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PREFACE 
 
 
 
Nowadays when the main communication between people takes place 
over the Internet, information protection is crucial. With the development 
of virtual business and e-commerce, data sharing through unprotected 
public channels is expanded. The role of cryptography is to protect users’ 
data from malicious intrusions. Public-key cryptography underlies the 
security features of many issues such as signed and encrypted email, 
single sign-on, and Secure Sockets Layer (SSL) communications. Public-
key introduces a concept involving key pairs: one for encrypting, the other 
for decrypting. Various approaches are used to create the key exchange 
protocol. In this book we show the role of some algebraic structures as 
building blocks for these protocols. We first review and analyze some 
algebraic structures that have already been used to build cryptographic 
protocols – finite fields, groups and rings. Then we discuss the role in 
cryptography of the structures that are either not used for such purposes or 
used in a limited way. Such structures are idempotent semirings and 
semirings of the endomorphisms of a finite chain.  Based on these studies, 
several key exchange protocols are developed. We hope that “Semirings 
as building blocks in cryptography” will be useful not only for 
cryptographers and specialists in Applied Algebra, but also for students of 
Cryptography or Applied Algebra. 
 
 





CHAPTER ONE 

INTRODUCTION 

 

 

 

Let us answer the following questions honestly: Do the measures now 

used to increase information security offer comfort to ordinary people, or 

do these measures provide the protection we think we need? Nowadays, 

when the Internet is the main means of communication between millions 

of people around the world and constitutes an important trading tool, e-

security is becoming extremely important. 

There are many aspects of security, including security in e-commerce, 

e-money, peer-to-peer communications, password protection and digital 

signatures. One of the main aspects of secure communications is  ensured  

by cryptography. 

Cryptography is a centuries-old science. The term cryptography comes  

from Greek words o  – hidden and   – to write. In the past, 

it has been used primarily by military and diplomatic organizations to 

ensure the secrecy of their messages. The first data on the application of 

cryptography are from 1900 BC in ancient Egypt, where special 

hieroglyphs were used for this purpose. Nowadays, the role of 

cryptography has radically changed: it includes  protection of information. 

With the development of virtual business and e-commerce, data 

sharing is expanded through unprotected public channels. Since users who 

share information on unprotected channels are usually remote from each 

other, the low level of protection can tempt some malicious individuals to 

perform prohibited acts, such as disclosing the confidentiality of 

information, secretly modifying data, falsifying  facts and so on. 

In each cryptographic system, from a security point of view, the 

following requirements need to be met: 
 

 Authentication: This is the process of establishing the authenticity 

of the subject. 

 Confidentiality: This is to ensure the confidentiality of information, 

i.e., ensuring that the message  you send  will be read only by the 

person for whom it is intended. 
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 Data integrity: The aim is to ensure correct transmission of 

messages between users without making changes, additions, 

deletions or modifications. 

 Indisputability: The aim is to ensure the origin of each message so 

that the person who sent it cannot subsequently abandon his 

authorship. 

 

Encryption and decryption processes are managed by cryptographic 

keys. There are two types of cryptosystems: symmetric key cryptosystems 

(private-key cryptosystems), where the encryption and decryption 

procedures are performed with the same key, and asymmetric key 

cryptosystems, which are called more often public-key cryptosystems.  

These two cryptosystems use two different types of keys – encryption 

keys and decryption keys. The encryption key is public and the decryption 

key is secret. Public key cryptosystems are used on unprotected channels, 

or when users are remote from each other and are unable to communicate 

directly. Because asymmetric algorithms are much slower than symmetric 

ones, the two types of algorithms are used in combination to optimize the 

speed of communication without compromising security. 

Public key cryptosystems rely on the hardness of two main problems: 

the problem of integer factorization and the discrete logarithm problem. 

Of course, there is no strong evidence that these two problems are really 

hard. We recall that Peter Shor in [273] presented an algorithm for these 

problems that runs in polynomial time on a theoretical quantum computer. 

While some cryptographers do not agree on the possibility of physically 

implementing this model, the US National Security Agency (NSA) is  

concerned about this possibility to warn that government and industry 

should move away from these cryptosystems in the "not too far future" 

[232]. 

The most important issue in public key cryptography (the  question  

P NP ?) is not yet solved. So, it can be concluded that most of the 

cryptographic primitives rely on unproven assumptions. Some researchers 

(see [18]) advocate so-called "reduction-based security" which means  "to 

reduce the security of a great many cryptographic constructions to a 

relatively small number of simple-to-state and widely studied 

assumptions". 

In public key cryptography there are two main approaches: The first 

one deals with algebraic (group-theoretical) constructions and is based on 

integer factoring and the discrete logarithm problem; the second one deals 

with  geometric (coding/lattice) constructions and relies  on geometric 
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computational problems on linear codes or integer lattices for their 

security. 

To the first type can be assigned the RSA cryptosystem (based on the 

problem of integer factoring) [253], the Diffie-Hellman key exchange 

(based on the discrete logarithm problem) [83] and its elliptic curve 

variants ([213], [175]), the ElGamal encryption scheme [93], the Rabin-

Miller test [249], and the Goldwasser-Micali scheme [126]. To the second 

type can be assigned the McEliece cryptosystem [205], the Goldreich-

Goldwasser-Halevi Cryptosystem [125] and its variants, the NTRU 

cryptosystem invented by Hoffstein, Pipher and Silverman [147], and   

Knapsack cryptosystems [211]. 

It is known that the complexity of the algorithms for an "algebraic" 

cryptosystem is of the type NPcoNP. According to [18], both hard 

problems – integer factoring and discrete logarithm – fall into the class 

TFNP, which are NP search problems where every input is guaranteed to 

have a solution. Problems in this class cannot be NP-hard unless NP = 

coNP. The complexity of "geometric" constructions is NPcoNP or 

SZK. 

The aim of the present work is to investigate some algebraic structures 

that have so far not been used in cryptography and to consider the use of 

these structures as platforms for cryptographic protocols. 

The monograph consists of four main chapters. The first of them has 

an introductory character, focusing on the applications of one of the basic 

"one-way" functions in public key cryptography, namely discrete 

logarithms. The  discrete logarithm problem over finite fields, in groups 

and in semirings is considered. The second of them is devoted to the 

idempotent semirings, also termed dioids, which can be used as building 

blocks for various cryptosystems. The third of them considers distributed 

multicast key-management and a key-exchange protocol, based on 

idempotent semirings, is proposed. The fourth of them deals with 

endomorphism semirings of a finite chain; the concepts of simplices and 

simplicial complexes are examined as well. Several cryptographic 

protocols are built on these semirings. 



CHAPTER TWO 

THE ROLE OF DIFFERENT ALGEBRAIC   

STRUCTURES AS BUILDING BLOCKS  

IN PUBLIC KEY CRYPTOGRAPHY 

 

 

 

2.1 Discrete Logarithms in Finite Fields  

2.1.1 Definitions 

Encryption has become tangibly more and more important in our everyday 

life. Many of the methods used to keep our communications secret and our 

important information private involve the Discrete Logarithm Problem 

(DLP) in some way. The difficulty of the DLP underlies security for many 

algorithms in public key cryptography, for performing tasks such as 

exchanging secret keys via public channels, authentication in electronic 

messages, digital signatures, and so on. 

Definition.  Let g be a generator of the group q . For all nonzero 

elements h of ,q  the discrete logarithm of h to the base g (denoted 

log ( )g h )  is the least nonnegative integer t of the set {0,…,q–2} such that 

tg h . Note that log ( )g h  is unique modulo q – 1. 

Definition.  The Discrete Logarithm Problem in a finite field is: for 

the finite field q  with a generator g of the group 
*
qF  and for the element 

*
qh , calculate the discrete logarithm log ( ).g h   

The discrete logarithm problem in a finite prime field p  is equivalent 

to the problem of the solvability of the exponential Diophantine equation: 

gt = h + px, or in other words, the discrete logarithm problem in a prime 

field p  can be viewed as a Diophantine function (see [330] for more 

details). 
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Some authors (as in [319]) examined the discrete logarithm problem as 

a formal problem specification, depending on the order of the cyclic 

group: 

 DLP (Discrete Logarithm Problem) – when the order of the cyclic 

group is unknown; 

 DLKOP (Discrete Logarithm with Known Order Problem) – when 

the order of the cyclic group is known; 

 DLKOFP (Discrete Logarithm with Known Order Factorization 

Problem) – when the factorization of the order of the cyclic group 

is known. 

2.1.2 Public key Cryptosystems based on the Discrete 

Logarithm Problem 

The Diffie-Hellman key exchange protocol. In 1976 Whitfield Diffie 

and Martin Hellman published the paper New Directions in Cryptography  

([83]), in which they proposed an algorithm that allows two users (called 

Alice and Bob for convenience) to communicate via an insecure (public) 

channel, creating a common secret key for this purpose. 

The Diffie-Hellman Key Exchange Protocol consists of the following 

steps: 

1. Alice and Bob publicly agree on the finite field q , as well as on a 

primitive element  
*.qg    

2.  Alice and Bob choose respectively integers a and b from the set 

{2,…, q–2}. These integers are their secret keys. 

3.  Alice computes ag  and transmits it to Bob ( ag  is her public key), 

while Bob computes  bg  and transmits it to Alice ( bg is his public 

key). 

4. Alice computes ( )b a ba
ak g g   and Bob computes 

( )a b ab
bk g g  .  

At the end of the protocol, both users obtain the same secret key   

 a bk k k  . 

Definition. The problem of finding abg  in the field q  for given g, 

ag  and bg  is called the Diffie-Hellman Problem (DHP). 

It is clear that if we can solve the DLP, then we could solve the DHP; 
however, the opposite has not been proven so far. For most groups, the 
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two problems (DLP and DHP) are considered to be of similar complexities 

(see [26], [43], [64], [176], [178], [328]). 

Some authors (see, for example, [296]) discussed two variants of the 

Diffie-Hellman problem: the Computational Diffie-Hellman problem 

(CDH) and the Decisional Diffie-Hellman problem (DDH). 

In [49] and [201], several improvements of the Diffie-Hellman 

protocol are proposed. 

The Diffie-Hellman's key exchange protocol is standardized: ANSI x 

9.42 ([13]). Furthermore, it is the basis of a number of protocols, such as 

TLS. 

 

The ElGamal cryptosystem. In 1985 Tahir ElGamal ([93]) published a 

public key cryptosystem, which is the following protocol: 

 

Key generation 

1. Alice selects the final field q  and a primitive element g  of this 

field. 

2. Alice selects a random integer {2, , 1},a q    which is her secret 

key. 

3. Alice computes  a
ak g  and publishes her public key ( , , ).q ag k   

 

Encryption 

1. Bob encodes the message m  that he wants to send to Alice as an 

element of the field ,q  using a public encryption scheme. 

2. Bob selects a random integer {2, , 1},b q    which is his secret 

key. 

3. Bob computes  1
bc g  and 2 ( )b

ac k m . 

4. Bob sends Alice the encrypted message 1 2( , )c c . 

 

Decryption 

1. Alice receives the encrypted message 1 2( , )c c . 

2. Alice computes 1 2 ( ) ( ) .a b a a b ab abc c g g m g g m m      

3. Alice decodes the message sent by Bob from the acquired m , 

   with the help of the same public encryption scheme used by Bob. 

 

Some authors (see, for example, [233]) stated that the security of the 

ElGamal cryptosystem is equivalent to that of the Diffie-Hellman protocol 
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and that the algorithms used to solve the Diffie-Hellman problem can also 

be used to break the ElGamal cryptosystem, and vice versa. 

Various modifications of the ElGamal cryptosystem can be found in 

[16], [44], [56], and [188]. 

 

The Digital Signature Scheme (DSS). In the same paper [93], ElGamal 

also introduced a digital signature scheme, which owes its security to the 

difficulty of solving the discrete logarithm problem. 

In 1994, the version of this scheme was accepted as a standard in the 

United States for public use (NIST standard). The ElGamal digital 

signature scheme (DSS) has undergone a number of modifications (see 

[314]). 

We briefly describe the idea of the ElGamal digital signature scheme. 

It consists of three algorithms: 

 The first phase is keys generation, or distributed keys generation 

(DKG), during which an appropriate large prime finite field p  

and secret key are selected. In addition, at this stage, the public key 

is computed. 

Some improvements to the algorithm for this first phase are proposed 

in [132].  

 The second phase is message signing. 

 The third phase is signature verification. 

 

Peter Schnorr ([269]) suggested a variant of the ElGamal scheme 

which has some advantages over the classical ElGamal scheme; for 

example, the Schnorr scheme is not vulnerable to the "adaptive chosen 

message" (see [242]). In order to make the ElGamal scheme more resistant 

to attacks of the type mentioned, a number of authors (see [311], [327], 

[328]) proposed improvements to the ElGamal scheme. Modification of 

the ElGamal scheme is presented in [201]. In [237] it is demonstrated that 

breaking the Schnorr scheme is not equivalent to solving the DLP. 

The free software  GnuPG uses ElGamal DSS  as a standard for digital 

signature (see [207], [229]). This scheme is also the basis of the products 

Open SSL and Pretty Good Privacy (PGP), as well as of other software 

(see [236]). 

It is predicted that in the near future the discrete logarithm problem 

will not be difficult to solve, and this will affect the length of the keys of 

these cryptosystems that owe their security to this problem (see [186]). 

There are various trials to find the explicit form of the discrete 

logarithms over some finite fields. Mullen and White in [222] for the first 

time gave an explicit form of the discrete logarithm over special finite 
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fields. Meletiou [209] and Niederreiter [230] showed the explicit form of 

the discrete logarithm over the field ( , )GF p k  (see also [208]). Wan 

improved their results in [321]. These explicit forms have no big value for 

cryptographic purposes, and we will not focus our attention on them.  

In recent years, a number of papers have appeared on polynomial 

approximation of discrete logarithms over a finite field (see [48], [171], 

[182], and [206]). 

2.1.3 Generic algorithms for solving the  

Discrete Logarithm Problem 

Some known attacks on the discrete logarithm problem are considered in 

[94] and [170]. An algorithm that computes a discrete logarithm is called 

generic if it can solve the DLP in an arbitrary finite cyclic group.  

 

The Baby-step, giant-step algorithm. This algorithm was first proposed 

by Shanks [271], and it is a generic method applicable to each cyclic 

group. 

Let G = g   be a cyclic group of prime order p, and h  G. We want 

to find the value of the integer k (0  k  p–1) modulo p, such that kh g .  

Let 0 1[ ]k k k p  . Then (since k   p–1), the following 

inequalities hold: 0 10 , [ ] 1k k p   .  It is clear that to find k, it is 

enough to find the values of  k0  and k1. 

The baby-step consists of computing gi = gi for 0 [ ]i p  ; the 

giant-step consists of computing  
[ ]

.
j p

jh h g


  for  0 [ ].j p   Then 

the algorithm tries to find a match between the individual values in the  

tables obtained in the two steps, i.e. the goal is to find such gi, for which  

gi = hj. Each element, that is common to both tables, allows us to find the 

discrete logarithm of h. For each cyclic group of prime order p, this 

algorithm has running time O ( )p ; it also requires O ( )p  memory to 

store values in the tables. 

 

The Pollard   method. The main idea for solving the DLP 

(mod )kg h p  in 
*
p   is to find a match between  

i jg h  and l mg h  for 

some known exponents i, j, l, m   (see [248]). Then 
i l m jg h   and 
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by taking the roots in p  we will solve the problem of representing h  as a 

power of g. The difficulty is to find a function  : p pf   which is both 

easy to compute and seemingly random. If the function : p pf   has 

these properties, then the expected running time of the algorithm is 

O ( )p   group multiplications.  

In [303] E. Teske suggested an alternative method for the series of 

generators. Better parameters for Teske's iteration function were achieved 

in [17], [172], [214]. In [235] a parallel search for matches was 

considered, which is used in cryptography. A new efficient matching 

algorithm for the Pollard   method was presented in [322]. Some ways to 

speed up the performance of the Pollard  method were discussed in [63]. 

At the same time, Pollard suggested another method, called the   

method (ses [248]). Like the   method, the   method is based on 

finding a sequence of collisions and the complexity of the algorithm is 

estimated by the so-called birthday paradox.  

In 2000,  Pollard published an article ([247]) in which he revised both 

methods using improvements suggested by different authors. 

 

The Pohlig-Hellman algorithm. This algorithm ([242]) works in any 

cyclic group. In [51] is shown that the discrete logarithm problem in a 

cyclic group G can be reduced to the DLP in a cyclic group of prime order 

if the factorization of the group order is known: 
( )

/

| | .p

p n

n G p    

Here ( )p  means the maximal power such that ( )pp   divides n. 

Let us assume that we can factorize the integer p–1 into prime factors: 

1

1 .i

n

i

i

p q




   

 

Then the Pohlig-Hellman algorithm works in 3 steps: 

 Step 1 consists of creating a table of numbers; 

 In Step 2, the table from Step 1 is used for obtaining the values of 

log (mod ), 1, ,i

g ih q i s


  ;  

 In Step 3, the Chinese remainder theorem is used to compute 

log (mod 1)g h p  from the obtained log (mod )i

g ih q


. 
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The Pohlig-Hellman algorithm has the polynomial complexity 

O  1(log ) ,
C

p  when all prime divisors qi of  p–1 are smaller than 

2(log )
C

p , for nonzero constants C1  and C2. If p–1 has a prime divisor q, 

such that 
Cq p  for a positive constant C, then the complexity of the 

Pohlig-Hellman algorithm becomes exponential (see [317]). 

For the field 
2n  of characteristics 2, it is possible to choose n so that 

the number 2
n
 – 1 is prime (Mersenne prime). In this case, the Pohlig-

Hellman reduction presents no benefit for attacking. For fields of odd 

characteristics, there exist primes p, known as Sophie Germain primes, 

with the property that the numbers of type 2p+1 are also prime. Utilizing 

such numbers minimizes the usefulness of the Pohlig-Hellman reduction 

(see [80] and [251]). 

 

Lower bounds. In 1997 Victor Shoup improved the results from [228] 

and defined a lower bound for a cyclic group of order pr
 for a prime p (see 

[274]). In his model, the generic algorithm starts with 1 and gx
; during 

run-time it supports a list with elements of the group isg . The discrete 

logarithm can only be calculated by finding the collision. After m group 

operations, the probability of collision is O(m2p).  
A combinatorial point of view on generic attacks on the DLP was first 

suggested by Schnorr ([270]) and was further developed in [60], where 

characteristics are given for generic attacks on groups of prime order (see 

also [296]). In [215], the theory of lower bounds for the generic group 

model of the discrete logarithm problem was developed, constrained by 

the subset ,pS   known to the attacker (constrained DLP). 

2.1.4 Index Calculus algorithms for finite fields 

The term "index calculus" describes a family of algorithms for computing 

discrete logarithms in which the details of calculations depend on the 

fields used (see [233]). 

The first known method of computing the discrete logarithms is due to 

Adleman ([3]). His algorithm is applicable to prime order fields p . 

Recently, an algorithm has been developed for all finite fields [1]. 

The first generalization for the fields np
 was given by Hellman and 

Reyneri ([144]). In [42], this method was improved for an arbitrary field 
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np
, and a variant for the field of characteristic 2 (

2n ) was also 

proposed. Then, the last concept was extended by Coppersmith, Odlyzko, 

Schroeppel in [73], in order to create a fast algorithm (COS) for the field 

2n . 

The Waterloo algorithm, which is a variant of the index calculus 

method for computing discrete logarithms in the field 
2n , was suggested 

in [87]. The possibility of using the factor base for the field np
 is 

considered in [29].  

The best known algorithm for computing the discrete logarithms in the 

field 
*
p  is a variant of the index calculus method, called the number field 

sieve (NFS). In [2] is also considered a function field sieve. Different 

improvements of the algorithm NFS were suggested in [161], [263]–[268]. 

A variant of the index calculus method for computing the discrete 

logarithms on an algebraic torus was shown in [134]. 

We will briefly discuss the index calculus method. 

Let us consider the equation gx = h, where g, h  *( / )p , p is prime, 

and g is of order  p – 1 (modulo p). 

The first step of the algorithm is to choose a factorial base B, which is 

a subset consisting of  "small" prime numbers. 

 The second step is to compute the discrete logarithm for the selected 

element h, using discrete logarithms of the elements of the factor base. 

A new methodology for this phase of the algorithm is proposed in 

[237]. 

The complexity of the Adleman algorithm is Lp (
1

2
; c); the COS 

algorithm achieves Lp (
1

2
; 1); the complexity  of the NFS algorithm is  

Lp (
1

3
; 1,923) (see [148], [210], [317]). 

The index calculus method for solving the DLP in the field 
*
p  is 

subexponential (see [148], [95]). 

Progress in computing the discrete logarithm in the multiplicative 

group of the field of characteristic 2 was achieved by Joux ([159]), whose 

algorithm for a finite field of order Q = pn  reached the heuristic  

complexity LQ (
1

4
; o(1)). Gary McGuire et al. improved Joux’s algorithm 
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and set a world record for computing the discrete logarithm using a 1  971 

bit number (see [127]). 

 Recently, quasipolynomial-time algorithms have been shown for 

discrete logarithms over finite fields of small characteristic [162]. 

2.2 Group Based Cryptography 

Definition. Let G  be a finite cyclic group of order n. Let g be a generator 

of G  and let h  G. Then a discrete logarithm of  h  at base g  (denoted by 

log ( )g h ) is the only integer x of the interval 0   x   n – 1. 

In cryptographic literature, two main approaches to group-based 

cryptography are considered. In the first approach, it is suggested to use  

abelian groups, and in the second one, nonabelian (see [309]). To 

investigate the possibility of using the group as a platform of a 

cryptographic protocol, attention should be paid to several questions: how 

should it be set and what properties should a given group, taken as a 

potential candidate, have in order to be a platform for building 

cryptographic protocols; what should the algorithmic problem be which is 

the basis of the protocol; what are the general principles of the proposed 

constructions and which are the conditions providing the resilience of the 

cryptosystem? 

2.2.1 The Discrete Logarithm Problem in abelian groups 

Here we will briefly discuss some of the applications of abelian groups in 

public key cryptography. Simon Blackburn showed in his paper [33] that 

by  using Picard's groups in finite graphs,  the  DLP can be efficiently 

solved  in Biggs's groups. The same author in [34] breaks the Arifin-Abu 

cryptosystem, indicating that the discrete logarithm problem in this case is 

easily computable. 

In [35], a cryptosystem based on Drinfeld modules is considered; it is 

shown that this cryptosystem is insecure. In several papers, there is a 

suggestion of using cyclic subgroups of matrix groups, but in these groups 

the DLP is not harder than the DLP over the multiplicative  group of the 

finite field (see [184] for details). 

In [194], an ElGamal like public-key cryptosystem is proposed in 

which the order of the underlying cyclic group is hidden. In paper [300], a 

generic algorithm for computing discrete logarithms in a finite abelian p-

group is presented. Paper [288] is a survey of twisting commutative 

algebraic groups and applications to discrete logarithm based 
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cryptography. Different applications of the DLP in abelian groups can be 

found in [111]–[115].  

To the cryptosystems based on the DLP in abelian groups can be also 

assigned the cryptosystems operating in groups of points over elliptic 

curves, as well as those using the Jacobian of hyperelliptic curves.  

Excluding these examples, it can be summarized that the 

cryptosystems, based on the difficulty of the discrete logarithm problem in 

abelian groups, are not really secure. This is the reason why the 

cryptographic community focuses on the use of nonabelian groups. 

2.2.2 The Discrete Logarithm Problem in nonabelian groups 

The idea of using nonabelian groups in cryptography originated with   

Wagner and Magyarik ([320]) in 1985. This cryptosystem owes its 

security to the difficulty of solving the word problem for finitely 

represented groups, but the cryptoscheme proposed by the authors is too 

theoretical, with unresolved issues. A cryptoanalysis of the Wagner-

Magyarik scheme can be seen in [27], [130], and [187]. 

There are finitely represented groups with a recursively unsolved word 

problem (see, for the details, [231]). Birget et al. in [28] presented their 

cryptosystem, which is inspired by the Wagner-Magyarik scheme. The 

cryptoanalysis of it is shown in [40], [131]; in the last article, it is also 

proved that the cryptosystem [119] is insecure. 

Surveys of the application of nonabelian groups in cryptography are 

presented in [102], [103], [226], and [227]; especially for the discrete 

logarithm problem in non-abelian groups, see: [153] – [155], and [173]. 

 

The conjugator search problem. One of the possible generalizations of 

the discrete logarithm problem in arbitrary groups is the conjugator search 

problem, which can be formulated as follows: for two elements a, b from 

a nonabelian group G, find at least one element x G  such that .xa b  

Here  by 
xa  we understand 

1.xax
 The computational complexity of this 

problem in some special groups (e.g. in the braid group) is used in a 

number of cryptosystems ([277], [280] and [285]).  

The conjugator search problem is the basis of the security of the two 

most popular cryptosystems based on non-abelian groups, namely: 

 Ko, Lee, Cheon, Han, Kang and Park cryptosystem ([174]); 

 Anshel, Anshel and Goldfeld cryptosystem ([11], [12]). 
Both of them use the braid group. 
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Of course, the braid group is not the only platform for cryptosystems 

using the conjugator search problem. As such, Thompson's groups F, 

matrix groups, Artin's groups, Grigorchuk's groups are also used (for 

details, see [226]). 

We will briefly review the above-mentioned two protocols, which are 

analogous to the Diffie-Hellman key-exchange, and in which the 

conjugator search problem is the basis of their security. 

 

Ko-Lee-Cheon-Han-Kang-Park key-exchange protocol.  Let G  be a 

nonabelian group and let g  be a publicly known element of G. Let  A and 

B be two commuting subgroups of the group G, given by their generating 

(finite) subsets, such that ab = ba for all a  A, b  B. 

Alice and Bob, who want to create a common secret key, do the 

following: 

1. Alice selects an arbitrary element ,a A  computes 1ag a ga  

and transmits the obtained value to Bob. 

2. Bob selects an arbitrary element ,b B  computes 1bg b gb  and 

transmits the obtained value to Alice. 

3. Alice computes ( ) ,b a

Ak g  while Bob computes ( ) .a b

Bk g  

Since ab = ba, it follows that kA = kB. 
 

Anshel-Anshel-Goldfeld key-exchange protocol. The advantage of this 

protocol is that, unlike the Ko et al. protocol, there is no need to search for 

commuting  subgroups  A and B of group G. In addition, it can be applied 

to any nonabelian group in which the word problem can be efficiently 

solved. 

Definition. Let S be an arbitrary set. A word w in S is a finite sequence 

(it may be empty as well) of elements 

 
1... , .n iw y y y S   

 

The integer n is called the length of the word w.  

Definition. The word problem (WP) consists of the following: For a 

given recursive representation of the group G and an element g G , 

decide whether g = 1 in G. 

Then the protocol consists of the following: 
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Let G be a nonabelian group and let the elements  

1 1,..., , ,...,l ma a b b G  be public. In order to create a common secret key, 

Alice and Bob have to proceed in the following way:  

1. Alice chooses a word x from  
1,..., la a  and transmits  

1 ,...,x x

mb b  to 

Bob. 

2.  Bob chooses a word y from 
1,..., mb b   and transmits 

1 ,...,y y

la a  to 

Alice. 

3. Alice computes 
1

1( , , ) .y y y

lx a a x y xy    

4.  Bob computes 
1

1( ,..., ) .x x x

my b b y x yx   

5. The shared secret key k is the commutator 
1 1[ , ] : .x y x y xy   To 

obtain this key, Alice multiplies 1y xy  on the left by 
1,x

 while 

Bob multiplies 
1x yx

  on the left by 
1y
 and then gets the inverse 

element   
1 1 1 1 1( ) .y x yx x y xy      

The difficulty of the protocol is based on the difficulty of the following 

Problem. For given elements  
1, ,..., lx a a  and group G, find the 

representation (if it exists) of x as a word from the sequence 1,..., .la a  

It is worth noting that this protocol is not fully determined, as it is 

necessary to specify how to select the elements ,i ja b  and how Alice and 

Bob generate the words x and y, respectively. Some attacks on this 

protocol can be seen in [149], [224], and [225]. 

Some authors (see [102]) consider also the following 

Simultaneous search conjugacy problem. Let G be a finitely 

represented group and let the following elements of the group be given: 

1 1, , , , , ,k ku u v v G    so that  1

i ix u x v   for all  i  {1, 2, …, k}. 

Finally, an algorithm is needed to find an element z  G that satisfies 

the condition 
1

i iz u z v   for all i  {1, 2,…, k}. 

The decomposition problem and protocols based on it.  

The decomposition problem is the following: in a non-abelian group G, 

find two elements a , b  G (usually asking for elements a , b of some 

subgroup of G) with the property h a g b    for g and h being two 

known elements of the group (see [226]). 

In general, a protocol, whose security is based on the decomposition 

problem, consists of the following: 
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Two users publicly agree on group G, the element g  G, and two 

subgroups , ,A B G whose elements commute, i.e. a b b a    for all 

, .a A b B   

1. Alice selects two random elements 
1 2, .a a A  She transmits the 

value 
1 2a g a   to Bob. 

2. Bob selects two random elements 
1 2, .b b B  He transmits the 

value 
1 2b g b   to Alice. 

3. Alice computes 
1 1 2 2 ,Ak a b g b a      while Bob computes 

2 1 1 2.Bk b a g b a      

Since
i i i ia b b a    in group G, by the end of the protocol the two 

users receive the shared secret key kA = kB = k (as an element of G). 

Some of modifications of the above protocol are: 

 the Shpilrain-Ushakov protocol for "twisted" groups ([281]); 

 the Shpilrain-Ushakov protocol for hidden subgroups ([282]); 

 the Kurt protocol for triple decomposition ([180]); 

 the Stickel protocol ([295]). 

We point out that the Shpilrain-Ushakov protocol used Thompson's 

groups as platform, noting that the word problem in these groups is 

solvable for almost linear time. In [86] it was shown that these 

cryptosystems are not secure. 

Thompson's groups are also used in [313]. Stickel employed  matrix 

groups as a platform for his  protocol, which was broken by Sramka [291],  

Shpilrain  [278], and  Mullan [220]. 

Logarithmic signatures and cryptosystem using them. Logarithmic 

signature for the finite group G  is called an ordered  n-tuple  

 = (A1, A2, . . . , An) of the subsets Ai of G, such that every element g  G 

can be represented in an unique way in the form g = a1. . . an  for ai   Ai .  

A natural way to construct a logarithmic signature for a group G is to 

select subgroups from the following chain 

0 11 nG G G G    . 

Let  Ai  be the set of representatives of cosets 
1iG 

 in .iG  Then 

 = (A1, A2, ... , An) is a logarithmic signature of the group G. 

Cryptosystems using logarithmic signatures are suggested in [185], 

[190]–[192], [289].  
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We note that Lempken et al. (see [184]) invented the cryptosystem 

MST3, based on logarithmic signatures, for which Magliveras et al. in 

[193] showed that it is not secure using a special method of generating 

secret keys. Another attack against the cryptosystem  MST3 was described 

in [38]. 

Paeng et al. in [238] proposed a new cryptoscheme based on the 

difficulty of  the DLP in the group of  inner automorphisms. 

A cryptoanalysis of the protocol proposed by Grigoriev and 

Ponomarenko ([135]) was made in [65] using the heuristic method of re-

discovering the secret key from the public key. 

In [92], a new cryptosystem using polycyclic groups is proposed. Frey 

[107] showed that the Brauer group plays an important role in 

cryptosystems whose security is based on the discrete logarithm problem. 

In [259], the authors (using some ideas from [287]) proposed a key-

exchange protocol, the security of which relies on two simultaneous 

problems in group representation level: the matrix conjugator search 

problem and matrix discrete logarithm problem. 

2.2.3 Groups used as platforms for cryptosystems 

The braid group. Due to the fact that many of the cryptosystems using 

groups are based on the braid group, we will first focus on it.  

The braid group was introduced by E. Artin in 1947. This group is very 

interesting in many aspects: there are equivalent representations in 

completely different mathematical areas; the word problem in this group is 

solvable relatively easy, but some other problems, such as the problem of 

the conjugate element and the decomposition problem, in this group seem 

to be hard to solve. 

There are several definitions of braid groups; we consider one 

algebraic-geometric definition. For n   2, the braid group Bn is defined as 

follows: 

0 1

1 1 1

for | | 2
, , .

for | | 1

 i j j i

n

i i i i i i

i j

i j

   
 

     


  

  


  
 

This way of defining the braid group is called Artin's representation 

and the generating elements are called Artin's generators. We refer to i , 

0   i < n–1 as an elementary braid on n strands and interpret that as the 

braid that interchanges strand i and  i+1 by passing i+1  over i.  An 

element from 
nB is called an n-braid. For each n,  the identity mapping on 



Chapter Two 

 

18 

1 1{ , , }n    induces an embedding from 
nB  into 

1nB 
, so that we can 

consider an n-braid as a part of (n+1)-braid. Since 
2B  is an infinite cyclic 

group, it is isomorphic to the group of integers. For n   3, the group 
nB  

is not commutative and its center is an infinite cyclic subgroup. When a 

group is specified using presentation, each element of the group is an 

equivalence class of words with respect to the congruence, generated by 

the relations of the presentation. Hence (by definition), every n-braid is an 

equivalence class of n-braid words under the congruence. 

Birman et al. in [29] and [30]  presented a new canonical form for the 

elements of the braid group. Another normal form is given in [91] and 

[156]. Some efforts to solve the conjugacy problem in polynomial time 

can be found in [128] and [183]. 

Campagna in [54] proposed a new canonical form called the max run 

form, using Artin's generators, and also provided some algorithms that can 

be used for cryptographic purposes. 

Wiest in [325] showed an algorithm for finding a unique short 

representative for any given element of Artin's braid group.  Hofheinz and 

Steinwandt in [149] used a heuristic algorithm for attacking the conjugacy 

search problem, which is the basis of the cryptosystems presented in [11] 

and [174]. Myasnikov and Ushakov ([224], [225]) suggested a variant of 

the "length-based attacks" for these cryptosystems. Similar attacks are 

proposed in [54]. Other attacks are also considered in [45] and [223]. 

Chowdhury in [66] showed that the suggested implementation of the 

"Algebraic Eraser scheme" to the braid group is not secure. For more 

details about the algebraic eraser, see also [124]. The algebraic eraser is 

used in the recently patented protocol [10]. 

Some solutions to the word problem in the braid group based on the 

"handle reduction process" are discussed in [79] and [117]. Three 

authentication schemes based on the conjugacy search problem and the 

root extraction problem are presented in [286]. A cryptanalysis of the root 

extraction problem can be found in [137]. 

There are also attempts to combine various problems in the braid group 

to create more resistant cryptosystems. For example, Thomas and Lal in 

[304] suggested a digital signature scheme that combines the conjugate 

search problem, the decomposition problem, and the root search problem. 

Chowdhury in [67] considered cryptographic protocols using 

noncommutative semigroups to improve the security of the Cha-Ko-Lee-

Han-Cheon cryptosystem based on the braid group, while providing two 

algorithms to solve the decomposition problem. 
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The Thompson group. The Thompson group has the following infinite 

presentation: 
1

0 1 2 1, , , | ( ) .i k i kF x x x x x x x k i

       

The classic normal form for the Thompson's group is a word of the type 

1 1

1 1,
s ti i j jx x x x    

so that the following two conditions are met: 

 
1 si i  and 

1 ;tj j  

  if both ix  and 
1

ix
 are present, then either 

1,ix 
 or 

1

1ix

  is also 

present. 

There is a relatively simple procedure for reducing an arbitrary word w 

to normal form in the Thompson group. (Different properties of the 

Thompson group are discussed in [55]). 

We want to note that in the Thompson group there are effective attacks 

on the decomposition problem ([200]). As some authors have stated (see, 

for example, [226]), in the Thompson group, as well as in the braid group, 

the use of different representations of normal forms for group elements 

poses cryptographic risk due to the fact that what we are trying to hide in 

one normal form is quite possibly revealed in another. 

 

Matrix groups. The advantage of using matrix groups over finite 

commutative rings as platforms for cryptographic protocols is that, on the 

one hand, the matrix product is not commutative, and on the other hand, 

matrix entries that are elements of the commutative ring offer a good  

mechanism to hide the information we want. Another advantage of matrix 

groups is the periodicity of the matrix when it is defined over a finite ring.  

Different finite rings can be considered, over which matrix groups can 

be defined. The simplest example is the ring .n
 We point out that matrix 

groups over the ring 
n
 can also be used as a platform for the “classical” 

Diffie-Hellman key-exchange protocol, but the disadvantage is that the 

number n must be very large to provide a relatively efficient key space. 

Another ring of interest is [ ] / ( ( ))pR x f x  (here 
p

 is a field with 

p elements, [ ]p x  is a ring of polynomials over the field 
p

, and ( f(x)) is 

an ideal of [ ],p x generated by an irreducible polynomial f(x) of degree 

n). This ring is isomorphic to the field np
, but the presentation of R  

allows a large key space to be obtained with relatively small basic 

parameters. This ring is employed by Tillich and Zemor in [306] to 
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construct hash functions (see also [276]). The matrices used by them are 

from the group SL2(R).   

It is also possible to use the ring of the reduced polynomials over the 

ring 
n

.  Reduced polynomials are expressions of the type 

0

,
N

k

k

k

a x


  

taken with the normal addition, and the multiplication is in accordance 

with the rule 
( ) mod ( 1).i j i j Nx x x     

The ring of reduced polynomials is a factor-ring; the ideal generated by 

the polynomial 
1Nx 
 is prime, and, for this reason, the factor-ring 

calculations are quite efficient. This ensures that a small amount of money 

is spent to provide a large space of keys. 

 There are also mixed protocols in which the authors combined matrix 

groups with some other groups. For example, in the Climent-Ferrandez- 

Vicent-Zamora key-exchange protocol (see [68]), matrix groups are 

combined with the sets of points on an elliptic curve defined over a finite 

field. Analysis of the protocol was performed in [69], where a number of 

improvements were proposed to enhance security. 

Another example of a mixed protocol is the one proposed by P. Vitkus, 

E. Sakalauskas, N. Listopadskis, and R. Vitkiene in ([318]), which uses 

the left and right actions of a matrix on a matrix. As a platform for their 

protocol, the authors employed the braid group Bn. 

The following map is used to transform the braid group into a matrix 

group 

: ( 1, )n pB GL n   ,  p prime; 

2 2

0

0 0

0 1

i i n i

l t

I t I

t

   

 
 

   
  

 

for .pt  

Cryptanalysis of the protocols using matrix groups is shown in [218]. 

 

Extra special groups. For a given prime p, all groups of order p2 are 

abelian. The first nonabelian group G is of order p3. There exists a 

complete classification of groups of order p3.  

For odd p, there are two non-isomorphic classes of extra special 

groups of order p3: 


