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1 Preface

Bodies with many degrees of freedom, in particular with many par-
ticles, exhibit certain patterns of their physical quantities, which can
be viewed as a motion in space and time. The breakthrough into the
nature of this motion was made by Maxwell in 1859, who showed, for
gases, that this motion is a statistical motion which implies proba-
bilities. This is a distinct type of motion, different from mechanical
motion, or from other forms of motion like the elastic, fluid, electro-
magnetic or quantum-mechanical motions. Nevertheless, there was,
and still is, a continuous attempt to derive the statistical motion from
mechanical motion, or to reduce it to mechanical motion, such that
Statistical Physics is often called Mechanical Statistics. In spite of
Maxwell, founders of Statistical Physics like Boltzmann, Gibbs or Ein-
stein persisted in connecting the statistical motion with the mechani-
cal motion. The confusion is fuelled by the presence of the mechanical
motion in statistical motion. The problem would rather be to see the
compatibility of the statistical motion with the mechanical motion.
This is the problem of Kinetics, to be developed in the present book.

This rather misleading line of thought arose from the evolution equa-
tion for the distribution function F , which, instead of being written
as

dF

dt
=

∆F

∆t
= −γ[F − F (t = ∞)] , (1.1)

is usually written as
dF

dt
= C(∆F ) , (1.2)

where C(∆F ) is the so-called collision integral (∆F = F−F (t = ∞)).1

Equation (1.1) is an evolution equation, from the moment t = 0, when
F = F (t = 0) to t = ∞. The approximation used in the first equality

1Equation (1.1) has been used by Debye for molecular relaxation (P. Debye, Polar

Molecules, Chem. Catalog Co., Inc., NY (1929)).
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1 Preface

in equation (1.1) is valid for a sudden decrease of the function F .
Indeed, the time τ = 1/γ is the collision time of the particles (in the
general sense of interaction), which is much shorter than any relevant
time at our scale. It is related to the particle mean freepath Λ and
the particle (thermal) velocity v. The solution of equation (1.1) is

F = F (t = 0)e−γt + F (t = ∞)(1− e−γt) , (1.3)

which shows that we may view F (t = 0) as the initial non-equilibrium
distribution and F (t = ∞) as the final equilibrium distribution. There-
fore, equation (1.1) embodies the principle of statistical (thermal)
equilibrium, which is the basic principle of Statistical Physics. In fact,
since τ is very short in comparison with t (large γ), the equilibrium
is established much faster (than t→ ∞).

The collision integral C(∆F ) does not include necessarily (i.e. with-
out additional ingredients) the principle of equilibrium, although it
includes collisions, vanishes at equilibrium and in spite that the colli-
sions are represented by probabilities (which remain undefined; Stoss-
zahlansatz). The usual arguments that equation (1.2) would imply
an increase of entropy (Boltzmann’s H-theorem) in the evolution to-
wards equilibrium are valid only at equilibrium, when the entropy is
stationary.

Equation (1.1) can also be written as dF/dt = −γf , where f = ∆F =
F −F (t = ∞) is the deviation of the distribution from its equilibrium
value. If we keep γf 6= 0 in equation (1.1) (or C(∆F ) 6= 0 in equation
(1.2)), we admit that we are not at equilibrium. Equation (1.1) shows
how the ensemble tends to equilibrium. (As long as C(∆F ) is not
determined in a form similar with −γf , equation (1.2) does not show
the approach to equilibrium). Inasmuch as we write γ = 1/τ and
τ = Λ/v, we admit that the approach to equilibrium is governed by
collisions. But these collisions are not determined in the mechanical
sense, they are determined in a statistical sense, through Λ and τ
which are purely statistical concepts, such that the statistical motion
remains a distinct motion, not derivable from the mechanical motion.
If we attribute to the molecular collisions a mechanical sense, we have
not anymore, for instance, an ideal gas, but a gas with interaction.
We should realize that the equilibrium is achieved, locally, much faster
than our time scale. Therefore, we need to use in Kinetics (local)

2



1 Preface

equilibrium evolution equations. This approach was recognized by
Landau in connection with the collisionless plasma, where γ = 0+

and γ → 0+; it led to the Landau damping.2 We emphasize that γ
is not small as a consequence that τ = 1/γ is large; on the contrary,
τ is short. We take the parameter γ zero because we are at local
equilibrium.

Two types of problems are usually solved in Kinetics. In one type, we
are interested in the slight perturbations produced in the equilibrium
distribution by an external force. In these problems the kinetic equa-
tion (1.1) is solved by neglecting the small term γ∆F and treating γ
as γ → 0. This approach means that the ensemble is at local equilib-
rium (but not at global equilibrium). Mechanical motion produced by
external forces coexists with the statistical motion. The macroscopic
phenomena imply much longer times than the relaxation time τ , such
that, practically, they take place at equilibrium. The other type of
problems is the transport. The standard approach is to use various
ansatzen for the collision term C(∆F ) and solve equation (1.2) for
F , as if the ensemble were not at equilibrium; then, fluxes (flows) are
computed with the solution F , which depends on the spatial deriva-
tives of the thermodynamic parameters, to get the transport laws.
However, the transport time is of the order l/v, where l is the dimen-
sion of the macroscopic sample. Therefore, the transport time is much
longer than the relaxation time, and the transport takes place at local
(but not global) equilibrium. Consequently, the appropriate approach
is to leave aside the term γ∆F in equation (1.1) and to use the fact
that the transport is made at local equilibrium. The statistical equi-
librium is governed by probabilistic collisions (interactions) and the
macroscopic phenomena are governed by local statistical equilibrium.

In transport equations time and spatial partial derivatives of the dis-
tribution may appear, or derivatives of the parameters of the distribu-
tion, or derivatives of quantities connected with the distribution. In
the time partial derivatives of the type ∂F/∂t we may replace ∆F by
F and ∆t by τ , since these variations are sudden variations produced
by particle collisions; likewise, in spatial derivatives we may use Λ.
Usually, the variations ∆F are small (as τ is), but even for larger

2L. Landau, "On the vibrations of the electronic plasma", ZhETF 16 574 (1946)
(J. Phys. USSR 10 25 (1946)).
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variations we may use such a procedure, as long as the contributions
of the time and spatial derivatives compensate each other (as in the
continuity equation), or are compensated by external forces, such that
the equation of local equilibrium dF/dt = 0 is preserved. The approx-
imations τ∂/∂t = 1 and Λ∂/∂x = 1 are not always useful; first-order
differential equations, or equations which imply second-order spatial
derivatives at most, are useful for the evolution of the physical quan-
tities.

This book exhibits several original points. First, it derives the Boltz-
mann equation from atomic motion, making use extensively of Lan-
dau’s concept of elementary excitations. Second, it includes external
forces, besides the statistical motion, wherever relevant. The trans-
port is treated at local equilibrium, according to the quasi-general
evidence. In Kinetics we are at the limits of the Theoretical Physics,
because we have to be content only with estimations of partially de-
fined concepts like lifetime and mean freepath of elementary excita-
tions; this makes Kinetics a particularly difficult (and intriguing) sub-
ject in the realm of Theoretical Physics, probably the most interesting
one. This book presents the kinetic theory of the classical gas and the
transport in classical gas. Special attention is devoted to the classi-
cal plasma, which raises a problem. The problem in classical plasma
is the relation between the thermal equilibrium of the electrons, on
one hand, and the ions, on the other. The Coulomb forces, and the
correlations they produce, make the classical plasma a classical gas of
interacting ions dressed with electrons, via the Debye-Huckel screen-
ing. This way, once correlated with the ions, the electrons acquire a
special dynamics. The thermodynamics of a classical plasma is that of
a gas of interacting dressed ions, which may exhibit condensed phases,
like a liquid phase or a solid phase. The phonons in solids are a partic-
ularly interesting subject. Besides describing the thermoconductivity
of a perfect lattice, this book emphasizes the role played by the anhar-
monic interactions in the phonon lifetime. Landau’s fruitful concept
of elementary excitations, quasiparticles and collective modes, is in-
troduced especially in (normal) Fermi liquid, where the interaction
is discussed in detail. The electron liquid is presented in connection
with the cohesion of metals, and the transport in the magnetic field
and in semiconductors is described. Special attention is devoted to

4
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the electron-phonon interaction, where an interesting particular case
of non-equilibrium transport appears (the drag effect).3 Except for
such particular cases, the non-equilibrium transport, besides being ir-
relevant to a large extent, requires additional, particular hypotheses
which are not related to a general, consistent method. Basic features
of the superconductivity and superfluidity are presented, emphasizing
the relation of the transport with the condensed phases. A special kind
of thermoelectricity, consisting of flying pulses of charge and heat, is
described. A consistent model of classical liquids is also presented,
together with its transport properties. Finally, the sound anomaly in
water is clarified and the role played by the kinetic modes (densitons)
is discussed.

There exist subjects which have been omitted in the treatment pre-
sented in this book, or described succintly. Among them there are the
magnetic resonance phenomena, the neutron transport, the ballistic
transport, the electrodynamics of metals, plasmas in magnetic field,
the electrolytes, chemical reactions, hydrodynamics, low-dimensional
statistical ensembles. Most of these subjects do not exhibit new trans-
port concepts or circumstances, having the general aspect of applica-
tions of the transport theory (in many cases routine applications).

3T. Holstein, "Theory of ultrasonic absorption in metals: the collisions-drag
effect", Phys. Rev. 113 479 (1959).
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2 Introduction

If Physics would be viewed as a set of provinces (disciplines), Statisti-
cal Physics would be the Queen: the Queen of Physics. It distinguishes
itself not only by its power, richness and elegance, but especially by
raising a deep problem. And Physical Kinetics, to be dealt with in
this book, should be called the Crown Jewel, because it incorporates
this very deep statistical problem. The fundamental problem raised
by Statistical Physics originates in the fact that it identifies a distinct
type of motion (statistical motion), probably the most general form
of motion; the characteristic note of this motion, as compared with
other types of motion, is the problem.

Let us consider a motion, i.e. a change in time from a physical (i.e.
measurable) state to other physical states (a state is the set of values
of measurable quantities). We may imagine that in a long duration of
time T the motion spends some time ∆T in a state; or we may imagine
that ∆N out of many identical motions N take up the same state at
any moment; or, also, we may imagine that we have many times (N)
the same motion and ∆N times this motion takes up the same state.
Obviously, ∆T/T or ∆N/N is a probability, so we have a distribution
of probability. Then, we can compute the mean values of any physical
quantity (depending on states); and the deviations from these mean
values. Thus, we are able to have some knowledge about that mo-
tion, providing, of course, we know the probability distribution. Such
a motion would be a statistical motion, its realization a statistical
ensemble and the determination of the probability distribution (sta-
tistical probability) would be the main task (problem) of Statistical
Physics. The temporal ensemble defined above was employed by Ein-
stein; the state ensembles originate with Boltzmann and, especially,
Gibbs.

At this point the fundamental problem of the Statistical Physics ap-
pears: does such a statistical probability exist? Because, we note that

7



2 Introduction

the probability defined above is independent of time, while the motion
depends on time. It is not obvious that statistical distributions exist.
Statistical distributions, i.e. probability distributions which are inde-
pendent of time, are specific for motions at statistical (thermal) equi-
librium. The problem is cast now in the question whether statistical
(thermal) equilibrium exists. Various plausible, reasonable arguments
were brought in favour of the existence of the thermal equilibrium, for
various physical ensembles, especially for gases. None is a proof of its
existence. Thermal equilibrium is a postulate of Statistical Physics,
one of the greatest principle of Physics. We may imagine probabil-
ity distributions which depend on time, and we may devise evolution
equations which, possibly, may bring these distributions to statistical
distributions. This is a very popular misconception related to Physical
Kinetics, perpetuated not as much by laymen, as by experts. In many
instances the Physical Kinetics seems to prove the evolution towards
equilibrium; in all these cases the arguments are misleading circular
arguments, which presuppose the existence of the thermal equilib-
rium, or mistake the mechanical motion for statistical motion. The
evolution equations of the Physical Kinetics show only that various
other motions (like mechanical, quantum-mechanical, elastic, fluid,
electromagnetic motion) are compatible with statistical motion.
It is worth noting that the statistical motion is not a deterministic
motion, in the sense that the states in terms of which the statistical
distribution is defined do not change in time. In the context of a deter-
ministic motion the existence of the thermal equilibrium is sometimes
called the "ergodic hypothesis" (or "quasi-ergodic hypothesis").1

Statistical distributions should depend only on the statistical motion
and some external parameters; in the absence of other conditions,
there is no reason to differentiate between the states; we note that the
states are statistical coordinates. Consequently, we may admit that
each available state has the same probability w = 1/Γ, where Γ is the
total number of states. This is sometimes called the "hypothesis of
molecular chaos". We may imagine a partition of any two sub-sets Γ1

and Γ2 of the Γ states; this is called a partition in two "sub-systems",
1See, for instance, E. Fermi, "Beweis, dass ein mechanishes Normalsystem im

allgemeinen quasi-ergodisch ist", Z. Phys. 24 261 (1923); E. Fermi, J. Pasta
and S. Ulam, "Studies of non linear problems", Los Alamos Report No. 266,
LA-1940, Los Alamos (1955).

8



2 Introduction

or two "sub-ensembles", or a motion partition (the sub-systems were
introduced by Gibbs). Since the motion is the same and if the relevant
external parameters are the same, the probabilities of the partition
states are w1 = 1/Γ1 and w2 = 1/Γ2 and the equality w = w1w2

is valid. This is called the statistical independence. It follows that
the function lnw is an additive function of "sub-systems". For an
infinitesimal number of states the probability is dw = ρdΓ, where ρ is
the probability density; its ln is additive. Being constant in time, ρ
may be related to other constants of motion, like, for instance, energy,
momentum or angular momentum; the latter are additive, so ln ρ may
be a linear combination of these additive integrals of motion, with co-
efficients which are to be viewed as external parameters. In particular,
we should have ln ρ = α − βE , where E is the energy of the motion
associated with the states which define the probability density and α
and β are (constant) coefficients; it follows ρ ∼ e−βE . This is Gibbs’s
statistical distribution; of course, it should be normalized, such that
´

dΓρ = 1; for quantum-mechanical states dΓ is the multiplicity of
the state, and w ∼ ρ; the integration over Γ is replaced by summa-
tion over states. It is reasonable to assume β > 0, for stability. This
connection indicates that the statistical motion may coexist with the
mechanical motion. If the ensemble is a number N of identical parti-
cles, then we may set α = const+βµN , where µ is another coefficient;
and the normalization should include integration (summation) with
respect to N . The existence of the parameters α (µ) and β may show
that the motion is not isolated in fact, it is not closed. The existence
of the energy E and the number of particles N show, to some ex-
tent, that the motion is closed. This is a very interesting particularity
of the statistical motion. Motion with distribution ∼ e−βE is called
canonical motion, that with distribution ∼ eβ(µN−E) is called macro-
canonical (or grand-canonical) motion. Of course, such distributions
are for motions which possess energy and particle numbers.

If the statistical motion is associated with classical mechanical mo-
tion, i.e. if the classical mechanical motion is present, the definition
of the states includes the dynamical variables p and q, where p de-
notes momenta and q denotes the coordinates; then, ρ ∼ e−βE(p,q)

and the mean value of any physical quantity f(p, q) is given by f =
´

dpdqρ(p, q)f(p, q); the dynamical variables are coordinates of the

9



2 Introduction

phase space (Γ includes points (p, q)) and the state ensemble is called
phase ensemble. If the quantum-mechanical motion is present, then
ρ = ρn ∼ e−βEn , where n denotes the quantum-mechanical state (in
the energy representation); and the probability is wn = ρn. The quan-
tities ρn may be viewed as the diagonal elements of a matrix ρ, which is
called the statistical matrix; what we measure in quantum-mechanical
motion is the quantum-mechanical mean value (ρf)nn, which, in the
energy representation is ρnfnn; the statistical mean value is given
by f =

∑
n(ρf)nn = tr(ρf). Summation (integration) over other

statistical variables, if present, should be included (e.g., the particle
number). Since ρ is diagonal in the energy representation we may
see that the quantum-mechanical motion is statistically independent
in this representation; we may infer that the statistical character of
the statistical motion and the statistical character of the quantum-
mechanical motion coincide in the energy representation. In other
representations this is not true. In general, the statistical character of
the quantum-mechanical motion is distinct from the statistical char-
acter of the statistical motion. The energy plays a special role in this
context.

Also, we note that the existence of the conserved energy (and other
integrals of motion) does not mean necessarily that the mechanical
motion is integrable in terms of any dynamical variables (p, q), or any
type of states n. However, ln ρ remains proportional to the energy,
because the coordinates p , q are not treated as dynamical variables,
but as statistical variables (coordinates); this amounts to say again
that the statistical motion is distinct from the mechanical motion.
We can see that by admitting the existence of the statistical equilib-
rium we are able to derive the statistical distributions. In the course of
derivation we characterized the statistical motion by molecular chaos
("molecular-disorder", Boltzmann) and statistical independence. We
note that the states, the energy, the particle number are statistical
variables.
Let us assume that the statistical motion consists of a number N of
identical statistical motions; a physical quantity f may be written
as the sum f =

∑N
i=1 fi of all these "sub-motions"; then the mean

value f is proportional to N and the root mean square deviation

δf =

√
(∆f)2 =

√∑
ij ∆fi∆fj is proportional to

√
N , because of

10



2 Introduction

the statistical independence; it follows δf/f ∼ 1/
√
N and, for large

N , this ratio is zero. δf is called fluctuation. Therefore, statistical
knowledge is useful for statistical motions with a large (macroscopic)
number of degrees of freedom (states), when the fluctuations are small
(vanishing); i.e., the statistical variables are sharply distributed about
their mean values. The extension of the statistical motion to one
particle in an ensemble is a limiting case (we note that ρ and Γ may
fluctuate).

Let us introduce the quantity S = − ln ρ and require, in accordance
with the molecular chaos, its maximum mean value in certain con-
ditions; for instance, for a given mean energy and a mean particle
number; i.e., let us require the maximum of

−
ˆ

dΓρ ln ρ+ α

ˆ

dΓρN − β

ˆ

dΓρE ; (2.1)

we get immediately the statistical distribution ρ = eαN−βE . The
quantity S = − ln ρ is called entropy, its mean value

S = S = −
ˆ

dΓρ ln ρ (2.2)

is also called entropy; at equilibrium S = S = lnΓ and ∂S/∂E = β.
Therefore, at equilibrium the entropy is stationary, as a reflection of
the molecular chaos. Since the molecular chaos is absolute, any devi-
ation from equilibrium would mean a regular, ordered pattern, which
would decrease the entropy; therefore, the evolution (long time in the
temporal ensemble) is towards an increase of the entropy, towards
equilibrium; out of equilibrium (in non-equilibrium) the entropy is
smaller than at equilibrium. This is the law of increase of entropy.
It is equivalent with the principle of thermal equilibrium. Statistical
Physics may equally well be constructed starting from the principle of
increase of entropy. −S is called Boltzmann’s H function.2 Processes
where the entropy is constant (equilibrium processes) are reversible
processes, those where the entropy increases are irreversible processes.

2L. Boltzmann, Lectures on Gas Theory, Dover, NY (1964) (translated from L.
Boltzmann, Vorlesungen uber Gastheorie, Barth, Leipzig, Part I (1896) and
Part II (1898)).
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Among the reversible processes those which are adiabatic are special;
an adiabatic process is characterized by a parameter λ which varies
slowly in time, i.e. its time derivative dλ/dt is small; we may ex-
pand the small derivative dS/dt of the entropy with respect to time
in powers of dλ/dt; this expansion should start with the second power
of dλ/dt, because dS/dt > 0; i.e., dS/dt = A(dλ/dt)2 (A > 0). It
follows that dS/dt is much smaller than dλ/dt, i.e. the adiabatic pro-
cesses may take place and the entropy remains practically constant.
The adiabatic processes are reversible to a good approximation. Of
course, a reversible process is not necessarily adiabatic.

Let us write the statistical distribution as

ρ = ec+βµN−βE , (2.3)

where c is a normalization constant,

e−c =

ˆ

dΓeβµN−βE = Z = 1 ; (2.4)

e−c is denoted by Z; it is called partition function. Let us differentiate
the normalization condition

´

dΓρ = 1, with ρ given by equation (2.3),
with respect to β and other external parameters λ which may enter the
expression of the energy; we note that in such variations we assume the
existence of the equilibrium, i.e. we consider equilibrium processes;
we get

d(c− βE + βµN) = −βdE + β
∂E

∂λ
dλ+ βµdN , (2.5)

where E = E andN = N are mean values; on the left in equation (2.5)
we have an exact (total) differential; let us introduce the notation

d(c− βE + βµN) = −βdQ ; (2.6)

then, equation (2.5) becomes

dE =
∂E

∂λ
dλ+ dQ + µdN ; (2.7)

here, we may view λ as volume V , −∂E/∂λ as pressure p and dQ
as heat. Statistical Physics identifies the heat as a form of energy.

12
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µ is an energy associated with the presence of a particle; it is called
chemical potential.

From S = −ln ρ we get S = −c+ βE − βµN and

−dS = d(c− βE + βµN) = −βdQ ; (2.8)

therefore, the entropy is a function of state (its differential is an exact
differential) and T = 1/β is the temperature (hence the denomination
"thermal" equilibrium). For T → 0, when there exists only one state,
ρ → 1 and S = −ln ρ → 0; this is called the "third principle of
Thermodynamics" (the energy conservation would be the first, the
law of increase of entropy the second). The entropy may increase, in
an irreversible process, independently on the heat gained, so we have
TdS ≥ dQ . As regards the time τ of measuring the temperature,
we should have Tτ ≫ ~, where ~ is Planck’s constant; otherwise, the
quantum effects destroy the statistical equilibrium (e.g., at very low
temperatures or in very short times).

Equations (2.7) and dQ = TdS define the thermodynamic potentials;
in addition,

cT = −T lnZ = E − TS − µN ; (2.9)

Ω = E−TS−µN is called the grand-canonical potential, F (V, T,N) =
E − TS is the free energy (E = E(V, S,N)); W (p, S,N) = E + pV is
the enthalpy. We note the useful relation ∂(βF )/∂β = E. From

d(E + pV − TS) = V dp− SdT + µdN = dΦ , (2.10)

where Φ(p, T,N) = E + pV − TS is the Gibbs free energy (F is
also called the Helmholtz free energy), it follows Φ = µN (since V
and S are proportional to N); and E + pV − TS = µN implies
Ω(V, T, µ) = E−TS−µN = −pV . We note that E+pV −TS−µN = 0
at equilibrium and, in general, since the entropy increases and is
stationary at equilibrium, E + pV − TS − µN ≥ 0; i.e., the ther-
modynamic potentials have a minimum at equilibrium. Since the
fluctuations are deviations from equilibrium mean values, we can
use this expression for deriving their distribution; in order to do
this, we should leave aside one contribution to this expression, say,
µN , and take ∆E + p∆V − T∆S > 0 as defining the distribution
ρ ∼ e−β(∆E+p∆V−T∆S) for the fluctuations ∆E, ∆V and ∆S; note

13



2 Introduction

that the fluctuations are deviations of equilibrium type. If we take
the derivative of

ˆ

dΓ(E − E)e−βE = 0 (2.11)

with respect to the temperature we get the energy fluctuation δE =
T (∂E/∂T )1/2.

It is of the greatest importance to note the following circumstance.
In canonical distribution ρ ∼ e−βE the variable E is the mechanical
energy; this may induce the idea that the statistical motion would be a
mechanical motion. In fact, ρ includes also the factor ec (ρ = ec−βE),
which leads to d(c− βE) = −βdQ = −dS and

dE = −pdV + dQ , (2.12)

i.e. to the existence of another form of energy, distinct from the me-
chanical energy, which is heat. The occurrence of this new form of
energy originates in the fact that ρ is a probability distribution, which
should be normalized; i.e., from the hypothesis of the molecular chaos
and the principle of thermal equilibrium. It is this latter characteristic
which is the distinctive feature of the statistical motion; and the ex-
istence of E in the definition of the statistical distribution shows only
that the statistical motion is compatible with the mechanical motion,
that both motions may coexist. The existence of N in the macro-
canonical distribution also indicates the non-mechanical character of
the statistical motion. The statistical character is embodied in the
amount of heat which is dQ = TdS = Td lnΓ (for a variation between
infinitesimally-separated equilibrium states); we can see that it is the
variation of the number of states which gives the heat. This is not a
mechanical motion, since in a mechanical motion a state is occupied
(gained) only by leaving behind (losing) an empty state.

The statistical distributions are derived above from the assumption
of thermal equilibrium, characterized by statistical independence and
molecular chaos. We may think that an external agent, probably
endowed with similar characteristics, generates such a special kind
of motion (statistical motion). Let us consider a motion with fixed
energy E0 and fixed particle number N0. Let us assume that it is
possible to divide this motion into two parts, one larger, with various

14
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energies E ′

and various particle numbers N ′

, called "bath", and an-
other, smaller, with various energies E and various particle numbers
N . The probability distribution of the "0" motion will be proportional
to δ-functions,

ρ0 ∼ δ(E0 − E ′ − E)δ(N0 −N ′ −N ) (2.13)

and the probability distribution of the smaller motion is of the form

ρ =
´

dΓ
′

dN ′

ρ0 ∼

∼
´

dΓ
′

dN ′

δ(E0 − E ′ − E)δ(N0 −N ′ −N ) =

=
´

dΓ
′

δ(E0 − E ′ − E) |N ′=N0−N .

(2.14)

In this expression we use dΓ
′

= (dΓ
′

/dE ′

)dE ′

= (dS ′

/dE ′

)eS
′

dE ′

,
where S ′

= S ′

(E ′

,N ′

); the main contribution to equation (2.14) comes

from eS
′

(E0−E,N0−N ); the series expansion of S ′

for E ≪ E0, N ≪
N0 gives the statistical distribution ρ ∼ eβµN−βE ; the assumption of
thermal equilibrium is implicit, in the form of molecular chaos (and
statistical independence), in the integration over the variables Γ

′

and
N ′

of the bath. The distribution given by equation (2.13) is called
micro-canonical distribution.3

We include here another remark. Let a statistical motion of N0 identi-
cal particles have Γ0 states for each particle; let us consider a partition
N0 = N ′

+N , Γ = Γ
′

+ Γ; the entropy is

S0 = ln(N0Γ0) = ln(N ′

+N ) + ln(Γ
′

+ Γ) ; (2.15)

for N ≪ N ′

, Γ ≪ Γ
′

a series expansion in equation (2.15) gives
S0 = S ′

+ S,
S = const · N + const · Γ ; (2.16)

for independent particles with energy E the number of states Γ is
proportional to E (the surface of the momenta sphere), so we get

S = const · N + const · E , (2.17)

3J. W. Gibbs, Elementary Principles in Statistical Mechanics (The Rational

Foundation of Thermodynamics), Ch. Scribner’s Sons, NY (1902) (Dover, NY
(1960).
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which leads to the statistical distribution. The assumption of thermal
equilibrium, through statistical independence and molecular chaos, is
implicit in this derivation.

During statistical motion, which passes from one state to another,
other motions may be present, as, for instance, mechanical motion.
In classical mechanics, the density ρ of the trajectories, which depends
on coordinates and momenta (i.e. on the states), is left unchanged by
the mechanical motion (so is the volume of the phase space defined
by the trajectories); this is Liouville’s theorem (the conservation of
probabilities). Consequently, the statistical motion is not destroyed
by the (classical) mechanical motion, and the two motions may coex-
ist (are compatible). In quantum-mechanical motion, if the density
matrix were diagonal in the energy representation, i.e. if it commutes
with the hamiltonian, it is conserved. However, in general, this is
not true. The quantum statistical distribution is unperturbed by the
quantum-mechanical motion, because the mean statistical values need
only mean quantum-mechanical values.

Arguments of the type given above are often used in the attempt to
define the statistical motion. Actually, they are invalid. Indeed, it is
claimed that, if ρ is a constant, then it obeys the equation of motion

dρ

dt
=
∂ρ

∂t
+ {H, ρ} = 0 , (2.18)

or
dρ

dt
=
∂ρ

∂t
+
i

~
[H, ρ] = 0 , (2.19)

where ∂ρ/∂t = 0, {} is the Poisson bracket, [ ] is the commutator, H
is the hamiltonian and ~ is Planck’s constant; from these equations
we would derive that {H, ρ} or [H, ρ] are zero, i.e. the distribution
would be conserved. These equations are invalid, since the statistical
distribution ρ does not obey the laws of the mechanical motion given
above; ρ in the above equations is the trajectory (Liouville) distribu-
tion or the density matrix. The mechanical motion of the states (i.e.
the motion of the dynamical variables p, q, or quantum-mechanical
states n) is disrupted by the statistical, chaotical motion. In the
statistical motion the states (in particular the coordinates p, q) are
viewed as statistical variables (coordinates). We note again that this
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particular circumstance does not prevent the constant ln ρ from being
proportional to the constant energy E , as shown above.

Finally, it is worth noting another feature of the statistical motion.
This motion proceeds in time. The mean values tend to equilibrium
mean values in a relaxation time. The deviations from mean values,
i.e. the fluctuations, occur in longer times in non-equilibrium and in
shorter times at equilibrium.

The main object of Statistical Physics is related to ensembles of many
particles; these particles may be of various types, like fermions, bosons,
radiation quanta, various elementary excitations; their mechanical
motion may be classical or quantum-mechanical. Their Statistical
Physics has many particularities; we limit ourselves here to give a
general frame related to the statistical motion of the many-particle
ensembles. If the particles do not interact (are free), their measurable
physical quantities do not move; consequently, the ensemble does not
have a statistical motion (except for the case where the ensemble has
not been prepared in such a state by external agents; in which case
an interaction is present). Therefore, in order to achieve a statistical
motion and the statistical equilibrium the particles must interact. If
a particle has at some instant an energy εeq, then, by interaction, it
shares this energy with many other particles; after some time, when
the statistical equilibrium is reached, the particles have a mean energy
of the order of the temperature T ; therefore, we must have the inequal-
ity εeq > T . Since the existence of the energy scale εeq is a necessary
condition for statistical equilibrium, we may call this energy equilib-
rium energy and endow it with the suffix eq from "equilibrium". At
equilibrium, there exist fluctuations, and the fluctuation energy δεf
should be lower than the temperature T , in order for the mean values
to make sense; therefore, we have the inequalities εeq > T > δεf ;
in addition, the uncertainty δεex in the energy of the elementary ex-
citations should be smaller than the fluctuation energy, in order for
these excitations to be well defined. Of course, the mean spacing
between the quantum states δεq should be very small, and finally,
the energy δεobs involved in the measurement (observation) process
should be the smallest. Therefore, we have the series of inequalities
εeq > T > δεf > δεex ≫ δεq > δεobs. In the limit of a large number
of particles the quantum-mechanical energies (and states) are not de-
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fined, and δεq may be left aside in these inequalities. By the general
uncertainty relation δε ≃ ~/τ , these inequalities transform themselves
in a succession of time inequalities τeq < τth < τf < τlf ≪ τq < τobs,
where τeq may be viewed as the time of destroying the equilibrium by
interaction, τth is the "thermal" time of establishing the equilibrium
(determining the equilibrium), τf is the fluctuation time, τlf is the
lifetime of the elementary excitations, τq is the time needed to estab-
lish the quantum levels and τobs is the time of observation of all these
phenomena. τeq may be viewed also as the mean time of collisions
between the particles. The mean freepath and the associated mean
freetime in gases correspond to one-particle elementary excitations.
All these estimations are made at equilibrium. We can see that the
thermal equilibrium deviates fastest from equilibrium and comes back
fastest, such that various observational processes are possible at equi-
librium. The relaxation time is related to the observation time, and
we can see that it is the longest.

Historical note. In Hydrodynamica, published between 1734-1738,4

Daniel Bernoulli claimed explicitly that gases are composed of mov-
ing atoms and molecules, whose collisions with container’s walls give
pressure and their mean kinetic energy is proportional to the tem-
perature and heat; this was the birth of the kinetic theory of gases.
The merit of this book consists in the atomistic conception; its draw-
back is the association of the statistical motion with the mechanical
motion. The atomistic conception introduces the notion of complex
assemblies composed of many (identical) particles. Leaving aside that
their mechanical motion may not be integrable (both classically and
quantum-mechanically),5 the probability distribution over the phase
space of the coordinates q and momenta p is

ρ =
∑

i

δ(q − qi(t))δ(p− pi(t)) (2.20)

in classical motion, where the summation extends over the number
of particles and qi(t), pi(t) describe the classical trajectory (trajec-

4D. Bernoulli, Hydrodynamics, Dover (1968).
5See, for instance, H. Poincare, Les Méthodes Nouvelles de la Mécanique Celeste,

Gauthier-Villars, Paris (1892, 1893, 1899); M. Apostol, "The many-body the-
ory: its logic along the years", J. Theor. Phys. 152 (2007); see also, F. Diacu,
"The solution of the n-body problem", Math. Intell. 18 66 (1996).
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tory distribution). The conservation of the particle number gives the
equation of continuity

∂ρ

∂t
+ div(ρv) = 0 , (2.21)

where v = (q̇, ṗ); if we assign the mechanical dynamics to the coordi-
nates, we get

∂ρ

∂t
+ vgradρ =

∂ρ

∂t
+ q̇

∂ρ

∂q
+ ṗ

∂ρ

∂p
=
∂ρ

∂t
+ {H, ρ} = 0 , (2.22)

where H is the hamiltonian; this equation is in fact dρ/dt = 0. This
is Liouville’s theorem; with the Poisson bracket replaced by commu-
tator, it is the equation of motion of the density matrix (which is
not equal to zero, in general). The above equations are usually em-
ployed to show that the statistical distribution is an integral of motion
(in the absence of the explicit time dependence); this would be the
conservation of the probabilities (the conservation of the volume in
the phase space is the conservation of the number of particles, or
the number of states). In fact, equation (2.20) leads immediately to
dρ/dt = 0. We should note, however, that as long as p and q are dy-
namical variables, the definition of a probability in reference to them
is meaningless, since for statistical distributions p and q are statistical
coordinates. Similarly, for a quantum-mechanical motion the micro-
canonical distribution (in the energy representation) may be taken
as an equivalent of equation (2.20), which does not lead to statisti-
cal distribution without the additional assumption of molecular chaos
(principle of statistical equilibrium). The statistical distribution is
not given by equations like equation (2.20), but by ρ = 1/Γ, where
Γ is the number of states (dΓ = 1 for quantum-mechanical motion).
This was the merit of Boltzmann, who, implicitly, identified thereby
the statistical motion as a distinct kind of motion.
The notion of probability made its way into Statistical Physics with
Maxwell, who, in 1859, derived the velocity distribution of the par-
ticles in a gas, by assuming a random motion (which amounts to a
uniform distribution ρ = 1/Γ) .6 He coined the term statistical mo-
6J. C. Maxwell, "Illustrations of the dynamical theory of gases. Part I. On the

motions and collisions of perfectly elastic spheres", Phil. Mag. 19 19 (1860)
(4-th series).
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tion. Maxwell showed also that the viscosity does not depend on
density, a result which enforced the atomistic theory.7 "The path of
each molecule must be so irregular that it will defy all calculations.
However, according to the laws of probability theory, one can assume
a completely regular motion instead of this completely irregular one".8

Since 1870, starting from Maxwell, in a long series of papers, Boltz-
mann enunciated the notion of statistical ensemble in terms of states
(phase statistical ensemble) and claimed that H = − lnΓ or H =
´

dΓρ ln ρ should decrease in time or be stationary (note that the
function x ln x is negative for 0 < x < 1); he related H to the entropy,
H ∼ −S.9 If we accept that the change in time of the function H
is caused by collisions, then, at equilibrium, the time reversal, or the
combined time reversal and spatial inversion, leads to the principle of
detailed balancing; more general, the unitarity of the scattering ma-
trix leads to a similar conclusion;10 making use of these results one can
prove indeed that dH/dt ≤ 0 (and dS/dt ≥ 0).11 This is the famous
Boltzmann’s "H -theorem".12 However, these arguments are valid at
equilibrium, which restricts the result to dH/dt = 0. The law of in-
crease of entropy follows from the principle of statistical equilibrium.

Indeed, serious objections have been raised to the proof of Boltz-
mann’s H-theorem. For instance, the invariance under time reversal
or, equivalently, the unitarity of the scattering matrix, used in de-

7J. C. Maxwell, "Illustrations of the dynamical theory of gases. Part II. On
the process of diffusion of two or more kinds of moving particles among one
another", Phil. Mag. 20 21 (1860) (4-th series).

8A. Kronig, "Grundzuge einer Theorie der Gase", Ann. Phys. 175 315 (1856).
9L. Boltzmann, "Weitere Studien uber das Warmegleichgewicht unter Gas-

molekulen", Sitzungsber. Kais. Akad. Wiss. Wien, Math. Naturwiss. Classe
66 275 (1872); "Uber die Beziehung zwischen dem zweiten Hauptsatze der
mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung respektive
den Satzen uber das Warmegleichgewicht", Sitzungsber. Kais. Akad. Wiss.
Wien, Math. Naturwiss. Classe 76 373 (1877).

10E. C. G. Stueckelberg, "Théorème H et unitarité de S", Helv. Phys. Acta 25

577 (1952).
11See, for instance, L. Landau and E. Lifshitz, Course of Theoretical Physics, vol.

10, Physical Kinetics (E. Lifshitz and L. Pitaevskii), Elsevier, Oxford (1981).
12L. Boltzmann, Lectures on Gas Theory, Dover, NY (1964) (translated from L.

Boltzmann, Vorlesungen uber Gastheorie, Barth, Leipzig, Part I (1896) and
Part II (1898)).
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