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PREFACE 
 
 
 
Multivariate analysis has tremendous applications in many areas of life 

and deals with several random variables simultaneously. The data which 
arise in practical life are multivariate in nature and hence require 
specialized techniques for decision making. Multivariate analyses are 
studied in two contexts, namely the multivariate distributions and 
multivariate techniques. Both of these contexts have their own 
requirements. The multivariate distributions are mainly studied 
theoretically whereas the multivariate techniques are studied using real 
data. 

In this we have given a detailed insight of multivariate distributions 
and multivariate techniques. The opening chapter of the book provides an 
introduction to multivariate distribution theory and popular multivariate 
measures. This chapter also provides a brief review of matrix algebra. One 
of the most popular multivariate distributions, the multivariate normal 
distribution, has been discussed in detail in chapter 2. Some other popular 
multivariate distributions have also been discussed in chapter 3. These 
include the Wishart distribution, multivariate Beta distribution and Wilk’s 
distribution. 

Chapter 4 and Chapter 5 contain two popular multivariate inferences, 
namely inferences about population mean vectors and population 
covariance matrices. The multivariate counterpart of students’ t statistics, 
the Hotelling’s T2 statistic has also been discussed in Chapter 4. The 
multivariate extension of popular Analysis of Variance (ANOVA), the 
multivariate ANOVA, has been given in Chapter 6. This chapter contains 
both one way and two way multivariate ANOVA and also provides 
methods to conduct inference about several mean vectors. 

Chapter 7 of the book is dedicated to another popular multivariate 
technique, the multivariate regression analysis. This chapter provides 
methods of estimation and hypotheses testing in case of multivariate 
regression analysis. The chapter also covers another popular multivariate 
technique, the Seemingly Unrelated Regression (SUR) models and 
contains methods of estimation and hypothesis testing for such a model. 

Chapter 8 and Chapter 9 are dedicated to multivariate techniques 
which do not have univariate counterpart. Chapter 8 is reserved for a 
detailed discussion of one of these techniques, the Canonical Correlation 
Analysis (CCA). Various versions of the technique have been discussed 
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including simple, partial, part and bi–partial canonical correlations. 
Methods of computing these correlations and variate are discussed in 
Chapter 8 alongside the inferences in these variants of canonical 
correlation. 

Chapter 9 of the book is dedicated to two popular dimension reduction 
techniques, the Principal Component Analysis (PCA) and Factor Analysis 
(FA). Methods of computing principal components and factors are 
discussed alongside the procedures to conduct inferences in these 
techniques. 

The book provides sufficient numerical examples to understand 
various concepts alongside R codes for these examples. 

Finally, we would like to thank our colleagues and students for critical 
comments throughout compilation of this book. Author one would like to 
thank his elder brother Prof. Dr. Tariq Bhatti for his continuous support 
and guidance in his academic and personal life. Authors one and two 
would also like to thank Department of Statistics, King Abdulaziz 
University for providing excellent facilities to compile this book, whereas 
the third author is thankful to National College of Business Administration 
& Economics, Lahore for providing a good atmosphere to work on this 
book.   

 
Muhammad Qaiser Shahbaz, Saman Hanif Shahbaz  

and Muhammad Hanif 
 



CHAPTER ONE 

INTRODUCTION 
 
 
 

1.1  Introduction 

The data always arise in scientific and social studies as an input to the 
study. The studies are conducted to achieve certain objectives. In some 
cases the objectives are such that the data is required on a single variable 
only, for example study related to life length of an electronic component. 
When the data is available on a single variable, the univariate analyses are 
very helpful. For example we can use the popular t-test to test the 
hypothesis that the average life length of an electric component is equal to 
2 years. In certain situations, data on several variables is available and is 
called the multivariate data. If these variables are mutually independent 
then each variable can be studied separately but this is a rare case. In most 
of the situations, the variables are dependent and hence can not be studied 
individually by using univariate analysis of each variable separately. In 
such situations we need techniques which help us in studying data on 
several variables and are called multivariate techniques. Further, the 
analysis of multivariate data is called multivariate analysis. In this book, 
we have discussed some popular multivariate techniques to analyze a 
multivariate data depending upon various objectives. We have discussed 
these techniques in two ways, namely the theory of the techniques and 
their applications on the real data. 

In some cases, the multivariate analyses are a straight extension of the 
univariate analyses and in some cases these analyses are stand alone 
analyses and do not have any univariate counterpart. We have discussed 
both type of techniques in this book. 

The multivariate analysis require certain specialized terms and 
notations which we will discuss in this chapter. These terms and notations 
are useful in understanding and applying the multivariate analysis. We 
start with a basic cornerstone of the multivariate analysis, known as the 
data matrix in the following. 
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1.2  The Data Matrix 

The data is a key input to statistical analysis. In univariate analysis, the 

data is collected from a set of respondents on a single variable and is usually 

presented in the form of a column vector. These vectors are then analyzed 

with respect to ceratian underlying objectives. In multivariate analysis the 

data is collected from a set of respondents on a set of variables and is usually 

collected in the form of a matrix. The matrix which contains the multivariate 

data is called the data matrix and has following description 

( )

11 12 1 1

21 22 2 2

1 2

1 2

;

j n

j n

p n
i i ij in

p p pj pn

x x x x

x x x x

x x x x

x x x x

×

 
 
 
 
 
 
 
 
 
 
 
  

X =

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

 

      1 2= .j n
  x x x x⋯ ⋯ ⋯ ⋯  

In above representation of the data matrix each column vector, jx , is 

collection of information of all variables for jth respondent and hence is jth 

observation in a multivariate data. The data matrix is a key sample 

information in Multivariate Analysis as this is needed to compute almost all 

of the multivariate measures. We will see this in the coming chapters. 

We know that in univariate analysis the study can be done by using the 

data and by using the distribution of underlying data. The study using data 

is usually considered a sample based study but often it happended that the 

study is conducted by using underlying probability distribution from where 

the data has been drawn. Such studies are conducted on the basis of some 

random variables. In multivariate analysis the concept is extended to the 

collection of several random variables. This collection of random variables 

is usually represented in the form of a vector is and called the random vector 

which is discussed below.  
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1.2.1  The Random Vector 

In univariate analysis, a random variable plays very important role as it 

provides information about probability distribution of some phenomenon. 

A random variable X always has some distribution function ( )F x , which 

provide all the information about that random variable and is known as 

univariate distribution. In univariate analysis, the sample is drawn from 

some univariate distribution and is studied based upon the underlying 

objectives. In multivariate analysis concept of a single random variable is 

extended to the case of several random variables having some joint 

distribution. In multivariate analysis we have a collection of p random 

variables, X1, X2, … Xp, which can be collected in the form of a column 

vector x  as 

1

2

.

p

X

X

X

 
 
 
 
 
 
 
 

x = ⋮

⋮

 

The above vector is called a random vector and its ith component 
iX  is a 

random variable. Every random vector has certain joint distribution function 

given as F(x1, x2, …, xp) or ( )F x . The distribution of a random vector is 

called a multivariate distribution. The random vector is key to all inferences 

in multivariate theory. The random vector is easily extended to the case of 

a random matrix and is a ( )p p×  matrix X such that all of its entries are 

are random variables. The distribution of a random matrix is called a matrix 

distribution. 

The multivariate distributions require certain notations which appear 

frequently. In the following we will discuss some notations which appear in 

multivariate analysis. 

1.3  Notations of Bivariate and Multivariate Distributions 

Some popular notations which appear in multivariate analysis are 

discussed in the following. 
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1.3.1  The Joint Distributions 

The univariate distribution is a probability distribution of a single 

random variable. The concept is easily extended to the case of two and 

several random variables. We will discuss both in the following. 

The joint density function of two continuous random variables 1X  and 

2X  is denoted by ( )1 2,f x x  so that ( )1 2, 0f x x ≥  and 

( )1 2 1 2, =1.f x x dx dx
∞ ∞

−∞ −∞∫ ∫  

The joint distribution function, in case of two random variables, is obtained 

as 

( ) ( )2 1

1 2 1 2 1 2, = ,
x x

F x x f u u du du
−∞ −∞

⋅∫ ∫  (1.3.1) 

The function ( )1 2,F x x  is a distribution function if it satisfies following 

conditions 

 ( ) ( ) ( )2 1, =1, , = 0, , = 0F F x F x+∞ +∞ −∞ −∞  

and for every 1 2<a a  and 1 2<b b  the following inequality holds 

( ) ( ) ( ) ( )2 2 1 1 1 2 2 1, , , , 0F a b F a b F a b F a b+ − − ≥ ⋅  
The joint distribution function is a udeful function which provides all the 

information about two random variables. The joint density function of two 

random variables is easily obtained from the joint distribution function by 

differentiation, that is  the joint density function of two random variables X1 

and X2 is obtained from the joint distribution function as 

( ) ( )
2

1 2 1 2

1 2

, = ,F x x f x x
x x

∂
⋅

∂ ∂
 (1.3.2) 

The joint density function is a useful function and provides basis to compute 

joint probabilities for two random variables. Specifically, the probability 

that the random variables X1 and X2 belong to some region E is computed as 

( ){ } ( )1 2 1 2 1 2, = ,
E

P X X E f x x dx dx∈ ∫ ∫ . (1.3.3) 

The joint distribution also provides basis for computation of joint moments 

of two random variables which as 

( ) ( )/ 1 2 1 2
, 1 2 1 2 1 2 1 2

1 2
= = ,

r r r r

r r E X X x x f x x dx dxµ
∞ ∞

−∞ −∞
⋅∫ ∫  (1.3.4) 
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The concept of joint distribution is easily extended to the case of several 

random variables and the density for several random variables X1, X2, …, Xp  

is denoted by ( )1 2, ,..., pf x x x  such that ( )1 2, ,..., 0pf x x x ≥  and 

( )1 1... ,..., ... = 1p pf x x dx dx
∞ ∞

−∞ −∞
⋅∫ ∫  

The joint density function of several random variables provide basis for the 

joint distribution function of p random variables which is given as 

( ) ( )1
1 1 1,..., = ... ,..., ...

x x
p

p p pF x x f u u du du
−∞ −∞∫ ∫ . (1.3.5) 

The joint distribution function of serveral random variables satisfies 

( ),..., =1F +∞ +∞  and ( )1 1 1,..., , , ,..., = 0i i pF x x x x− +−∞ . The joint 

density function of several random variables is directly obtained from the 

joint distribution function by differentiation as 

( ) ( )1 1

1

,..., = ,...,
...

p

p p

p

F x x f x x
x x

∂
⋅

∂ ∂
 (1.3.6) 

The joint density function of several random variables can be used to 

compute the joint probability for occuence of several random variables. 

Specifically, the probability that the random variables belong to some 

measurable space A  is computed, by using the joint density function, as 

( ){ } ( )1 1 1,..., = ,..., ... .p p p
A

P X X A f x x dx dx∈ ∫ ∫⋯  (1.3.7) 

The joint density function of several random variables is useful in 

computing the product moments for several random varibales. Specifically, 

the product moments are computed by using 

( ) ( )/ 1 1
,..., 1 1 1 2 1 2

1
= ... = ... ,..., ...

r rr rp p
r r p p

p
E X X x x f x x dx dxµ

∞ ∞

−∞ −∞∫ ∫⋯
. (1.3.8) 

The product moment, given in (1.3.8), is useful in computing moments for 

single random variables individually. 

1.3.2  The Marginal Distributions 

The joint distribution of two random variables provides information 

about joint behavior of two random variables. This joint distribution also 

provides basis to study each of the random variable individually by 

obtaining distributions of both random variables seperately. This is 

illustrated in the following. 
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Suppose that two random variables X1 and X2 has joint density function 

( )1 2, .f x x The marginal distributions of X1 and X2 are given as 

( ) ( ) ( ) ( )1 1 1 2 2 2 2 1 2 1= , and  = ,f x f x x dx f x f x x dx
∞ ∞

−∞ −∞
⋅∫ ∫   

 (1.3.9) 

The raw marginal moments for random variables X1 and X2 are given as 

( ) ( ) ( ) ( )1 1 2 2
1 1 1 1 1 2 2 2 2= and =
r r r r

E X x f x dx E X x f x dx
∞ ∞

−∞ −∞
⋅∫ ∫   

(1.3.10) 

The central moments for both of the random variables are defined as 

( ){ } ( ) ( )1 1
1 1 1 1 1 1 1= ;

r r
E X x f x dxµ µ

∞

−∞
− −∫  (1.3.11) 

and 

( ){ } ( ) ( )2 2
2 2 2 2 2 2=

r r
E X x f x dxµ µ

∞

−∞
− − ⋅∫  (1.3.12) 

The quantities ( ){ }21 1 11=E X µ σ−  and ( ){ }2

2 2 22=E X µ σ−  are 

called the variances of random variables X1 and X2. The covariance between 

X1 and X2 is defined as 

( )( ){ } ( )( ) ( )1 1 2 2 1 1 2 2 1 2 1 2= ,E X X x x f x x dx dxµ µ µ µ
∞ ∞

−∞ −∞
− − − − ⋅∫ ∫

       (1.3.13) 

The joint distribution of several random variables is useful in obtaining the 

marginal distributions of each of the random variable. In case of the joint 

distribution of several random variables, the marginal distribution for ith 

random variable is defined as: 

( ) ( )1 1 1 1= ... ,..., ... ... ;i i p i i pf x f x x dx dx dx dx
∞ ∞

− +−∞ −∞∫ ∫  (1.3.14) 

and the joint marginal distribution of a sub-set X1, X2, …, Xq  is obtained as 

( ) ( )1 1 1,..., = ... ,..., ...q p q pf x x f x x dx dx
∞ ∞

+−∞ −∞
⋅∫ ∫  (1.3.15) 

The raw and central moments for ith  random variable is obtained by using 

( ) ( )= ,
r r
i i

i i i i iE X x f x dx
∞

−∞∫  (1.3.16a) 

( ){ } ( ) ( )= ,
r r
i i

i i i i i i iE X x f x dxµ µ
∞

−∞
− −∫  (1.3.16b) 
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where ( )=i iE Xµ  is mean of ith variable and ( ){ }2
=ii i iE Xσ µ−  is 

the variance of Xi. The covariance between Xi and Xh is given as 

( )( ){ } ( )( ) ( )= ,i i h h i i h h i h i hE X X x x f x x dx dxµ µ µ µ
∞ ∞

−∞ −∞
− − − − ⋅∫ ∫

       (1.3.16c) 

The correlation coefficient between Xi and Xh  is defined as 

( )1/2
= /ih ih ii hhρ σ σ σ . The collection of means, variances and covariances 

plays very important role in multivariate analysis. 

1.3.3  The Conditional Distributions 

The joint distribution of two random variables can be used to obtain the 

distribution of one of the random variable under certain conditions on the 

other random variable. Such a distribution is called a conditional 

distribution and is defined below. 

Given the joint distribution, ( )1 2,f x x , of two random variables X1 and 

X2, the conditional distributions are defined as 

( ) ( )
( ) ( ) ( )

( )
1 2 1 2

1 2 2 2 1 1

2 2 1 1

, ,
= = and = =

f x x f x x
f x X x f x X x

f x f x
⋅  

(1.3.17) 

For simplicity we write ( ) ( )1 2 2 1 2= =f x X x f x x  and 

( ) ( )2 1 1 2 1= =f x X x f x x . The conditional probability of say 1X A∈  

given 2X B∈  is computed by using 

( ) ( )
( )

( )
( )
1 2 2 11 2

1 2

2 2 2 2

,
= = A B

B

f x x dx dxP X A X B
P X A X B

P X B f x dx

∈ ∩ ∈
∈ ∈ ⋅

∈
∫ ∫
∫

 

The conditional distributions can be used to compute the conditional 

moments of the random variables. Specifically the raw conditional moments 

are defined as 

( ) ( ) ( ) ( )1 1 2 2
1 2 1 1 2 1 2 1 2 2 1 2= and | = |
r r r r

E X x x f x x dx E X x x f x x dx
∞ ∞

−∞ −∞
⋅∫ ∫

      (1.3.18) 

Specifically ( )1 2 12
=E X x µ  and ( )2 1 21

=E X x µ  are called the 

conditional means of X1 given X2 = x2 and X2 given X1 = x1 respectively. The 
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conditional means are sometime called the regression functions. The 

conditional central moments are defined as 

( ){ } ( ) ( )1 1

1 2 1 1 2 11 2 1 2
= | ;

r r

E X x x f x x dxµ µ
∞

−∞
− −∫  (1.3.19) 

and  

( ){ } ( ) ( )2 2

2 1 2 2 1 22 1 2 1
= |

r r

E X x x f x x dxµ µ
∞

−∞
− − ⋅∫  (1.3.20) 

The quantities 

  ( ){ }2

1 2 11.21 2
=E X xµ σ−  and ( ){ }2 1 22.121

=E X xµ σ−   

are called the conditional or partial variances of X1 given X2 = x2 and X2 

given X1 = x1 respectively. 

 

When we have the joint distribution of several random variables as 

( )1,..., pf x x  then several conditional distributions can be defined. 

Specifically the conditional distribution of one set of variables say X1, X2, 

…, Xq  given the remaining set of variables is obtained as 

( ) ( )
( )

1

1 1

1

,...,
,..., ,..., =

,...,

p

q q p

q p

f x x
f x x x x

f x x
+

+

⋅  (1.3.21) 

The conditional means, conditional or partial variances and conditional or 

partial covariances can be computed from (1.3.19). The partial variances 

and covariances provide the basis for computation of the partial correlation 

coefficients. 

 

Example 1.1: The joint distribution of two random variables 
1X  and 

2X  is 

( ) 1 2
1 2 1 2, = ;0 < < < 2

2

x x
f x x x x  

    = 0  otherwise . 

Obtain the expression for (r,s)th joint moment. Obtain two marginal 

distributions and conditional distribution of X1 given X2 alongside the 

conditional mean and variance. 

 

Solution: The joint (r,s)th moment is given as 

( ) ( )/
, 1 2 1 2 1 2 1 2= = ,r s r s

r s E X X x x f x x dx dxµ
∞ ∞

−∞ −∞∫ ∫  
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( )( )

3
2

2
1 2 1 2 1 2

0 0

1 2
= =

2 2 4

r s
x

r sx x x x dx dx
r r s

+ +

⋅
+ + +∫ ∫  

The expressions for marginal moments are 

( ) ( )( ) ( )
3 2

/ /
,0 1 0, 2

2 2
= = and = =

2 4 4

r s
r s

r sE X E X
r r s

µ µ
+ +

⋅
+ + +

 

The means and variances of X1 and X2 are given as 

1 2

16 8
= ; = ;

15 5
µ µ 11 22

44 8
=  ; = ;

225 75
σ σ  

The covariance between X1 and X2 is 

( )( ){ }12 1 1 2 2

2
2

1 2 1 2 1 2
0 0

=

1 16 8 16
= =

2 15 5 225

x

E X X

x x x x dx dx

σ µ µ− −

  − − ⋅  
  ∫ ∫

 

The marginal distributions of X1 and X2 are 

( ) ( )2
3

1 1 1 2 2 1 1 1
1

1 1
= = 4  ; 0 < < 2

2 4x
f x x x dx x x x−∫  

( )
3

2 2
2 2 1 2 1 2

0

1
= =  ; 0 < < 2

2 4

x x
f x x x dx x∫  

Finally the conditional distribution of X1 given X2 = x2 is 

( ) 1
1 2 1 22

2

2
=  ; 0 < <

x
f x x x x

x
 

The rth conditional moment is 

( ) 2 1 2
1 2 1 120

2

2 2
= = ;

2

r
x

r r x x
E X x x dx

rx +∫  

Consequently, the conditional mean and variance of X1 given X2 = x2 are 
2

2 2
11.21 2

2
= and =

3 18

x x
µ σ ⋅  

 

Example 1.2: The joint density function of three random variables is 

( ) ( )1 2 3 1 2 3 1 2 3

4
, , =  ; 0 < < < < 3

81
f x x x x x x x x x+ +  

Obtain the conditional distribution of (X1, X2) given X3 = x3. Also obtain the 

partial correlation coefficient between (X1, X2) given X3 = x3. 

 

Solution: We first obtain the marginal distribution of X3 as 
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( ) ( ) 33 2
3 3 1 2 3 1 2 3 3

0 0

4 4
= =  ; 0 < < 3

81 81

x x

f x x x x dx dx x x+ +∫ ∫  

The conditional distribution of (X1, X2) given X3 = x3 is therefore 

( ) ( )
( )

1 2 3 1 2 3
1 2 3 1 2 33

3 3 3

, ,
, = =  ; 0 < < <

f x x x x x x
f x x x x x x

f x x

+ +
 

The (r,s)th conditional moment is 

( )

( ){ }
( )( )( )( )

3 2 1 2 3
1 2 3 1 2 1 230 0

3

3

=

3 4 5 12
=

3 2 2 1

x x
r s r s

r s

x x x
E X X x x x dx dx

x

x r r s s

r s r s r r

+

+ +

+ + + +
⋅

+ + + + + +

∫ ∫
 

The conditional means of X1 given X3 = x3 and X2 given X3 = x3 are 

( ) ( )3 3
1 3 2 313 2 3

3 17
= = and = =

8 24

x x
E X x E X xµ µ ⋅  

The conditional or partial variances of X1 given X3 = x3 and X2 given X3 = x3 

are 

( ) ( ){ }
2

2
2 3

11.3 1 3 1 3

19
= = ;

320

x
E X x E X xσ −  

( ) ( ){ }
2

2
2 3

22.3 2 3 2 3

139
= =

2880

x
E X x E X xσ − ⋅  

The conditional or partial covariance between X1 and X2 given X3 = x3 is 

( ) ( ){ } ( ){ }
2
3

12.3 1 2 3 1 3 2 3

7
= =

24

x
E X X x E X x E X xσ − ⋅  

Finally, the partial correlation coefficient between X1 and X2 given X3 = x3 

is 

12.3
12.3

11.2 22.3

280
= =

2641

σ
ρ

σ σ
⋅  

 

The multivariate theory is based upon the vectors and matrices and the 

study of matrix algebra is essentail for better understanding of the 

multivariate analyses. In the following we will, briefly, discuss some matrix 

algebra. 

  



Introduction 

 

11

1.4  Some Matrix Algebra 

Suppose we have a square (p x p) matrix A and a (p x 1) vector x  which 

represent a point in p-dimensional Euclidean space Vp. In the following we 

will give some useful properties of vectors and matrices. 

1.4.1  Vectors and their Properties 

Some properties of vectors are listed below. 

• The collection of all the vectors in Vp which are closed under addition 

and multiplication is called a vector space; that is if x∈Vp  and y∈Vp  

then x + y∈Vp and if α is a scaler and x ∈ Vp  then αx∈Vp  . 

• A subset S of Vp is called vector subspace if S is itself a vector space. 

• The set of vectors { }1 2, ,..., kx x x  are linearly dependent if there exist 

set of real numbers α1, α2, …, αk; not all equal to zero; such that 

=1

= 0,
k

i i

i

α∑ x  (1.4.1) 

otherwise the set of vectors are linearly independent. 

• If x and y are two vectors of same order then the quantity 

/

1
;

k

i ii
x y

=∑x y =  (1.4.2) 

is called inner product of the vectors. 

• The quantity ( )1/ 2
/

x x  is called norm of the vector x and is denoted 

as .x  

• The Euclidean distance between two vectors is 

 ( ) ( )
1/2

/
= . − − −
 

x y x y x y  

• The cosine of angle between two vectors is 
/

cos = ; 0 180 .θ θ≤ ≤
x y

x y

�
 (1.4.3) 

• Two vectors x and y are orthogonal if their inner product is zero. In 

this case the cosine of angle between x and y is zero. 

• The Minkowiski’s norm or p-norm of an ( )1n×  vector x is given as 
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1/

=1

=

p
n

p

ip
i

x
 

⋅ 
 
∑x  (1.4.4) 

1.4.2  Matrices and Their Properties 

Some properties of matrices are given below. 

• For two matrices A and B of same order the sum is defined as 

 C = A + B = [aij + bij] 

• Product of a matrix A with a scaler α is defined as α A = [αaij]  

• The product of two matrices 
n d×A  and 

d m×B  is given as 

 
=1

= for = .
d

n m ij ij ik kj

k

c c a b×    ∑C AB =  

•  The trace of a (p x p)  matrix A is sum of its diagonal elements; that 

is 

 ( )
1

= .
p

iii
tr a

=∑A  

•  The squared matrix norm is given as 

( ) ( )2 2 / /

=1 =1

= = = ;
p p

ij

i j

a tr tr∑∑A AA A A  (1.4.5) 

and Euclidean matrix norm is simply ||A||. 

 

• The distance between two matrices A and B is 

( )( ) ( )22 /

,

= = ij ij

i j

tr a b − − − − ⋅
  ∑A B A B A B  (1.4.6) 

• The vec operator for an (n x p)   matrix 

1 2 p
  A = a a a⋯ ⋯  stacks the columns of A on each 

other so that to form a new (np x 1)  vector a  given as 

 ( )

1

2

=

p

vec

 
 
 
  ⋅
 
 
 
 

a

a

a = A

a

⋮

⋮

 

It is important to note that ( ) 2/ =tr A A a . 
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•  The vech operator on a symmetric (p x p)   matrix A stacks diagonal 

below elements of the matrix. It has an order of ( ){ }( )1 / 2 1 .p p + ×  

•  The Direct or Kronecker product of two matrices 
n m×A  and p q×B  is 

an ( )np nq×  matrix given as 

11 12 1

21 22 2

1 2

.

m

m

n n nm

a a a

a a a

a a a

 
 
 
 ⊗
 
 
  

B B B

B B B

A B =

B B B

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

 (1.4.7) 

The Kronecker product always exist whether matrices are 

conformable for simple multiplication or not. 

• The Hadamard product of two matrices of same order is defined as 

 .ij ija b  A B =⊙  

• The Direct sum of two matrices A and B is: 

 .
 

⊕  
 

A 0
A B =

0 B
 

• Some trace properties associated with direct sum and direct 

products are given below 

(a) ( ) ( ) ( )=tr tr tr⊗A B A B  

(b) ( ) ( )/ /= n mtr AB 1 A B 1⊙  

(c) ( ){ } ( ){ }/ / / /=tr trA B C A B C⊙ ⊙  

(d) ( )=1 =1
=

kk
i i ii

tr tr ⊕  ∑A A  

(e) ( ) ( ){ } ( ){ }// =tr vec vecA B A B  

(f) ( ) ( )( ) ( )/=tr vec vec⊗ABC A I B C   

•  The rank of a square matrix A is equal to linearly independent rows 

in that matrix. In this case it is called row rank. Number of linearly 

independent columns of A is called column rank. 

•  For a matrix A we define its inverse as a matrix A-1 such that 
1 1

=
− −

AA A A = I ; where I is identity matrix. Matrix inverse has 

following properties 
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(a) ( ) 1 1 1− − −=AB B A  

(b) ( ) 1 1 1=
− − −⊗ ⊗A B A B  

(c) ( ) ( )1 1
=

− −
+ +I A A A I  

(d) ( ) ( ) ( ) 11 11 1 1 1 1 1 1
−− −− − − − − − −+ − + − +A B = A A B A B = A A A B A   

so that ( ) ( ) 11 1 1 .
−− − −+ +B A B A = A B  

(e) ( ) ( )1 1
1 1 1=

− −− − −+ +A B I AB  

(f) For partitioned matrix 

 
11 12 11 121

21 22 21 22

, = ;−   
   
   

A A B B
A = A

A A B B
 

where 

 ( ) 1
1

11 11 12 22 21=
−−−B A A A A  

 
1

12 11 12 22
−−B = B B A  

 
1

21 22 21 11
−B = A A B  

 
1 1 1

22 22 22 21 11 12 22
− − −+B = A A A B A A  

provided all inverses exist.  

•  Determinant of a (p × p) matrix is a scaler quantity given as 

( ) 1 2
1 2

= 1 ...
k

i i pi
p

a a a−∑A  (1.4.8) 

where sum is taken over all p! permutations of the elements of A. 

•  The ( ),i j th Cofactor of matrix A is 

 ( )= 1 ;
i j

ij ijC
+

− M  

where Mij is a submatrix obtained from A by deleting i th row and 

j th column. In term of cofactors the determinant of A is given as 

= = .ij ij ij ijj i
a C a C∑ ∑A  

•  Some properties of determinant are 

(a) 
/=A A  

(b) =AB BA  
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(c) For an orthogonal matrix = 1.±A  

(d) If 
2

A = A  then = 0A  or 1.  

(e) For p p×A  and q q×B ; =
p q

⊗A B A B  

(f) For partitioned matrix 

 
11 12

21 22

 
 
 

A A
A =

A A
 

 
1

11 22 21 11 12= −−A A A A A A  

 
1

22 11 12 22 21= ;−−A A A A A  

provided 11A  and 22A  are invertible. 

1.4.3  Eigenvalues and Eigenvectors 

Let A be a ( )p p×  matrix. The quantities λ’s are called eigen values 

or characteristic roots of the matrix A if A – λI is singular. Hence the 

determinant of A – λI is zero that is 

= 0,λ−A I  (1.4.9) 

and is a p degree polynomial in λ’s with eigen values λ1, λ2, …, λp. 

The vector pi satisfying 

( ) = 0 for = 1,2,..., ,i i i pλ−A I p  (1.4.10) 

is called eigen vector associated with iλ . 

The eignevalues and eigenvectors provide the basis for new matrices 

which are useful in studying further properties in certain multivariate cases. 

A popular technique is called spectral decomposition which has following 

properties 

/ / / /= and = = ;
'

i i i i i

i i

λ∑ ∑P AP = Λ;AP = PΛ;PP = I p p A PΛP p p  

(1.4.11) 

where Λ  is a diagonal matrix with diagonal elements 1 2 pλ λ λ≥ ≥ ⋅⋅ ⋅ ≥

and P is a ( )p p×  matrix with i th column pi. Rational powers of any 

matrices can be defined by using spectral decomposition. Specifically the 

square root matrix for a matrix A is defined as 
1/2 1/2

=A PΛ . Similarly 



Chapter One 

 

16

square root matrix for inverse of a matrix is defined as 
1/2 1/2

=
− −

A PΛ . In 

general any rational power of matrix A is defined as 
/ /

=
r s r s

A PΛ . 

 

The generalized eignevalues and eigenvectors can also be defined as below. 

Suppose we have ( )p p×  matrices A  and .B The generalized 

eigenvalues of A in metric of B are given by solution of polynomial equation 

= 0.δ−A B  (1.4.12) 

The generalized eigenvectors A in metric of B are non-trivial solution of: 

( ) = 0.i iδ−A B q  (1.4.13) 

If we define matrix Q with ith column iq  and ∆  as diagonal matrix with 

diagonal element iδ ; then the generalized spectral decomposition has 

following properties 
/ /and∆ = Q AQ Q BQ = I;

 ( ) ( )1 1
/ 1 / 1= and = ,
− −− −A Q ∆Q Q Q B  

/ /= and = .i i i i i

i i

δ∑ ∑A q q B q q  

The generalized eigenvalues and eigenvectors are useful in multivariate 

statistical models. 

 

Example 1.3: For the matrix 

1 1 0

= 1 5 2 ,

0 2 1

 
 − 
 − 

A  

Obtain eigenvalues and eigenvectors. 

 

Solution: The characteristic equation is 

= 0λ−A I  

or 
3 27 6 = 0λ λ λ− +  

Hence the eigenvalues are λ1 = 6, λ2 = 1 and λ3 = 0. The eigenvectors are 

1 2 3

1 2 1

= 5 ; = 0 and = 1 .

2 1 2

− −     
     −     
          

p p p  
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The properties given in spectral decomposition can be easily checked. 

1.5  Multivariate Descriptive Measures 

The descriptive measures are useful to study certain properties of the 

variables, for example the mean of a variable provides a measure of central 

tendency of the data. The variance provides a measure of dispersion of a 

univariate data from its mean. In multivariate analysis the data on several 

variables is available and that data can be used to obtain the descriptive 

measures for each variable individually and in pairs and are called 

multivariate descriptive measures. We will discuss these multivariate 

descriptive measures in the following. 

1.5.1  The Mean Vector 

The mean vector for a random vector x is a (p × 1) vector who’s ith entry 

is expected value of ith random variable Xi. It is denoted by µ . More 

specifically 

( )
( )

( )

( )

1 1

2 2

2

= =

p

E X

E X

E

E X

µ
µ

µ

µ

  
  
  
   ⋅
  
  
  

   

= x⋮ ⋮

⋮ ⋮

 

The sample mean vector for a (p × n)  data matrix is computed as 

=1

1 1
,

n

jjn n
∑x = X1 = x  (1.5.1) 

where 1  is an (n × 1)  vector of 1’s and jx  is jth column of X. 

1.5.2  The Covariance Matrix 

In univariate analysis, the variance provides information about 

variability in the data from the mean. In case of a univariate distribution the 

variance provide information about variability of the random variable from 

its expected value. In multivariate analysis we deal with several random 

variables simultaneously or we have random sample on several variables 

and we can compute variance of each variable. Additionally, we can 

compute the covariance for all possible pairs of the variables. These 
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variances and covariances can be collected in the form of a matrix. This 

matrix is known as the covariance matrix. In case of the joint distribution 

of p random variables, the covariance matrix is defined as 

[ ]

11 12 1 1

21 22 2 2

1 2

1 2

= .

h p

h p

ih
i i ih ip

p p ph pp

σ σ σ σ
σ σ σ σ

σ
σ σ σ σ

σ σ σ σ

 
 
 
 
 
 
 
 
 
 
 
  

Σ =

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯ ⋯ ⋯

 

The covariance matrix for the sample looks like Σ  but the population 

variances and covariances are replaced with their sample counterparts. The 

covariance matrix shows variability in the multivariate data. The covariance 

matrix for a random vector is obtained as 

( )( ){ }/ ,E − −Σ = x µ x µ  (1.5.2) 

where 
/

x  is transpose of the vector x . The covariance matrix is a 

symmetric positive definite matrix such that > 0Σ . The quantity ( )tr Σ  

is called total variance and Σ  is called the generalized variance. 

The sample covariance matrix is computed as 

( )/ /1
=

1
n

n
−

−
S XX xx  

 ( )( ) ( )/ / /

=1 =1

1 1
= = .

1 1

n n

j j j jj j
n

n n
− − −

− −∑ ∑x x x x x x xx  

(1.5.3) 

The sample mean vector and sample covariance matrix are unbiased 

estimators of their population counterparts. 

1.5.3  The Correlation Matrix 

The correlation coefficient is an important measure to study the 

streangth of interdependence between two random variables or between 

variables of a random sample drawn from a bivariate population. In 

multivariate analysis we have information on several random variables and 
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hence the correlation coefficients can be computed for all possible pairs. 

These correlation coefficients can be collected in the form of a (p × p)  

matrix ρ  which is given as 

12 1 1

21 2 2

1 2

1 2

1

1

= ;
1

1

i p

i p

ij
i i ip

p p pi

ρ ρ ρ
ρ ρ ρ

ρ
ρ ρ ρ

ρ ρ ρ

 
 
 
 

    
 
 
 
  

ρ =

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋯ ⋮ ⋯ ⋮

⋯ ⋯

⋮ ⋮ ⋯ ⋮ ⋯ ⋮

⋯ ⋯

 

and is called the population correlation matrix. The correlation matrix can 

be computed from the covariance matrix by using  
1/2 1/2− −ρ = V ΣV ; (1.5.4) 

where [ ]= iidiag σV . The sample counterpart of the correlation matrix 

can be analogously defined. The correlation matrix has the property that 
2

0 1≤ ≤ρ  and if 
2

ρ  is 1 then this indicates that the variables are 

completely uncorrelated. The sample correlation matrix can be defined 

analogously. 

1.5.4  Generating Functions for Random Vectors and Matrices 

The generating functions are useful in studying the properties of 

distribution of a random variable. The moment generating function is one 

of the generating function which is helpful in obtaining moments of a 

random variable. The moment generating function for multivariate case is 

an extension of univariate moment generating function and can be used to 

obtain the moments of a random vector. The moment generating function 

for a random vector is defined below. 

Suppose we have a random vector x with joint density function 

( )1 2, ,..., pf x x x  or compactly ( )f x  then the moment generating function 

for random vector x is defined as 

( ) ( ) ( )
/ /

1= = ,pM E e e f dx dx
∞ ∞

−∞ −∞∫ ∫t x t x
x t x⋯ ⋯  (1.5.5) 

Provided that it exist. The moment generating function is useful in obtaining 

moments of a random vector. 
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Another important generating function for a random vector is the 

characteristic function which is defined as  

( ) ( ) ( )
/ /

1= = ,i i
pE e e f dx dxφ

∞ ∞

−∞ −∞∫ ∫t x t x
x t x⋯ ⋯  (1.5.6) 

and this function always exists. The characteristic function can be used to 

obtain the density function by using the inversion theorem. The 

characteristic function is a unique function as compared with the moment 

generating function. 

The cumulants are useful measures to describe the properties of a 

random vacriable. The cumulant generating function for a random vector 

provides basis to study its properties. The cumulant generating function for 

a random vector is 

( ) ( ){ }= ln .ψ φx xt t  (1.5.7) 

The moment generating function can be extended to the case of random 

matrices. The moment generating function of a random matrix X is defined 

as 

( ) ( ){ } { }/

= exp = .
vec vec

M E tr E e 
 

/ T X
X T T X  (1.5.8) 

The characteristic function for a random matrix is similarly defined. 

The moment generating function defined above is used to obtain the raw 

moments of a random variable. The centeral moments are more useful as 

compared with the raw moments in studying the properties of a distribution. 

Although, the raw moments can be used to compute the central moments 

but it is sometime more convenient to compute the central moments directly. 

The central moments of a distribution are easily computed by using the 

central moment generating function, which for a random vector x is defined 

as 

( ) ( ){ } ( ) ( )
/ /

1= = pM E e e f dx dx
µ µ

µ

∞ ∞− −
− −∞ −∞∫ ∫

t x t x

x t x⋯ ⋯  

 ( ) ( )
/ / /

1= = .pe e f dx dx e Mµ µ∞ ∞− −

−∞ −∞∫ ∫t t x t
xx t⋯ ⋯   

(1.5.9) 

In similar way the central moment generating function for a random matrix 

X is given as 

( ) ( ) ( ){ } ( )/= exp .
E

M tr E M−
 
  XX X

T T X T  (1.5.10) 

The moment generating function and characteristic function are 

useful in obtaining moments of random vectors and random matrices. 

 


