obtaining the random values realizations j= Ф(j), j=1,…,N 
according to the probability density function р(). The estimate of 
probability P is calculated using the obtained sample: 

*

1

1 N

j
j

P
N 



      (1.14), 

where j is the indicator function: 1j  ,if j  , otherwise 0j  . 

Thus, the estimate *P  at N converges with the true probability P . 

The advantage of this approach is that there is no obvious dependency 
between the amount of computational work and the random factors’ vector 
dimension. However, in this case, we encounter other difficulties. First of 
all, it is the number of statistical tests required to obtain the estimate of 
probability close to unity. Such values are of specific practical interest for 
the purposes of the technical system status evaluation. 

Let us consider one of the ways to decrease the volume of sample N to 
obtain the estimates of probability P, using the Monte Carlo method 
described in [1.15]. It is based on cluster sampling and essential sampling. 

The first method (cluster sampling) suggests that (n+m) random 
factors’ space  is divided into a system of mutually disjoint sets 
1,2,…, l. In this case, the event A()={: Ф() } can be 
represented as an intersection and union of the events 
{A()},{Gl},l=1,…,L, where Gl={:   l },  

1
( ) [ ( )]

L

l
l

A G A


  U I     (1.15). 

According to the formula of total probability,  

1
( ( )) ( ) ( ( ) / )

L

l l
l

P P A P G P A G


        (1.16). 
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Thus to create the P estimates computation, it is necessary to define 
the probabilities, included in (1.16). Let us note that the probabilities 
P(Gl), l=1,…,L can be calculated analytically if the sets l, l=1,…,L 
are selected in a certain way. For example, it becomes possible if the 
random factors’ space is divided by ring-shaped spheres put one into 
another, and the obtained ring-shaped sets are divided into symmetrical 
fractions (Fig. 1.2). 

 
 
Figure 1.2. Geometry of the random factors’ space division 

 
Another way to define the sets l, l=1,…,L is to divide the space 

Rn+m into rectangles, oriented in either direction, not necessarily 
coinciding with that of the axes of coordinates. 

We can obtain the estimates of probabilities Р{A()/,Gl},l=1,…L 
by specifically elaborated statistical modeling. These estimates differ from 
unity even at rather large values of , which is attained by modeling 
random points il, l=1,…,L in each of the sets l, l=1,…,L. The 
corresponding probability density рl() is defined as: 
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( ) ,
( )

( )
0,

l
l

l
l

p

p G
p

 




  




. 

Let us note that, unlike the traditional Monte Carlo scheme, statistical 
modeling by this method doesn’t require the computing of a large number 
of j= Ф(j) to obtain the value of P , close to unity. 

Another method (the so-called essential sampling method) is based on 
the following representation: 

( )
( ) ( )[ ]

( )

( )( )[ ]
( )

M

ME E

M
ME

p
p d p d

p

p
p d

p

P
 



 






   


 


 



 



  


    (1.17), 

where рМ() is the probability-density function determining the 
“mechanism” of j realizations’ occurrence. 

Taking into account (1.17), the formula for calculation of probability 
P  can be written down as follows: 





N

j
jj

M

j

p

p

N
P

1
]

)(
)([1 




     (1. 18), 

where j  is the indicator function, 1j ,if  j
, 0 otherwise. 

Within the frames of the cluster and essential sampling methods in 
question, we can realize the idea of the consequent (adaptive) statistical 
modeling scheme planning. In the cluster sampling method it can be 
achieved by adjustment of the class of sets l, l=1,…,L. This will allow 
the selection of the most effective modeling ranges in the space of random 
factors from the point of view of probability estimate P. In the essential 
sampling method this can be achieved through the adjustment of the 
probability-density function pM( ). 
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Based on the results obtained in [1.11], we can affirm that the optimum 
solution (division l, l=1,…,L, function pM( )) is defined by the Ф() 
functional contour lines. It becomes impossible to implement it precisely, 
since the difficulties of computation in this case are comparable to those 
appearing when using the traditional Monte Carlo scheme. 

We could confine ourselves to a simpler solution if we tried to 
approximate the objective function Ф(), for example, with a quadratic 
form Ф*() using the current information Ф(j), j=1,…,N, gathered as a 
result of N statistical tests: 

Ф*()=ТА+ВТ+С,   (1.19), 

where А is an (n+m)  (n+m) matrix; В is a (n+m)1 vector; С is a 
scalar, all parameters are refined in the process of the statistical tests while 
information about Ф() is accumulated. 

Approximation Ф*() may become more detailed if we carry out 
several quadratic approximations in single ranges of the space Rn+m, 
instead of the gross approximation (1.19). But we have to bear in mind 
that any complication of the approximation method entails growth of the 
statistical modeling computational costs. 

We can calculate parameters A, B and C in (1.19) using the least 
square method (LS method): 

2

, ,
1

[ ( ) ( )] min
N

j jT j T j

A B C
j

J Ф A B C   


     … (1.20). 

We can obtain the solution of the optimization problems (1.20) 
analytically if we introduce a vector of parameters with dimension 
n*=((n+m)2+(n+m)+1): 

 =(Asq(s=1,…,n+m;q=1,…,n+m), Bs(s=1,…,n+m),C). 

Then 

( ( ) ( ) ) ( ( ) ( ) ) minN N T N NJ Ф Ф


             (1.21), 
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where ФN() is the N-dimensional observation vector Ф*(): 

1( )
( ) ......... 1 ;. ( )

( )

N

N

Ф

Ф

Ф

N






 
   




 

( )N   is the matrix of the observations 

linear model: 

    

   

1

2 1
( )

( ) ...........
( )

1,.., ; 1, , , 1 ), , ,1( ) (T j jS jq jS

T

N

T N

N n m n m

s n m q n m s n m    

 


 

 
    


    

        

 
. 

The estimate of the optimum parameters vector  is written as 

1[( ( )) ( )] ( ( )) (* )  .N T N N T NФ            (1. 22). 

Let us note that, in practice, only the diagonal elements of matrix A 
can be defined, in this case the vector dimensionality n* decreases 
significantly (to (2(n+m)+1)). 

It is feasible to refine the estimates * periodically while the volume of 
the Ф() realizations grows. Based on the information about the 
objective function Ф() in the form of Ф*(), we can build a system of 
ring-shaped sets l, l=1,…,L: 

*, : ,{ ) } (l lФ      

where levels l are selected so that the set l probability measure is 
sufficiently close to unity. 

In the essential sampling method, the modeling density рМ(), refined 
after the Ф() function realization is obtained, is written as: 

*
1 2( ) { (– )},Мр k exp k Ф   
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where coefficient k1 is defined following the normalization requirement, 
coefficient k2 is refined empirically and may be used as an additional 
optimization parameter. 

The suggested scheme allows us to outline the process of the 
mathematical modeling systematically, with the purpose of increasing the 
accuracy of the probability estimates P , as new information becomes 
available at an acceptable computation cost. 

1.2.3. The algorithms, based on the confidential approach 

The confidential approach algorithms are based on transferring from 
the initial problem of the probability criterion’s (1.12) estimation to an 
equivalent minimax problem: 

min max ( )
E E E

Ф


 
 

 
 , 

where Е


 is the class of sets with probability measure  . 

While seeking the solution to this problem we define not only the value 
of quantile 

  in question, but also the so-called “optimal” confidence set 

Е
  in the space of random factors .  

The comprehensive description of the algorithms, realizing the general 
minimax approach, is provided in [1.2]. Let us consider one of these 
algorithms, illustrating the procedure of the initial confidence set 
parametric optimization. 

The guaranteed quantile computation algorithm. 

To obtain the two-sided estimates for the quantile ( )Ф  , convex with 
respect to at least one of the disturbance vector elements, we use the 
algorithm of the minimum and the maximum search at the boundary of a 
sphere-shaped confidence set in n m

R
 space. The algorithms of directional 

and non-directional search can be used here. The pattern of non-directional 
search is as follows. 

Step 1. The required probability value  is specified. 
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Step 2. A sphere S with probability measure Ρ(S) β  is used as the 
confidence set. 

Step 3. A regular grid of M points is built on the surface S  of the 
sphere S . One of the ways to form it is described in [1.12]. 

Step 4. The maximum ( )S  and the minimum ( )S  of function ( )Ф   
are found in the grid points, and they are taken for the quantile 
upper and lower estimates correspondingly. 

We can prove as per [1.2] that the described search mechanism for the 
two-sided quantile estimates on the surface of a sphere-shaped confidence 
set appears to be much more effective than the standard Monte Carlo 
algorithm. 

For a further reductionin the computational costs of finding the 
maximum and the minimum on the sphere surface, we shall use the 
directional search algorithm, allowing us to find the quantile estimates in 
the vicinity of the global extremes. The pattern of the maximum 
directional search with a “directing sphere” [1.12] is written as follows. 

Step 1. The required probability  is specified. 

Step 2. A sphere S with probability measure Ρ(S) β  and radius r is 

selected as the confidence set Е in space n mR   of random 
disturbances . 

Step 3. An initial point 0  in the auxiliary space n mR
 is set, whereby 

the dimension (n+m) of space n mR
  equals the dimension of space 

n mR  . The auxiliary space is introduced for solving the problem of 
the unconditional optimization of function ( )Ф   in it. And the 
problem of the conditional optimization with limitation S  is 
solved in the space n mR  . 

Step 4. Point 0  is transferred from space n mR
  to space n mR  , onto 

the surface of sphere S: 
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0
0

02

1

,  1,i
i n

i
i

r i n







 


    (1.23), 

where 0
i  is the i-th coordinate of the point in space n mR  . Let us note 

that we can define the initial point 0  in n mR   based on prior suggestions 
about the point of the extremum or based on the results of the non-
directional search. The value of function 0( )Ф   at 0 is defined. 

Step 5. m sample vectors are formed: 

0

0

,  1,
j

j

j

W k
j m

W k







 


    (1.24), 

where 0W  is a unit memory vector (at Step 1 0 0W  ); j  is a unit evenly 
distributed random vector with dimension n,  0k   is some invariable. 

Step 6. Coordinates of m points in space n mR
  are defined: 

0 ,  1,j j
nph j m         (1.25), 

where [0,1]nph   is some step. 

Step 7. Points j , 1,j m , are transferred from space nR  to space 
nR : in accordance with (1.23), the coordinates of points j , 

1,j m  are defined on the surface of sphere S. 

Step 8. The values of function ( )jФ   at all points j , 1,j m  are 
defined. 

Step 9. The statistical gradient is defined: 

0 0

1
( ) ( )

m
j j

j

d   


         (1.26). 

Step 10. The working displacement is defined: 
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0 0 0/ph d d      (1.27), 

ph  is the working step. 

Step 11. Coordinates of a new point in space n mR
 are defined: 

1 0 0        (1.28) 

Step 12. The memory vector is updated: 

0
1 0

0
0

W x
W

W x




 


 
    (1.29), 

where 0   is the parameter, describing the method’s inertia. 

Step 13. Point 1  is transferred from space n mR
  to space n mR  : in 

accordance with (1.23), point 1  is defined on the surface of 
sphere S. 

Step 14. Function 1( )Ф   value at 1 is defined. 

Step 15. The disparity is defined: 

1 0( ) ( )       (1.30). 

In case the disparity is small, the maximum ( )Ф  value is deemed to 
have been found on the surface of sphere S, and it is set as the quantile   
upper estimate. Otherwise, go to Step 5. 

The degree of convergence of the described algorithm depends on 
invariables k and  effecting the method’s response rate, and also on the 
value of step nph . Generally, this algorithm doesn’t ensure the discovery 
of the global maximum ( )S  on surface S . It is necessary to apply this 
algorithm several times, setting different initial points 0 , and to set the 
maximum of the attained values as estimate ( )S . Using the same 


