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PREFACE 
 
 
 
Japan has an unfortunate history of radiation exposures, such as the A-

bomb disaster, fishermen's exposures at the Marshal atolls, the JCO 
criticality accident at Tokai village, and the unprecedented nuclear power 
plant accident at the Fukushima Daiichi Nuclear Power Plant, where three 
nuclear reactors consecutively lost their cooling capacity after the 
earthquake and tsunami on March 11, 2011. In Fukushima, one hundred 
forty thousand residents were forced to leave their homes, suffered from 
anxiety over possible late radiation effects, and also suffered from the loss 
of their economic communities and their social communities. There are 
presently plans for more than 50 reactors to be operated in Japan. 
Worldwide, there are more than 10,000 nuclear weapons, mainly in the 
United States and Russia, and these present potential sources of harm to 
mankind. On the other hand, medical diagnoses using radiation are made 
in 3.65 billion cases each year around the world, and these medical 
exposures have become a major source of radiation exposures. 

The earth was created through the accumulation of material from 
nuclear reactions that occurred in a corner of the galaxy. Although this 
nuclear event was about 4.8 billion years ago, radioactive substances from 
that event are still sources of ground radiation and radon gas in the earth. 
In addition, recent observations of neutrinos from deep in the earth 
confirmed that those radioactive substances supply the enormous heat 
(decay heat) in the earth, in addition to the gravitational energy present at 
the birth of the earth. This heat moves the continental plates which then 
causes earthquakes and tsunami, and such events eventually led to 
disasters such as the accident at the Fukushima Daiichi Nuclear Power 
Plant. Even today, people are surrounded by natural radiation sources and 
artificial radiation sources, and it seems like a good idea that they should 
be able to have a minimum of knowledge about the nature of radiation, its 
deleterious effects on health, and how we can protect ourselves from 
radiation. 

The reason I decided to write this book was the occurrence of the 
accident at the Fukushima Daiichi Nuclear Power Plant. In lectures given 
after the accident, I realized that there should be some information or 
sources that covered the subject of radiation biology, and which could be 
shared by lecturers, doctors, researchers, students, administrators, and 
citizens who were concerned about the use and presence of radiation. For 
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that reason, this book was intended to present the current state of 
knowledge about radiation for non-experts, and also to describe the latest 
scientific findings in the fields of radiation molecular biology and 
medicine. Moreover, because of the initial purpose of this publication, this 
book also focuses on past nuclear disasters and radiation currently present 
in our environment. As a result, the contents of the book cover a vast 
range of subjects going from Chapter 1 (the physics of radiation) to the 
end of Chapter 15 (nuclear disarmament). These chapters are grouped into 
five parts, and readers can choose to read the individual sections which 
they find are of interest to them. Part I describes the “Physical Properties 
of Radiation” for people whose interests focus on the measurement of 
radiation, nuclear power plants etc. Similarly, Part II “Radiation and 
Biology”, Part III “Radiation and Medicine”, and Part IV “Life and 
Radiation” should be of interest to those who want to learn about the 
deleterious effects of radiation, the mechanisms involved in the medical 
use of radiation, and the life sciences and radiation, respectively. If one is 
interested in past nuclear disasters and radiation protection, Part V 
“Nuclear Disasters and Radiation Protection” should be of interest. In 
order to help understand the contents of the book, there are “Commentary” 
sections related to the material in some of the chapters. In addition, 
Appendices and “Questions and Answers”are also provided in the book.  

This book was published with the help of Lonnie Kapp, who edited the 
English version of the Japanese book, “Contemporary Radiobiology” 
(Kyoto University Academic Press, 2017). I also thank Tetsuya Ono (in 
the Environmental Science and Technology Research Institute), Akira 
Endo (Hiroshima University), Hiroshi Fukuda and Akihiro Kato (Tohoku 
Medical and Pharmaceutical University), Shizuko Kakinuma (National 
Institute of Radiological Sciences), Hiroshi Tauchi (Ibaraki University), 
Sachiko Hamajima (Tokyo Nuclear Services Co., Ltd.), Masayoshi 
Yamamoto (Kanazawa University), Masao Yoshimura and Junya 
Kobayashi (Kyoto University), Kazuo Ogai (the city office in Minami-
Soma City), and also would like to thank Ms. Nagano at Kyoto University 
Academic Press, who helped prepare the Japanese version. 

 
March 11, 2019 

Radiation Biology Center, Kyoto University 
 





PART I  

PHYSICAL PROPERTIES  OF RADIATION 

 

 

 



CHAPTER ONE 

THE NATURE OF RADIATION 
 
 
 
 
 
 
 
 
 
 
 
 

1.1 The discovery of radiation 

1.1.1 Radiation and radioactivity 

Radiation is present in our daily lives as part of our natural environment, 
and is also used for medical and industrial purposes. However, it was only 
relatively recently that society began to understand and use radiation and, 
as happend with other scientific findings, this discovery was an accidental 
event. Wilhelm C. Roentgen, a professor of physics at the University of 
Wuerzburg (Fig. 1.1a) studied electron beams generated by a Crookes tube 
with a positive pole (anode) and a negative pole (cathode) (see Chapter 
9.1.2).  When a high voltage was applied across these poles, Roentgen 
noticed that fluorescent material located in his lab at a distance from the 
Crookes tube emitted light or fluorescence, even after the material was 
covered with black paper. This was due to a new type of radiation which 
was transmitted through the glass of the Crookes tube. Roentgen first 
reported this in the Journal of the Wuerzburg Physical Medical Society. 
The article was "Über eine neue art von strahlen" or “Describing a new 
type of radiation” and was dated December 28, 1895. 

This new radiation was called "X-rays" using the symbol X which 
represented unknown quantities in mathematics. The paper was 
accompanied by an X-ray photograph of his wife's hand, suggesting that 

There are different types of radiation: electromagnetic waves such as 
X-rays and γ-rays, and particle beams such as α-rays and β-rays. All of 
these different types of radiation can collide or interact with matter and 
cause ionization and light emission. Therefore, the quantity of radiation 
can be easily measured with detection instruments capable of 
measuring ionization and light emission events. Here, we describe the 
basic properties of radiation, such as ionization, and describe the 
radiation units used in observing biological effects, and the associated 
measurement methods. 
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he was thinking about possible medical applications almost immediately 
after his discovery. Indeed, the usefulness of X-rays in medicine was 
discussed at a meeting of the Berlin Internal Medicine Society early in the 
New Year of 1896, and on January 23, Roentgen himself gave a lecture at 
the Wuerzburg Physical Medical Society. In his lecture, he discussed the 
ability of X-rays to travel through the human body, and also circulated X-
ray photographs of a participant’s hand (Fig. 1.1b). This was an exciting 
discovery, and the discovery of this new type of radiation earned 
Roentgen the honor of receiving the First Nobel Prize in Physics. 

 
  (a) Prof. Roentgen                           (b) X-ray photograph 

 
 
Figure 1.1 Photo of Prof. Roentgen and an X-ray photograph. 
(a) A Photo of Prof. Wilhelm Conrad Roentgen at the University of Wurzburg, 
Germany (Courtesy of U.S. National Library of Medicine). (b) an X-ray 
photograph of a participant's hand circulated in Roentgen’s lecture on January 23, 
1896. (Courtesy of the University of Wurzburg). 

 
The following year, in 1896, Antoine H. Becquerel (France) reported 

that radiation from natural uranium ore has properties similar to X-rays. 
This new type of radiation was called Becquerel rays and was not initially 
identified as being X-rays (Commentary 1). As a result of this discovery, 
Becquerel’s name was chosen to represent a unit of radioactivity (see 
Chapter 1.1.2).  

Eventually it was discovered that Becquerel’s rays were not a single 
type of radiation. Based on differing abilities to penetrate different 
substances, Earnest Rutherford deduced that there were more than two 
types of radiation present in Becquerel rays, and in 1898 he named them 
α-rays and β-rays, respectively (Fig. 1.2). Two years later, another 
researcher found a third type of radiation with a high penetration ability 
and named this third form of radiation γ-rays following advice from 

(a) レントゲン教授 (b) X 線発見当時の写真
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Rutherford. These α-rays, β-rays and γ-rays are generated through the 
nuclear decay of radioactive elements (see Chapter 2), and this is a 
different mechanism from that which generates X-rays.		

	

 
 
Figure 1.2 Several types of radiation and their penetrating abilities. 
Although particle beams, including α-rays and β-rays, can be completely shielded 
by paper or a thin aluminum foil, a thick lead block is necessary to provide a shield 
against  γ-rays or electromagnetic waves. 
 
 
 
Henri Poincaré is a French mathematician and physicist who lived in the latter part of 
the 19th century. The Poincaré conjecture is famous for being the Millennium Prize 
Problem which was a major mathematical problem in topology. There was a prize of 
$1,000,000 for someone who could solve the problem. It was solved by the Russian 
mathematician, Grigori Perelman, in 2002 after 100 years, but he received a great 
deal of attention when he refused the prize money. However, from Poincaré’s 
standpoint of emphasizing intuition, he made other predictions besides his famous 
conjecture. 

Another Poincaré prediction was made immediately after a report by Roentgen. 
At the Institute of France, Poincaré speculated on the possibility that substances 
which were able to emit fluorescent light also had the ability to emit X-rays along 
with having fluorescence properties. Bequerel was inspired by this lecture and tried 
to detect X-rays in fluorescent uranium ore in sunlight. However, he discovered that 
radiation was emitted in the absence of sunlight. Since this was only two months 
after the discovery of X-rays, people speculated that there was a fierce research 
competition between these two people concerning the discovery of radiation. The 
fact is that the discovery of Becquerel rays was triggered by Poincaré's intuition 
after a report by Roentgen. 

Paper Lead plate

Proton Neutron

Aluminium plate

Electromagnetic waves

Electron

Helium nuclues

α-rays

β-rays

γ-rays, X-rays

Commentary 1. Another Poincaré conjecture	
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Mrs. Marie Curie (France) was interested in the new radiation 
discovered by Becquerel, and tried to separate and refine pitchblende ore, 
which emits radiation similar to that emitted from uranium ore, and 
reported in 1898 that there were two types of radioactive elements, 
Polonium and Radium. Polonium was named after Marie Curie’s native 
country Poland, and Radium is the Latin word for radiation. Mrs. Curie 
also succeeded in developing a method to quantitatively measure the 
amount of ionization produced by radiation by using a quartz plate 
piezoelectric meter which was prepared by her husband Pierre. From her 
studies, it was found that the amount of radiation present was not 
dependent on the ambient temperature and light, but only on the amount of 
the radioactive substance present, such as uranium or radium. This was 
also the first time the word “radioactivity” was used to denote ionization. 
To discuss radiation, it is necessary to define differences in the meanings 
of the words radioactivity, radioactive substances (elements), and radiation 
(such as X-rays). These relationships can be illustrated by comparing these 
terms with a bonfire (Fig. 1.3).  

 

 
 
Figure 1.3 Radiation and radioactivity. 
Radiation and radioactivity are illustrated by comparisons to a bonfire. The 
bonfire’s power and its (infrared) thermal rays correspond to radioactivity and 
radiation, respectively. 

 
Radiation consists of electromagnetic waves or particle beams that are 

generated by either X-ray tubes or radioactive material. It is sometimes 
referred to as ionizing radiation to distinguish it from electromagnetic 
waves such as ultraviolet light which does not cause ionization. One can 
think of radiation as being the equivalent of (infrared) thermal rays 
emitted from a bonfire. Atoms with a non-neutral charge are called ionized 
(additional details are shown on Chapter 1.1.2). 

Wood

Heating power

RadiationThermal rays

Radiactive
materials

Radioactivity
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Radioactive material or elements are substances or elements that 
emit radiation, such as Cesium-137. This corresponds to wood which can 
serve as fuel for a bonfire. 

Radioactivity is the ability of a radioactive substance to emit radiation. 
This corresponds to a bonfire's heat. Thermal rays (i.e. radiation) can 
cause burns (i.e. radiation injuries), and the burns (i.e. radiation injuries) 
will be proportional to the bonfire’s heat power (i.e. radioactivity). 

The term radioactivity is used to describe the ability to emit radiation, 
and this is independent of the type of radiation. Also, this term is used to 
describe radiation from naturally radioactive materials, but not from 
radiation generators such as X-ray tubes. 

1.1.2 Different types of radiation and their penetration abilities 

Currently several types of radiation, including α-rays, β-rays, γ-rays and 
X-rays are known. To understand their properties, a review of the structure 
of atoms is necessary. In an atom, a negatively charged electron is orbiting 
around a positively charged nucleus. This electron is referred to as an 
orbital electron (Fig. 1.4) because electrons can only be present in defined 
atomic orbits which are described as the K shell, L shell, M shell, N shell, 
O shell, and P shell. The orbits get larger with each of the sequential 
letters used to name the orbits. The electrons of the outermost shell are 
associated with the chemical nature of the atom. For example, Na, K, and 
Cs belonging to the same congener (alkali metals) in the periodic table, 
and have only one electron in the outermost M shell, N shell, or P shell, 
respectively. When these electrons are free or released from the atom, 
these atoms become positive mono-valent ions, such as Na+, K+, Cs+. 

The strength of the positive charge in the nucleus is determined by the 
number of protons present in the nucleus, so that the proton number for 
the atom always coincides with the number of orbital electrons unless the 
atom is ionized (i.e. loses an electron). As the number of protons increases, 
the atom’s size increases, and there is an increase in the number of 
outermost electrons. The number of protons will define the physical nature 
of the atom. Thus, the number of protons is the atomic number which 
represents the atom. The neutrons present in the nucleus have almost the 
same mass as the protons, and the total number of protons and neutrons is 
called the mass number. The atomic number and mass number are 
expressed as the "mass number (upper row) / atomic number (lower row) 
and atom name" (Fig. 1.4). For example, cesium present in the 
environment is represented by 133

 55Cs where 133 is the mass number and 55 
is the atomic number. Similarly, radioactive cesium is designated as 

134
 55Cs 
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and 
137
 55Cs. Although these cesium forms have different mass numbers, such 

as 133, 134, 137, the atomic numbers are all 55, indicating that they are all 
the same element cesium. Conventionally, the atomic number 55 is often 
omitted. When atoms have the same number of protons but different mass 
numbers, they are called isotopes, and are described by terms such as 
Cesium-137. When isotopes are radioactive, such as Cesium-134 and -137, 
they are called radioisotopes. Conversely, nonradioactive isotopes, such 
as Cesium-133, are called stable isotopes. 

 

 
 
Figure 1.4 Nuclear model of Cesium-137. 
The nucleus of a Cesium-137 atom consists of 55 protons, 82 neutrons and 55 
orbital electrons, including 1 electron in the outermost P shell. 

 
When protons and electrons or nuclei are accelerated to a high speed, 

they behave as radiation. The α-rays discovered by Rutherford were high-
speed helium nuclei. The helium nucleus is a large particle composed of 
two protons and two neutrons. Thus, the helium nucleus is bulky in terms 
of size and charge, so a helium atom α-ray interacts frequently with a 
nucleus in target substances and loses all its energy in a short distance. For 
this reason, an α-ray cannot penetrate human skin and is easily shielded by 
a piece of paper (Fig. 1.2). On the other hand, β-rays are high-speed 
electrons. An electron is one of the elementary particles which are the 
components of an atom, and its mass is about 1/1800 of a proton. Since 
electrons are much smaller than helium nuclei, they can penetrate matter 
much more effectively than α-rays. For that reason, β-rays can require 
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several mm of aluminum foil to shield a target (Fig. 1.2). However, β-rays 
cannot reach deeper parts of the body although they can penetrate human 
skin. Neutrons and proton particles accelerated to a high velocity are 
called neutron beams and proton beams, respectively. Like α-rays and β-
rays, neutron beams and proton beams are generally called particle beams. 

When radionuclides decay through the emission of α-rays or β-rays, 
additional energy remaining in the nucleus can be released as γ-rays. γ-
rays are electromagnetic waves, like light and ultraviolet light rays, but 
they have a tremendous amount of energy. They can cause ionization by 
ejecting orbital electrons in atoms when they interact with matter. Thus, γ-
rays originate during the decay of a nucleus, whereas X-rays are produced 
by electrons originating outside of the nucleus, but they are both 
electromagnetic waves. When ionization occurs through the ejection of 
electrons in the inner orbits, electrons from the outer atomic orbits can 
occupy these vacant inner orbit positions. The energy difference between 
inner orbit electrons and outer orbit electrons is released in the form of X-
rays (Fig. 1.5a). This type of X-ray is called a “characteristic X-ray”,  
which has a specific energy corresponding to the differences in the orbital 
energies in a specific atom (Fig. 1.5b). 

However, the X-rays originally observed by Roentgen were 
bremsstrahlung X-rays which are generated through a different mechanism 
than characteristic X-rays (Fig. 1.5a). When electrons are released from 
the high voltage cathode in a Crookes tube, they are pulled to the 
positively charged nuclei of the molecules which compose the glass tube, 
and are decelerated by a braking mechanism (bremsstrahlung). These 
decelerated electrons have a reduced kinetic energy and emit their lost 
energy as electromagnetic waves (i.e. as bremsstrahlung X-rays). Unlike 
characteristic X-rays, bremsstrahlung X-rays are characterized by a 
continuous energy distribution (Fig. 1.5b). Although X-rays generated 
from a Crookes tube are only bremsstrahlung X-rays, both characteristic 
X-rays and bremsstrahlung X-rays are generated from high voltage X-ray 
generators like the Coolidge tube currently in use. There are essentially no 
differences in the physical properties between X-rays (characteristic X-
rays and bremsstrahlung X-rays) and γ-rays except for the mechanism 
which generates them. Since both γ-rays and X-rays are high energy 
electromagnetic waves, they have a much higher ability to penetrate 
matter than particle beams such as α-rays and β-rays, and are capable of 
penetrating the human body (Fig. 1.2). 
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Figure 1.5 X-ray generation from electron collisions. 
X-rays generated by electrons colliding with matter are classified into two types of 
X-rays according to the mechanism involved: (a) Bremsstrahlung X-rays are 
generated by the deceleration of electrons, and characteristic X-rays are generated 
when external orbital electrons transit into an empty inner orbital position. (b) 
Bremsstrahlung X-rays show a continuous energy spectrum, but the energy of 
characteristic X-rays are called eigenvalues which correspond to the energy 
difference between the two electron orbits. 

1.2 Mechanisms of ionization and radiation units 

1.2.1 How radiation causes ionization 

When radiation collides with or interacts with matter in its path, it can 
gradually lose energy and eventually dissipate. During this process, the 
radiation can cause ionization and excitation events in the molecules it 
interacts with, although the detailed aspects of ionization differ between 
electromagnetic waves and particle beams. Since all radiation damage to 
the human body originates from these ionization events, a more detailed 
examination of these events is warranted.  

The processes through which electromagnetic waves such as X-rays 
and γ-rays lose energy in matter are classified into three types: the 
photoelectric effect, Compton scattering, and electron pair production. In 
the photoelectric effect an X-ray or γ-ray interacts with matter, causes the 
release of orbital electrons in an atom (thus generating ionization events), 
and is completely absorbed (photoelectric absorption). The amount of X-
ray and γ-ray energy expended during the ionization action is usually 5 to 
30 eV (electron volts), and the remainder of the energy provides the 
kinetic energy of the emitted electrons (called photoelectrons). An eV 

0 50 100 150 200

Bremsstrahlung
 X-rays

Characteristic X-rays

X-ray energy (keV)

D
os

e 
of

 X
-r

ay
s

(b) Energy distribution

Bremsstrahlung
 X-rays

Electron

Characteristic 
X-rays

(a) X-ray generation



Chapter One 
 

10 

(electron volt) is a very minute energy unit used to describe the energy 
present in atoms and electrons (1 eV = 1.60 × 10-19 Joules). One eV is 
defined as the amount of energy given to one electron with a voltage of 1 
V (volt). For example, the electron energy generated in an X-ray tube with 
a voltage of 1000 V is 1.0 keV (or kilo-eV). The energy at which the 
photoelectric effect occurs varies with the material. For example, the 
energy of X-rays and γ-rays at which the photoelectric effect occurs with 
aluminum or lead is 50 keV and 500 keV, respectively.  

In the photoelectric effect, the radiation itself is absorbed. X-rays and 
γ-rays with higher energies, such as 50 keV or more in aluminum, can 
cause ionization, although the energy will not be entirely delivered to the 
electrons. After the first interaction, X-rays and γ-rays will have lost some 
energy, but are still able to undergo subsequent secondary interactions 
with other atoms, causing sequential ionization events (Compton 
scattering). Electrons generated during these events are called Compton 
electrons (Fig. 1.6a). As the energy diminishes during this Compton 
scattering process, the photoelectric effect will finally take place and the 
radiation’s energy will be fully absorbed. Electrons (both photoelectrons 
and Compton electrons) generated by the photoelectric effect and 
Compton scattering will continue to collide with other atoms, so that the 
chain of events can describe a complex pattern. In addition to ionization, 
fluorescence is also emitted through the excitation of atoms during this 
process. This is the fluorescence Roentgen observed in a substance placed 
at a distance from his X-ray tube. 

  

 
 
Figure 1.6 Ionizing mechanisms and their ranges. 
(a) γ-rays gradually lose energy while penetrating matter and undergoing ionizing 
events, such as electron pair production, and Compton scattering or the 
photoelectric effect. α-rays and heavy particle beams follow a straight path and 
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cause ionization, and are finally absorbed by losing their energies in the material 
they are traversing. β-rays also undergo repeated collisions and cause ionization 
while generating bremsstrahlung X-rays. (b) Radiation usually will not travel 
completely through a target, and will be absorbed when it loses all of its energy. α-
rays and β-rays gradually lose their energy, while heavy particle beams stop at a 
certain specific distance from the surface of the skin forming a Bragg peak. 

 
High energy γ-rays with energies over 1.02 MeV (mega-electron volts 

or one million electron volts) can produce both, negatively charged 
electrons and positively charged positrons, in the vicinity of the nucleus 
simultaneously, and this is described as electron pair production. Since 
the positron is unstable, it immediately decays, emitting two γ-rays with 
energies of 0.51 MeV (i.e. annihilation radiation) (Fig. 1.6a). The 
absorption of radiation energy during these processes tends to increase as 
the atomic number of the target substance increases. For this reason, lead 
or elements with a high atomic number are usually used for shielding from 
X-rays and γ-rays (Fig. 1.2). 

Particle beams, such as α-rays and β-rays, collide with atoms and cause 
ionization and excitation. Repeated subsequent interactions with additional 
atoms weakens or leads to the absorption of their radiation energy. During 
this process, particles with small masses, such as β-rays, can have their path 
altered or bent by the electric field of the nucleus, and generate 
bremsstrahlung X-rays, and gradually lose energy (see above). Conversely, 
particles with large masses, like α-rays, travel linearly along their path, so 
that the generation of bremsstrahlung X-rays is usually not significant (Fig. 
1.6a). A high velocity beam of particles which have an atomic number 
larger than helium is called a heavy particle beam, for example a beam 
composed of iron ions. Heavy particle beams cause high density ionization 
tracks to form along their paths and quickly lose all of their energy.  
Consequently, heavy particle beams stop after a constant distance, and the 
ion density along their track reaches a notable maximum near the end of the 
track (this is called the Bragg effect and is illustrated in Fig. 1.6b). 

In contrast to heavy particle beams, β-rays are gradually attenuated 
along their path during their penetration of a target, so their ionization 
track is gentle and uniform when compared to the ionization tracks of 
heavy particle beams (Fig. 1.6b). In neutron beams, the neutrons have no 
charge, and hence lose energy through collisions with nuclei rather than 
with orbital electrons. Since the mass of a hydrogen nucleus is the same as 
a neutron, the collision of a neutron with a hydrogen nucleus reduces its 
radiation energy most efficiently. Hence, water is appropriate for use as a 
neutron shield (see Chapter 2.2.2). 
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1.2.2 Radioactivity and radiation units  

Various units are used to measure radiation and radioactivity, and the units 
which are used depends on what purpose these measurements are being 
used for. These measurements could be used to study radiation protection, 
radiation therapy, environmental decontamination, etc., and the amount of 
radiation and radioactivity present must be quantified. Although these 
units, in theory, represent the number of calories of radiation energy 
absorbed per unit weight and the weight of radioactive substances, 
respectively, specific defined units, such as the Gray, Sievert or Becquerel, 
are most convenient to describe specific properties of radiation. These 
units were named after the physicists Louis H. Gray (UK), Rolf M. Sievert 
(Sweden), and Antoine H. Becquerel, all of whom made important 
contributions in the early history of radiation research. 

The Gray is a unit used to define the amount of radiation absorbed 
(the absorbed dose) when 1 Joule (J) of energy is absorbed per kg of 
substance, and this measure can be used in the study of living organisms. 
The Gray is represented by the symbol Gy (Table 1.1). One hundredth of a 
Gray or a cGy (centi-gray) can be used as a convenient unit, because it is 
easy to convert the cGy unit to a rad in the CGS unit system which was 
used in biological research papers before the Gy became widely used (1 
rad = 1 cGy). Even when various targets are exposed to the same absorbed 
dose in Gy, the biological effects of radiation can still be different 
depending on the specific type of radiation which is incident, and the 
specific tissues or organs which receive the radiation. The equivalent dose 
and effective dose are calculated by multiplying the dose in Gy by specific 
coefficients, and these doses are used in working with radiation protection. 
A Sievert is used for both the equivalent dose and effective dose, and is 
represented by the symbol Sv. The relationship between the equivalent 
dose (Sv) and the Gray (Gy) is: 

 
Equivalent dose (1 Sv) = 1 Gy × Wr 

 
where Wr is a radiation weighting factor. 

The radiation weighting factor Wr is a coefficient which is determined 
by the type of radiation involved. For example, Wr is 1.0 is for γ-rays and 
β-rays, and 20 for α-rays. Other energy-dependent coefficients are used for 
neutron beams whose quality can vary with the neutron energy (Table 1.1). 
Since the radiation weighting factors for γ-rays and β-rays are 1, the 
absorbed doses in Gy have the same numerical values as the equivalent 
doses in Sv. 
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Unit Definition Purpose 

Radiation 
dose 

Gy (Gray) 

A unit of an absorbed radiation 
dose when 1 kg absorbs an 
energy of 1 Joule (about 0.24 
calorie) 

This unit is used in basic 
physical studies, biological 
experiments and radiation 
therapy.  

Sv (Sievert)  
 
�Equivalent 

dose 

Radiation dose unit representing 
radiation effects in humans.  
   The dose in Gray is multiplied 
by a radiation weighting factor 
Wr (Gy × Wr). Wr values for X-
rays, γ-rays, and β-rays are all 1.  
Wr values are 20 for α-rays, 
respectively. 

This unit is used in describing 
radiation protection and in 
evaluating radiation effects on 
the human body which vary 
with the type of radiation.  

�Effective 
dose 

The sum of the total of the doses 
delivered to specific tissue 
targets. This dose is multiplied 
by a tissue weighting factor Wt 
for each tissue. Wt values for 
specific tissues are 0.12, 0.08 
and 0.01 for bone marrow, 
gonads and skin, respectively.  

This unit is used for legal 
regulations and in radiological 
protection to provide an 
evaluation of the radiation’s 
effect on the whole body 
when only a specific tissue is 
exposed.  

Radioactivity 
Bq 

(Becquerel) 

The number of atomic decay per 
second.  

The Becquerel is the product of 
the decay rate and the number 
of atoms, so it is proportional 
to the amount of a radioactive 
substance which is present. 

Quality of  
       radiation 
 
LET (Linear 

energy 
transfer) 

The amount of energy (keV/µm) 
that is transferred to a target 
when the radiation traverses a 
unit distance. The LET value is 
0.2-2.0 keV/µm for Cobalt 60 γ-
rays and X-rays, and 110 
keV/µm for 4 MeV α-rays. 

α-rays and heavy particle 
beams that produce dense 
ionization have a high LET 
value, and lead to large 
biological effects, while X-
rays and β-rays with low LET 
values produce smaller effects 

Table 1.1 Units used for radiation 
 

The equivalent dose × Wt is calculated for each tissue, and the sum of 
all of the individual doses to each of the exposed tissues is the effective 
dose: 
 

Effective dose (in Sv) = Σ (sum of equivalent tissue doses ×Wt) 
 

Where Wt is a tissue weighting factor for each tissue and Σ is the sum of 
the individual equivalent doses delivered to each tissue. 
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The dose unit used for writing legal regulations or for writing laws is 
the effective dose, which is the equivalent dose multiplied by the tissue 
weighting factor Wt. The tissue weighting factor is a coefficient obtained 
by apportioning the radiation risk for each tissue in order to evaluate the 
effect of radiation on the whole body when a specific tissue is exposed 
(Table 1.1). For example, the specific Wt factors are 0.01 and 0.12, for 
skin and bone marrow, respectively. The total sum of the individual tissue 
weighting factors for each tissue adds up to 1 for the entire organism. 
Since both the equivalent dose and the effective dose are described by the 
Sievert or Sv unit, it is necessary to pay attention to precisely which dose 
is referred to when the dose is described in Sieverts (Sv). Small doses can 
be described using mSv or millisieverts which correspond to 1/1000th of a 
Sievert, and in microsieverts (µSv) which correspond to 1/1,000,000 of a 
Sievert. In addition, the dose delivered in a unit of time, such as an hour or 
minute, is described by the dose rate and is expressed in µSv/hr or 
µSv/min. For example, if one is exposed for 8 hours a day to a dose rate of 
10 µSv/hr, the total dose is caluculated as 10 µSv/hour × 8 hours × 365 
days = 29.2 mSv in one year. However, a practical effective dose 
description which is used in radiation protection work is the 1 cm dose 
equivalent (in Sv) which is used to describe the dose at a depth of 1 cm 
below the body’s surface (where the exposure is maximum) when 
discussing exposures to X-rays or γ-rays. Because the 1 cm dose 
equivalent always has a value higher than the equivalent dose and 
provides a conservative (if slightly overestimated) radiation exposure 
estimate, radiation dosimeters (e.g. survey meters) indicate the 1 cm dose 
equivalents. 

Because the Gy describes the energy absorbed per unit weight, a 
conversion to calories is plausible. For example, half of the people 
irradiated with 4 Gy (= 4 J/kg) in a whole body exposure will die within 
60 days (see Chapter 5.3.1), but the total thermal energy absorbed by the 
whole body (60 kg) is 

 
4 (J/kg) x 60 (kg) = 240 (J) = 57.6 (Cal) 

 
57.6 Cal (calories) can lead to an increase in body temperature of merely 
0.00096°C, and this is the same effect one would see from drinking a 
small spoon full (2.5 ml) of hot water (60°C). Consequently, although the 
absorbed caloric radiation energy is negligible, there is a still a sufficient 
amount of energy to ionize and subsequently cleave molecular bonds in 
any region along the radiation track (path). 


