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Preface xi 
 

Everyone can do whatever he 

would desire in his life.  

But he does desire only what he 

can do. 

PREFACE 

At the present time, we are all witnessing the sharp-plotted scenarios played in 

politics, business, and industry in connection with the problems of extraction and 

redistribution of the oil and gas resources. Additional freshness is contributed into 

this atmosphere by “shale revolution” broken out owing to development of new 

technologies of super-deep and long distance curvilinear drilling. Now, instances of 

vertical well boring to depths exceeding 10 km are not rare, and the record distance 

from the drilling rig of the horizontal well has reached more than 13.5 km. Such wells 

are drilled at the limit of current industrial capabilities at maximum velocities, 

hydrostatic pressures, and temperatures values as well as strength and wear 

parameters of drill string materials under the significant impact of violent vibration 

effects and entire system instability. These processes are often accompanied by 

emergency and failure situations, including: 

- Bifurcation buckling of vertical strings in the type of compressed-stretched, 

twisted, rotating tubular rods with internal fluid flows. 

- String resonance (bending) vibrations. 

- Self-excitation of torsional auto vibrations with slip-stick motions caused by non-

linear frictional forces between the bit and the rock being destroyed. 

- Whirling vibrations of the bit self-excited as a result of frictional and kinematic 

(nonholonomic) rolling of the bit over the surface of the hole bottom. 

- Deadlock states in wells with geometric imperfections caused by increasing 

contact friction forces between the string and the borehole wall. 

- Bifurcational buckling of the strings in curvilinear boreholes accompanied by a 

deterioration in the conductivity of the actuating cutting torque and axial force to 

the bit, increased wear of the string pipe, an increase in system power 

consumption, an increase in the intensities of stress fields and strains in the 

strings, and an increase in the probability of their destruction. 

These emergency situations are mainly caused by three factors. First, it is the 

long string length. In terms of geometric similarity, it is similar to human hair. 

Therefore, a phenomenon occurring at one end of the string can influence, have little 

or no effect on the phenomena occurring at the other end. In mathematics, the 

equations describing such phenomena are called singularly perturbed. They are 

characterised by poorly converging solutions, the forms of which have singularities in 

the shape of edge effects, internal harmonic wavelets or may contain irregularities. 



Modelling emergency situations in drilling deep boreholes xii 
 

The second factor is related to the special character of frictional effects that 

appear in extended curvilinear boreholes. The fact is that the frictional force in them 

depends on the pressing force of contacting bodies. However, in curved sections, the 

force of pressing the string against the borehole wall is determined by the axial 

tension of the string. In this case, it is said in mechanics that frictional forces have a 

multiplicative (i.e., are multiplied) and not additive (i.e., not added) nature, as 

happens when the body slides over a rough flat surface. 

The third factor is that the issues of mathematical modelling of mechanical 

phenomena accompanying the drilling processes are multi-parametric since they 

depend on a large number of geometric and mechanical quantities and can hardly be 

solved in a general formulation. Therefore, it is very important to consider the 

implementation of these mechanical phenomena for specific values of the 

determining values and establish the general regularities of their behaviour. It should 

be noted that due to the great complexity of the tasks and the uncertainty of the initial 

data, the proposed drill string dynamic models reflect only the qualitative aspects of 

the phenomena considered, which are also of no small importance. Here, it is 

appropriate to recall Hemming who noted that in mechanics, when modelling, it is 

not the number but the understanding that is important. At the same time, it can be 

asserted that mathematical models of frictional phenomena and the processes of drill 

string buckling in curvilinear boreholes largely reflect also their quantitative aspects. 

In this regard, they can be directly used both in the design of wells and when drilling 

them. Ultimately, the practical application of methods for the computer simulation of 

abnormal situations arising in deep-well drilling can contribute to their prevention. 

The research given herein was discussed with specialists of the National 

Transport University and Smart Energy LLC (Kiev). The authors express their 

gratitude to all of them. 
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CHAPTER 1. PROBLEMS OF THE THEORETICAL MODELLING OF 

EMERGENCY SITUATIONS IN DEEP-WELL DRILLING 

1.1. Technical aspects of deep-drilling problems 

Energy problems, which are becoming ever more acute in the 21st century, are 

caused by the approaching exhaustion of oil and gas resources and the fact that their 

production has become more complex. As a result of prolonged and inefficient 

extraction and consumption using low-cost technologies, the time of light oil and gas 

ended in the 20th century [5]. Therefore, deposits found in shale rocks and at depths 

of up to 10,000 m are now very promising. For example, in the United States, the 

possibility of extracting fuel from a depth of 30,000 feet (9,150 m) is being studied, 

and goals are being set for developing inclined and horizontal offshore wells with a 

distance of up to 15 km from the drilling platform [4]. 

Taking into account the increase in the depth and range of drilling, the cost of 

these wells already exceeds $50 million [3], and every third well is an emergency 

one; but reliable methods for the theoretical modelling of their functioning have not 

yet been developed, the conclusion can be drawn on the importance of theoretical 

forecasting of critical states of drill strings (DS) and the price of the forecast error. 

The main global energy consumers are [2, 6] industry, transport, agriculture, 

the residential sector, and commercial and public services. The most energy-intensive 

is transport, followed by industry and the residential sector. 

The energy type to be used by these consumers is selected based on six main 

factors: 1) fuel and energy feedstock calorific value; 2) ease of production; 3) ease of 

transportation; 4) ease of energy production and use; 5) associated hazard to health 

and life of employees; 6) presence of waste and potential environmental 

contamination. Given these factors, we can conclude that oil and gas will remain the 

most attractive energy sources in the coming decades. 

An important circumstance contributing to the complication of the situation in 

the oil and gas industry is that under normal conditions usually only 40% of 

hydrocarbon fuels filling the cracks and pores of underground reservoirs can be 

extracted using conventional production techniques. One of the ways to increase the 

volume of fuels extracted from underground reservoirs is associated with the drilling 

of curvilinear boreholes penetrating the oil-bearing and gas-bearing beds along their 

laminated structure and, therefore, covering large areas of fuel intake [7]. Since, 

when using this technique, the total number of wells drilled is reduced, and the flow 

rate of curvilinear boreholes turns out to be significantly higher than that of vertical 

wells, in the near future drilling directed holes will become the main technique in 

much of the world. The development of curvilinear drilling techniques is also 

facilitated by the need to extract hydrocarbons from shale formations. 
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Fig. 1-1 Geometrical layout of a 

drill string in a deep well 
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In accordance with economic 

requirements, the geological conditions 

of the deposit and the process 

capabilities of oil and gas companies, 

vertical, directional, horizontal, and 

multilateral oil and gas wells of different 

depths are now being drilled. However, 

the practical introduction of drilling 

techniques for deep wells of different 

spatial orientation is associated with the 

need for the theoretical modelling of 

mechanical phenomena occurring in the 

drilling equipment structures to prevent 

critical modes of operation. In addition, 

one of the most important aspects of this 

area is the theoretical modelling of 

quasi-static and dynamic behaviour of 

deep-drilling strings. However, this task 

is significantly complicated by the fact 

that under conditions of geometric 

similarity the drill string is similar to 

human hair, and at the same time it is 

subject to intensive loads and a large 

number of different factors complicating 

the methods of theoretical modelling. 

The most popular oil and gas 

well-drilling technique is the rotary 

method when the rock is cut using a bit 

attached to the bottom end of the drill 

string suspended in the borehole at the 

top end. In this case, the bit rotates 

because of the entire drill string rotation 

caused by the effect of actuating torque 

on its top end (Fig. 1-1). 

A drill string is assembled from 

pipes 12–15 m long using threaded 

connections. Drilling efficiency and 

quality are determined mainly by its 

regime and the bottom hole assembly 
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(BHA) structure with reamers, centralisers, and stabilisers. The generation of high 

axial loads ensuring stabilisation and controllability of the wellbore trajectory is 

associated with the use of multi-bearing BHA, where the number of centralising 

components does not usually exceed five. 

The drill string bottom structure also includes weighting agents, calibrators, 

and other elements. 

To remove rock particles chopped as a result of being cut with a bit from the 

borehole, drilling fluid is supplied inside the string by a special pumping system 

that—rising in the outer space between the string and the borehole wall—entrains and 

carries away these particles. The drilling fluid also plays other important functional 

roles. It is known that rocks in the interior of the earth experience significant three-

dimensional stresses caused by a comprehensive compression of upstream solids by 

gravity forces. Due to the continuity of the rock, these stresses counterbalance each 

other, much as hydrostatic forces in the liquid. However, rock discontinuity during 

well drilling leads to a redistribution of these stresses in the vicinity of the well, rock 

imbalance, and destruction. Should the well be filled with liquid with a specific 

gravity equal to that of the rock, its hydrostatic pressure on the walls will balance the 

imbalance of forces in the rock, and it will remain stable (using the language of 

drillers). It is also important to maintain a balance between the average density of the 

liquid and rock (especially for deep wells). In addition, the drilling liquid plays an 

important role in the formation of frictional interaction between the string and the 

borehole wall. Finally, the drilling liquid serves to cool the drill tools. 

 

1.2. Abnormal phenomena accompanying deep-drilling processes 

When suspended, the drill string is exposed to distributed gravity forces. They 

generate a tensile axial force therein, which reaches a maximum at the suspension 

point and decreases to zero at its bottom end. When operating, the string is resting 

against the bottom of the well, it is exposed to the vertical reaction compression 

force; therefore, the entire string is in a stretched-compressed state of stress. 

To impart a rotary motion to the string, torque is applied to its top end. For 

shallow wells, it can be assumed that in the stationary state this moment is equal to 

the cutting moment applied to the bit, and then the torque in the string itself remains 

constant along its length. However, if the string is deep, then to calculate the 

actuating torque at the suspension point, the distributed moments of frictional forces 

between the walls of the borehole well and the string shall be added to the cutting 

torque. Then, the internal torque in the string becomes variable. And it turns out to be 

significantly variable at longitudinal and twisting vibrations of the string, when the 

bit approaches and terminates to contact with the rock at the borehole bottom, and the 

cutting process becomes intermittent. 
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The angular velocity value has a significant influence on the cutting moment 

(rotation moment) value. As the speed change causes non-linear alteration of the 

torque, self-excitation of torsional vibrations leading to emergency situations is 

possible in the drill string. 

An important factor affecting the quasi-static and dynamic behaviour of the 

drill string is its rotation. For strings with geometric imperfections and with mass 

imbalances, this leads to the appearance of centrifugal forces of inertia that 

significantly affect the stability of the drill string's straight shape. For bending 

vibration excitation, the rotation is the generating source of the gyroscopic (Coriolis) 

forces of inertia. These forces connect different types of movements (rotational and 

linear) and lead to the disturbance of the equiphase condition of vibrations. 

Very complex effects in drill strings are generated by external and internal 

drilling fluid flows. Their motion is first associated with additional friction forces that 

affect the drill string dynamics. Second, for DS bending vibrations, internal flows 

(similar to rotational motion) also generate centrifugal and gyroscopic forces of 

inertia destabilising the straight shape of the string and changing its own bending 

vibration spectrum. The features of these forces have been studied in detail in the 

pipelines theory. Their manifestation in the DS has not been sufficiently investigated. 

It should be noted that, in essence, all the above forces and effects can occur 

simultaneously with different combinations of their intensities and lead—depending 

on the DS length—to various unacceptable modes. 

 

 
(a) (b) (c) (d) 

Fig. 1-2 Vibration modes of the drill string structure bottom part:  

a = bit axial beating; b = transverse string beating; c = torsional self-excited 

vibrations of the bit and the string; d = string bottom whirling motion 

vert 

horiz 
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Therefore, when extracting fuels from great depths, the increased drilling 

efficiency of vertical wells using a rotary system is associated with the issue of 

identifying critical drill string operation modes and developing measures aimed at 

reducing their negative impact on the drilling process. Such phenomena negatively 

affecting the drilling process include: 

 helical buckling failure of the straight shape of the DS in its bottom part in the 

form of an extra-long compressed-stretched, twisted rotating rod, 

 excitation of DS longitudinal vibrations when exposed to various process 

disturbances (Fig. 1-2, a), 

 excitation of DS resonant bending vibrations due to geometric imperfections and 

imbalance of the whole system and its individual parts (Fig. 1-2, b), 

 parametric build-up of DS slip-stick vibrations caused by non-linear frictional 

forces between the cutting tool (bit) and the rock being processed (Fig. 1-2, c), 

 self-excitation of the bit whirling motion associated with its rolling around the 

system axis under the conditions of frictional or nonholonomic interaction of the 

bit with the well bottom surface (Fig. 1-2, d), 

 sidewall sticking (loss of mobility) in long curvilinear boreholes with geometrical 

imperfections (dead lock states) as a result of a sharp increase in the forces of 

contact and frictional interaction, 

 bifurcation buckling of the drill string in the curvilinear borehole channel with 

non-predictable zones of buckling localisation. 

These phenomena can lead to emergencies accompanied by breakage of the DS 

pipe, sticking of the cutter tool in the rock cutting zone and mashing of the DS 

sections into the rock, unscrewing of the DS pipes, vertical deviation of the borehole 

axis and its unplanned distortion, as well as the loss of stability of the borehole walls 

and their destruction. 

The drilling process parameters when critical states occur can be determined 

using mathematical model methods. However, attempts to conduct practical 

mathematical experiments on the prediction of the DS critical states are associated 

with significant computational challenges. Above all, this is because of the features 

of the relations between the DS geometric parameters. 

So, for example, as the diameter of a long string is equal to a 10-5 part of its 

length, theoretically it appears to have negligible bending and torsional stiffness. 

Therefore, mechanical models of strings or absolutely flexible cables are often used 

for their theoretical investigation. At the same time, to correctly describe the edge and 

local effects of the DS bending deformation, they shall be calculated based on the 

beam theory; therefore, using this theory for lengths of several kilometres leads to the 

appearance of a so-called ‘computational rigidity accompanied by a significant 
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deterioration in the convergence of computational algorithms. In mathematics, the 

equations modelling these effects are called singularly perturbed [1]. 

The second complication of the task of the DS quasi-static and dynamic 

behaviour modelling is associated with a complex combination of forces and 

influences that affect their quasi-statics and dynamics. Therefore, the problems under 

consideration are significantly multiparametric. In a general formulation, such 

problems are unsolvable. So, one of the most rational approaches to their solution is 

to separate the bending, longitudinal, and torsional movements of the string, consider 

them separately, and establish the most common patterns of the processes with the 

determination of their critical states. 

 

1.3. Mathematical aspects of deep-drilling string mechanic issues 

The issues of mathematical modelling of static and dynamic mechanical 

phenomena and critical states arising in deep-drilling strings are associated with 

considerable theoretical difficulties. Above all, these difficulties are due to the 

complex nature of the static and dynamic impacts on the drill string and the 

complexity of the mechanical processes generated by them. Second, the factor of the 

large drill string length, which leads to a virtual loss of its bending stiffness, has a 

significant (and determining) effect on the specifics of the processes, the formulation 

of tasks, and the methods for their solution. Therefore, resolving DS bending 

equation by integration methods on large integration segments turns out to be 

difficult to implement. Most noticeably, these difficulties occur while attempting to 

solve tasks concerning DS bifurcational buckling and free vibrations. So, the 

problems regarding DS bending stability are given in two formulations. 

The first statement is based on the Sturm-Liouville problem formulation on 

large length L  of the string, where the so-called ‘computational rigidity’ phenomenon 

is very noticeable. This is caused by the fact that the resolving functions of transverse 

displacements  xu ,  xv  of non-trivial solutions vary rapidly with large derivatives 

on a small segment adjacent to the DS bottom end and have small values with small 

derivatives on the remaining part. The extraordinary complexity in the study of the 

combined equations, determining functions  xu ,  xv , is due to the fact that the 

points of the onset of rapid changes in the resolving functions are not known 

beforehand. In this case, the effects of ‘computational rigidity’ are caused by the high 

degree of the differential equations and small factors implicitly presenting before the 

high order derivatives. The smallness of these coefficients appears when scaling 

integration length L  of the equilibrium and vibration equations to a unit segment. 

Then, the terms with the fourth derivatives shall be divided by 4L  and the role thereof 

in the overall balance of internal forces and moments is significantly reduced. As a 

result, the solution acquires areas of fast (such as boundary layer) and slow (regular) 
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changes. Should this solution be combined in the form of a superposition of particular 

solutions that increase and decrease exponentially, then on large integration intervals 

the first group solution values tend to infinity, the second group solutions go to zero, 

and the problem of constructing the required solutions of the initial equations 

becomes impractical even for the two-point boundary value problems. In 

mathematics, such systems are called singularly perturbed [1]. 

Due to the above difficulties, the issues of long DS bending stability and 

natural vibration study have been virtually unexplored. This book offers a technique 

for their solution based on the application of the initial parameters method in 

conjunction with the Godunov orthogonalisation procedure (for vertical wells) and 

the finite-difference procedure with very small step (for curvilinear boreholes). 

The formulation of the Sturm-Liouville problem used in the investigation of 

DS stability makes it possible to determine the beginning of the bifurcation bending 

process initiation. When it is implemented, the string protrudes and comes into 

contact with the borehole wall. At this stage, the second DS stability loss step is 

implemented, at which its supercritical state is examined, and the DS element 

equilibrium beyond the range of stability is studied for a given (usually, a regular 

spiral) deformation geometry. Problem formulations based on this approach are 

widely used in the world literature. They are based on the application of the flexible 

curved rods theory and are usually related to a number of simplifying assumptions on 

the nature of the supercritical DS behaviour, which substantially reduce the value of 

the results obtained on its basis.  

This paper considers the initial stage of DS bifurcation buckling (first 

formulation), for the analysis of which the corresponding Sturm-Liouville problems 

are formulated along the entire length of the DS in a vertical well. Particular attention 

is paid to the DS stability calculation, based on singularly perturbed equations using 

the so-called integrated design schemes, which leads to multipoint boundary-value 

problems for continuous strings (Chapter 2). It is shown that the loss of stability of 

strings usually occurs in the shape of spiral wavelets. 

Even greater computational difficulties are associated with the problems of DS 

free vibrations in vertical wells. In Chapter 3, dispersion analysis methods are used to 

establish that - in contrast to the vibrations of ordinary rods of infinite length that 

allow for solutions in the mode of standing plane waves - the vibrations of infinite 

rotating twisted tubes with fluid flows can only occur in the modes of progressive 

spiral waves (waves with circular or cylindrical polarisation). In addition, each 

progressive wave length corresponds to four phase-velocity values, different for the 

left and right spirals and depending on the wave direction. This circumstance 

indicates that free bending vibrations of a long (albeit finite) DS can only be 

implemented in spatial modes. 
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Due to the large length of the DSs, their torsion self-excited vibrations can also 

assume a special shape (Fig. 1-2, c). They are caused by a significantly non-linear 

dependence (with extremum points) of the bit rock cutting moment on its angular 

velocity and are generated through the cycle birth bifurcation. In mathematics, Henri 

Poincare was among the first to pay attention to the bifurcation nature of self-excited 

vibrations. A. Andronov considered the likelihood of these effects appearance in 

mechanical oscillatory systems with nonlinear friction. Later, Hopf provided a 

mathematical justification for this theory. Therefore, the effects of the build-up of 

vibrations in non-linear frictional systems were named the Poincare-Andronov-Hopf 

bifurcations. 

Applied mathematics and physics distinguish two types of self-excited 

vibrations - that is, Thomson and relaxation. Thomson self-excited vibrations proceed 

in modes close to harmonic ones; relaxation self-excited vibrations are described by 

periodic or quasi-periodic broken-line functions with almost discontinuous 

derivatives (velocities). As our analysis shows, torsional self-excited vibrations of 

drill strings can be classified as relaxational ones. In this regard, their modelling 

involves much greater computational difficulties. Chapter 4 offers three models of 

torsional self-excited vibrations in drill strings: wave, vibration model with 

distributed parameters, and vibration model with a single degree of freedom. The 

calculations showed that, although the wave model involves quantum nature 

solutions, in the integral sense the solutions virtually coincided in all cases. However, 

in the case of self-excited vibrations in extended inclined wells with significant 

friction forces, the model with distributed parameters turns out to be more accurate. 

Apparently, a special type of mechanical vibration called ‘whirling’ is only 

observed in drilling practice. When they build-up, the bit deviates from its balanced 

state and starts rolling—generally with slip and torsion—around the system axial line 

(Fig. 1-2, d). In these cases, the constraints imposed on the bit movement may be 

nonholonomic. As a result, the bit torsion can be stable and unstable, occurring in 

forward and backward rotation directions, or the bit centre can move along the most 

intricate trajectories. Nonholonomic mechanics and geometry methods should be 

applied to describe these types of vibrations (Chapter 5). 

Drilling curvilinear super long boreholes is associated with heavy technical and 

theoretical difficulties. When drilling, the string can be in rather severe conditions 

caused by contact and frictional forces. During drilling or tripping operations (for 

example, to change the bit), these forces reach very high values, especially in places 

of geometric irregularities of the well centreline in the shapes of dog legs and 

harmonic or spiral wavelets (Fig. 1-3). They are often the main cause of drilling 

technique disturbance and lead to the DS sticking. To model these effects, the theory 

of curvilinear flexible rods, differential geometry, and computational mathematic 
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methods (Chapter 6) shall be applied. Of particular interest is the matter of 

interfacing two well sections with different curvatures. This book shows that the use 

of the minimal curvature method, based on the soft string drag  torque model, for 

this operation is irrational, but it is necessary to match the well sections by 

introducing small sections in the shape of the Cornu spiral (clothoid) or a cubic 

parabola. To model this effect, it is advisable to use the stiff string drag  torque 

model developed by the authors. 

 
Fig. 1-3 Axial dog leg path (a), dog leg shape (b) 

 

Finally, in terms of mechanics and mathematics, the matter of the DS Eulerian 

(bifurcational) buckling in a curvilinear borehole channel is of great interest. Above 

all, it must be considered on the basis of the Sturm-Liouville problem formulation for 

a curved elastic rod. In this case, it is broken down into two separate problems. First, 

using the stiff string drag  torque model, axial force and torque functions shall be 

built, and then, using them as coefficients, eigen value equations for the string along 

the entire length shall be formulated. As the problem formulated is also singularly 

perturbed, the buckling modes implemented based on the solution have the shape of 

localised harmonic wavelets, whose locations are not known in advance. In this 

regard, to solve the problem, an integrated (global) approach should be applied, and 
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localised bulges should be searched for along the entire DS length. In addition, as the 

bulged string movements are limited by the borehole channel walls, the formulation 

of the problem requires consideration of non-linear constraints.  

We eliminate the constraint equations using differential geometry methods, the 

channel surface theory and using a special mobile trihedron. The solution of this 

problem makes it possible to find the critical loads for the string in a curvilinear 

borehole channel and indicate the location of its buckling zone (Fig. 1-4). 

 
 

Fig. 1-4 Diagram of drill string local buckling a curvilinear 

borehole channel 

 

Mathematical features of the formulated problems set forth in this subsection 

make them both rather time-consuming and appealing for a scientist. Some of these 

problems are solved in the papers of authors (see References [1–20] of Preface). 
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CHAPTER 2. STABILITY OF THE COMPRESSED-STRETCHED, 

TWISTED, ROTATING STRINGS WITH 

INTERNAL FLUIDS IN VERTICAL WELLS 

2.1 Basic relations of quasi-static equilibrium and vibrations of rotating, 

twisted drill strings with internal fluid flows 

The bifurcation buckling of a rotating DS is described by the equations of its 

neutral equilibrium in a perturbed state, which are composed accounting for the 

presence of internal longitudinal tensile and compression forces, torques, and forces 

of inertia due to rotation and motion of the internal fluid flow. 

Let us formulate a problem of the dynamic equilibrium of a DS in operating 

conditions, considering the effect of its quasi-static buckling as a special case of its 

motion. Let the drill string rotates at angular velocity  . To formulate the equations 

of its motion, let us introduce inertial coordinate system OXYZ  with the origin at the 

point of suspension and coordinate system Oxyz  with unit vectors kji ,,  associated 

with the string and rotating together with it (Fig. 1-1).  

In the initial undeformed state, axes OZ  and Oz  coincide with the longitudinal 

axis of the string. We will investigate the stability of the straight shape of the string in 

rotating coordinate system Oxyz . Assume that the elastic displacements of its 

elements along axes Ox  and Oy  are equal to u  and v , respectively, displacements 

along Oz  axis will be ignored. 

Consider that the drill string (Fig. 1-1) is an elastic tubular rod loaded by 

longitudinal force T  and torque zM , which rotates at constant angular velocity   

about its longitudinal axis. In the pipe channel, fluid with density f  flows at 

velocity V . We will investigate the rod vibration in rotating coordinate system Oxyz  

with axis Oz  directed along the longitudinal axis of the undeformed rod. 

To derive the dynamics equations, separate a pipe element dz  long and 

consider the equilibrium of internal moments relative Oy , Ox  axes system. For the 

considered combination of forces, these moments include [10, 11, 14, 17] the 

increments of elastic moments ydM , xdM ; moments dzQx , dzQy  of shear 

elastic forces xQ , yQ  with arms dz ; moments Tdu , Tdv  of internal axial force of 

prestress T  generated by increments du , dv  in interval dz  of transverse 

displacements u , v  along axes Ox , Oy ; bending moments  dzdvdM z , 

 dzdudM z  caused by the alteration of torque zM  orientation due to increments 

 dzdvd ,  dzdud  of angles of rotation dzdv , dzdu  in interval dz . 

Let us sum up these moments 
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The bending moments of elastic forces, being a part of this system, are 

calculated based on beam theory formulas 
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The equilibrium of forces applied to the element in the direction of axes Ox , 

Oy  is described using equations 

 0 dzqdQ xx , 0 dzqdQ yy , (2.3) 

where xq , yq  are the internal distributed forces directed along the 

corresponding axes. 

Let us change system (2.2), (2.3) to the following form: 
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With equations (2.2), system (2.4) may be simplified to the system of two 

bending equilibrium equations of a rod prestressed by longitudinal force T  and 

torque zM , 
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The right-hand sides of these equalities contain distributed forces xq , yq . 

Taking into account that the DS is not exposed to active forces, transverse load q  

based on d'Alembert's principle shall be taken to be equal to the forces of inertia 

caused by rod motion rq  and liquid flow fq , that is 

fr qqq  . 

For the rod element, distributed force of inertia rq  shall be calculated as 

follows: 
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rrr Faq  , 

where r  is the linear density of the rod; F  is its cross section area; ra  is the 

absolute acceleration of the element. 

In rotating coordinate system Oxyz , absolute acceleration ra  shall be 

calculated from the Coriolis formula [8, 21] 

c
r

r
r

e
rr aaaa  , 

where e
ra , r

ra , c
ra  are the bulk, relative, and Coriolis acceleration vectors, 

respectively. 

Bulk acceleration vector e
ra  shall be calculated from the formula  

 )( rωωa e
r , (2.6) 

where kjir zvu   is the radius-vector of a beam element in coordinate 

system Oxyz . 

Having performed the corresponding vector operations, we obtain 

 uae
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2
,  , vae
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2
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zra . (2.7) 

The components of the relative acceleration vector in the directions of the 

coordinate system Oxyz  axes are determined by equalities 
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Coriolis acceleration c
a  vector of the rod element shall be calculated from the 

formula 
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r
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r Vωa  2 , (2.9) 

where 
r

rV  is the relative velocity vector of the element with components 
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Accounting for equalities (2.9) and (2.10), we have 

 
dt

dv
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xr 2,  , 
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du
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yr 2,  , 0, c
zra . (2.11) 

By adding the obtained component values of accelerations (2.7), (2.8), (2.11), 

we obtain the components of the rod element rotational motion inertial force vector 
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The distributed force of inertia acting on the moving fluid element shall be 

calculated as follows: 

 ffff F aq  , (2.13) 

where f  is the linear density of the fluid; fF  is the cross section area of the 

pipe channel; fa  is the absolute acceleration of the fluid element. It consists of rotary 

acceleration together with the rod and acceleration due to self-motion in the pipe 

channel. 

The first component is calculated according to the pattern of formulas (2.6)–

(2.12). When calculating the second component, let us take into account that the 

element occupies a new position on the beam at each instant; therefore, its velocity, 

for example, along Ox  axis is determined not only by the velocity of the rod point, 

where the element is located, but also by the fact that the fluid moves to an adjacent 

point on the rod with a different z  coordinate. Then, we can write 
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Here, fV  is the fluid velocity along axis Oz . The dot is used to indicate the 

differentiation with respect to t ; the prime mark, with respect to z . 

The presentation of velocity dtdx  as (2.14) has an analog in field theory, 

where operator dtd  is called the substantial time derivative; t , the local 

derivative operator, and the expression    tzzx   is referred to the convective 

component of the field value alteration. 

By differentiating again both parts of expression (2.14) with respect to time, we 

can find the transverse component of the fluid element absolute acceleration 
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This formula can be compared with the Coriolis theorem formula for the 

absolute acceleration of a material point, where x  constitutes the relative 

acceleration; fVx2 , the Coriolis acceleration; 2
fVx  , the centrifugal acceleration; x , 

the angular rotation velocity of the rod element. 

Using our notations u , v  for displacements along axes Ox , Oy  and assuming 

that the fluid flows inside the tubular rod at constant speed fV , we obtain expressions 

for the accelerations due to its motion in the oscillating (not rotating) tube 
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Here, fu , fv  are the transverse displacements of the fluid element; ru , rv  are 

the transverse displacements of the rod element. 

As the fluid also participates in the rotational motion along with the tube, it is 

also exposed to distributed forces of form (2.12); the complete components of the 

distributed forces of inertia applied thereto are determined by the following relations: 
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 (2.17) 

Substituting the right-hand sides of these equalities into equation (2.5), we 

obtain the vibration equations of a rotating tubular rod prestressed by force T , torque 

zM  and containing fluid flows 
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