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PREFACE 
 
 
 
Ionic liquids (ILs) are salts with a melting point below 2500C; they 

have been attracting electrochemists with their unique properties like non-
volatility, thermal stability, non-flammability, and low vapor pressure with 
wide electrochemical window. ILs have emerged as a potential 
replacement for organic electrolytes. However, the liquid nature of ILs 
limits their application due to leakage. Thus there is incredible demand for 
the immobilization of ILs since it overcomes all the restrictions and opens 
up a new pathway to solid electronic gadgets like batteries, capacitors, 
super capacitors, fuel cells, sensors, etc. Among all the well-known 
strategies, entrapping ILs in the polymer matrix can be considered as a 
feasible, low-cost method for large scale production of ionogels. Ionogel 
consists of a non-conducting polymeric framework as the host and a 
conducting IL as the guest. Ionogel not only retains the properties of ILs 
but also shows the mechanical properties of a polymer matrix like 
flexibility, film-forming nature, etc. Thus ionogel will be a better choice 
for solid state electrolytes due to its appealing features of freestanding film 
and high thermal stability properties that allows us to design easily and 
cheaply with modularity and reliability in electrochemical devices. The 
versatility of both ILs and polymer chemistry allows us to develop an 
infinite number of ionogels. Every combination of ILs and polymer results 
in unpredictable behavior. Thus the field of ionogel membranes has yet to 
be explored. 

 This book is intended to report a complete characterization technique 
from theoretical prediction to the application level, including quantum 
mechanical predictions, synthesis method, characterization techniques, and 
molecular dynamics of the developed ionogel. This book will be useful for 
students, researchers, industrialists, etc., and whoever wishes to work in 
the field of ionogels, as well as in the application level of solid-state 
materials. As we said above, the field of ionogel membranes is yet to be 
explored, and this book can be used as reference material for upcoming 
innovations too. 

This book covers ionogel membranes and their development, 
theoretical predictions, characterization, detailed thermal and electrical 
properties, molecular dynamics, and applications. It is written as a 
distinctive source taking the reader on a fantastic journey from quantum 
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xviii

mechanical calculations to advanced research areas. Chapter 1 gives detailed 
information about ionic liquids and ionogel membranes and their 
preparations. The solution casting on glass technique was employed to 
develop ionogel by entrapping two highly conducting ILs, namely, 1-
Ethyl-3-methyl imidazolium thiocyanate [EMIM] [SCN] and 1-Butyl-1-
methyl pyrrolidinium bis (trifluoromethyl sulfonyl imide) [BMPyr] 
[TFSI], in two non-conducting polymers. Chapter 2 introduces a novel 
hybrid theoretical approach named ONIOM (n-layered integrated 
molecular orbital and molecular mechanics approach), which was 
implemented in the Gaussian 09 program package to study the interaction 
of ILs with complex polymer chains and subsequently to check the 
compatibility of the IL with two non-conducting polymers, namely 
polymethyl methacrylate and polyvinyl pyrrolidone matrix, to form an 
eco-friendly ionogel. This quantum mechanical approach helped us trace 
the most compatible pairs of ILs and polymer matrices among the chosen 
four combinations. Chapter 3 presents a detailed morphological 
characterization of ionogel membranes by means of the scanning electron 
microscope, Fourier transforms infrared spectroscopy, Fourier transforms 
Raman spectroscopy, and an X-ray diffractometer. 

Chapter 4 delineates the influence of ILs in the polymer matrices and 
discusses the variations in phase transitions and thermal stability of the 
polymer matrices. Chapters 5 and 6 address the molecular dynamics, 
charge transport mechanism, conductivity relaxation in the ionogel 
membranes over broad frequency window, and wide temperature range to 
explore the molecular fluctuations and variations that happened in the 
ionogel membranes on varying weight ratios of the incorporated ionic 
liquid. 

Chapter 7 discusses the specific properties and applications of the two 
developed ionogel membranes. This chapter covers the energy storage 
application of ionogel membranes and also emphasizes the CO2 sensing 
and capturing properties of the developed one.  

In summary, this will be a remarkable contribution toward the state of 
the art for material designing and development, morphology, structure, 
thermal and electrical properties, and applications of ionogel membranes. 
We hope that this will be very useful for academic and industrial purposes 
but also for fledgling students and newcomers in the field of solid state 
devices. 

 
Safna Hussan K. P. 

Dr. Mohamed Shahin Thayyil 



ABSTRACT 
 
 
 
Nowadays, an enormous research effort has been devoted to 

immobilize ionic liquid for electrochemical applications, since it can be 
used as an excellent substitute for liquid electrolytes. Among all the well-
known strategies, entrapping ILs in the polymer matrix can be considered 
as a feasible, low-cost method for large scale production of ionogel. The 
versatility of both IL and polymer chemistry allows us to develop an 
infinite number of ionogels. Every combination of IL and polymer results 
in unpredictable behavior; thus the field of ionogel membranes is yet to be 
explored. This book is intended to report complete characterization 
techniques from theoretical predictions to the application level, including 
quantum mechanical predictions, synthesis method, characterization 
techniques, and molecular dynamics of the developed ionogel. 

Moreover, a novel hybrid theoretical approach named ONIOM (n-
layered integrated molecular orbital and molecular mechanics approach) 
was implemented to study the interaction of ILs with complex polymer 
chains in the ionogel. This book will be useful for students, researchers, 
industrialists, and so on, and for anyone who wishes to work in the field of 
ionogels as well as in the application level of solid-state materials. As we 
said above, the field of ionogel membranes is yet to be explored, and this 
book can be used as reference material for upcoming innovations too. 

  
Safna Hussan K.P. 

Dr. Mohamed Shahin Thayyil 
 





AUTHOR BIOGRAPHIES 
Safna Hussan K. P. is a doctoral research scholar 
at the University of Calicut, Department of 
Physics, working with Dr. Mohamed Shahin 
Thayyil with a UGC-MANF fellowship. She 
earned her bachelors and master’s degrees in 
physics from University of Calicut, Kerala, India 
in 2010 and 2012, respectively. She is currently 
involved in the research area of ionic liquids with 
two potential applications, namely, electrochemical 
and pharmaceuticals. She develops ionogel 
membranes by immobilizing ionic liquids in the 
non-conducting polymer matrices and makes it 

viable for application in solid-state devices. She is an internationally 
renowned scholar with many publications in international peer-reviewed 
journals. Safna Hussan has many collaborations at national and 
international levels.  
 

 Mohamed Shahin Thayyil is an Assistant 
Professor at the Dept. of Physics, University of 
Calicut (CU), India. He holds a Master’s in 
Physics (CU), a PhD in Physics (Jawaharlal 
Nehru University, New Delhi, India) and 
pursued a Post-Doctoral Research at the Dept. of 
Physics, University of Pisa, Italy. Apart from 
teaching, he is involved in active research on 
amorphous materials, amorphous 
pharmaceuticals, ionic liquids, electrochemical 

studies. He has published more than 50 research papers and acted as 
reviewer for different journals. He has spent time and effort in developing 
amorphous materials from their crystalline counterparts and in 
understanding the molecular dynamics of such a system in the glassy state 
as well as in a supercooled liquid state. He made his signature in the area 
of pharmaceuticals and is currently interested in solid state electrolytes. He 
is also a specialist in broadband dielectric spectroscopy and differential 
scanning calorimeter analysis for a broad range of materials. He has 
published around 45 papers and acted as editor for one book. He has 
supervised PhD and MPhil theses and has had many collaborations across 
the world. 





ABBREVIATIONS USED IN THIS BOOK  
 
 
 
IL 

 
 
 
: Ionic liquid 

[EMIM] [SCN] : 1-Ethyl-3-methylimidazolium thiocyanate 
[BMPyr] [TFSI] : 1-Butyl-1-methyl pyrrolidinium bis 

(trifluoromethyl sulfonyl imide) 
PMMA : Polymethyl methacrylate 
PVA : Polyvinyl alcohol 𝐸௦௧௥௘௧௖௛ : The energy associated with bond stretching 𝐸௕௘௡ௗ௜௡௚ : The energy associated with bond bending 𝐸௧௢௥௧௜௢௡ : Torsional energy 𝐸௕௢௡ௗ௜௡௚ : The energy associated with bonding interactions 𝐸௡௢௡௕௢௡ௗ௜௡௚ : The energy associated with nonbonding 

interactions 𝐸௖௢௩௔௟௘௡௧ : The energy associated with covalent bonding 𝐸௡௢௡௖௢௩௔௟௘௡௧ : The energy associated with non-covalent bonding 
MM : Molecular mechanics 
QM : Quantum mechanics 
ONIOM : Our N-layered integrated molecular orbital+ 

molecular mechanics 
Sdf : Standard data file 𝑘௦௧௥௘௧௖௛ : Proportionality constant 
L : Length 𝑙௘௤ : Equilibrium length 
H : Hamiltonian energy operator 
 : Eigen function 
E : Eigenvalue 
SM : Semi-empirical method 
DFT : Density functional theory 
TDFT : Time-dependent density functional theory 
ENN : Nuclear-nuclear repulsion energy 
Ev : Nuclear-electron attraction energy 
Ecoul : Classical electron-electron Coulomb repulsion 

energy 
ET : Kinetic energy of electrons 
Each : The non-classical electron-electron exchange energies 



Abbreviations used in this Book  
 

xxiv

Ecorr : The energy from the correlated movements of 
electrons with different spins  

PES : Potential energy surface 
FMO : Frontier molecular orbital 
HOMO : Highest occupied molecular orbital 
LUMO : With lowest unoccupied molecular orbital 
UV : Ultra violet 
IR : Infrared 
H : Enthalpy 
S : Entropy 
G : Gibbs free energy 
FTIR : Fourier transform infrared 
ATR-FTIR : Attenuated total reflectance-Fourier transform 

infrared 
NLO : Nonlinear optical  
IP : Ionisation potentials 
EA : Electron affinity 
Η : Hardness 
S : Softness 
Μ : Chemical potential 
Ω : Electrophilicity index 
P : Polarization 
F : Electric Field 
Α : Polarizability 
Β : First static hyperpolarizability 
SEM : Scanning electron microscope 
FT-Raman : Fourier transform Raman spectroscopy 
DSC : Differential scanning calorimetry 
TGA : Thermal gravimetry analysis 
DTGA : First derivatives thermal gravimetry analysis 
Tg : Glass transition temperature 
Tm : Melting point 
X1 : mass (weight) fraction 
BDS : Broadband dielectric spectroscopy 
Z : Impedance 
 : Permittivity 
 : Conductivity 
 : Modulus 
IP : Interfacial polarization 
MWS : Maxwell-Wagner-Sillars 
G : Conductance 



Theoretical and Spectroscopic Investigations on Ionogels xxv 

CPE : Constant phase element 
CPE-T : Pseudocapacitance 
SCLC : Space charge limited conduction  
CV : Cyclic voltammetry 
Ag : Silver 
C : Capacitance 
SPE : Solid polymer electrolyte 
CO2 : Carbon dioxide 
 
 





CHAPTER 1 

INTRODUCTION 
 
 
 

1.1. Introduction 

Material design is an art that plays a vital role in our day-to-day needs. 
Designing a material is the primary phase of any product development 
where the architect must focus on improving the properties of a material to 
overcome their limitations or to impart superior qualities. Quality and 
performance of material are assessed according to their structural, 
electrical, thermal, mechanical, chemical, and optical properties and by 
analyzing a wide variety of materials to reveal that a single material is not 
fulfilling all aspects of our requirements. Thus, in order to make a product 
viable for practical application, incorporation of diverse properties is 
essential within a feasible cost. Thus, material selection and design are the 
prominent stages of research keeping in view their practical applications. 

Ionic liquids (ILs) offer a wide variety of properties that make them a 
prominent substitute for conventional organic electrolytes in many energy-
related application fronts. The freedom to choose different cation-anion 
combinations make them unique with diverse properties like low volatility 
coupled with high electrochemical and thermal stability; significant ionic 
conductivity crafts the likelihood of designing an ideal electrolyte for 
batteries, super-capacitors, actuators, dye-sensitized solar cells, and 
thermo-electrochemical cells, etc. (1). Thus, the biggest charm of ionic 
liquids relies on the possibility to tune their properties by choice of the 
anion-cation combination. Moreover, a large family of them are air and 
water stable, as well as thermally stable even at temperatures higher than 
570 K (2). Though ILs are used successfully as electrolytes in many 
gadgets, their leakage-causing fluid nature and high cost limit their large 
scale application (3–5). 

Currently, enormous research efforts have been devoted to immobilize 
ILs for electrochemical applications, since they can be cast as an excellent 
substitute for liquid electrolytes. Chemical attachment with suitable ionic 
species and physical entrapment of an IL in non-conducting organic/inorganic 
matrices are the two strategies popularly used for immobilizing ILs, which 
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are commonly named ion-gels or ionogels. Among them, polymers are an 
attractive platform considering their rich database and low cost for large 
scale production. The versatility of both ILs and polymer chemistry results 
in an infinite number of ionogels. Each combination of an IL with a 
polymer results in unpredictable behavior due to the possibility of diverse 
chemical bonding. Thus the field of ionogels is yet to be explored 
systematically.  

This book is intended to report a complete overview of the development of 
ionogels to their application. It covers the characterization technique from 
theoretical predictions based on quantum mechanical calculations, 
structural and morphological studies, thermal behavior, molecular dynamics, 
and charge transport properties. Moreover, a novel hybrid theoretical 
approach named ONIOM (n-layered integrated molecular orbital and 
molecular mechanics approach) was introduced and implemented to study 
the interactions of ILs with complex polymer chains in the ionogels. It will 
be useful for readers, including students, researchers, and industrialists, 
who wish to explore the field of ionogels as well as their applications to 
solid-state materials. As we have said, the field of ionogel membranes is 
yet to be explored; this book can be used as reference material for 
upcoming innovations too. 

1.2. Ionic liquids 

Nowadays, ionic liquids (ILs) are considered as promising materials 
for electrochemical applications because of their unique characteristics 
compared with conventional molecular liquids (6). ILs are nothing but 
organic salts with either an asymmetric cation with a symmetric anion or 
vice versa or with both an asymmetric anion and cation. ILs are liquid at 
near room temperature with a shallow melting point precisely below 570 
K (7) having negligible vapor pressure, non-flammability, and enhanced 
thermal and chemical stability. A most interesting feature of ILs is that 
they consist of ions with high ion density and conductivity. 

Moreover, the physical and chemical properties of an IL can easily be 
tuned by introducing various kinds of ions in it. These unique properties of 
ILs have attracted worldwide attention for applying them in vast areas 
including green solvents, media for organic transformation, electrochemical 
applications, nanotechnology, biotechnology, pharmaceuticals, etc. These 
applications have already been reported in the literature, and hence we are 
more focused on their electrolytic applications alone. 

Though electrodes play a vital role in electrochemical gadgets regarding 
their overall capacity, energy density, and cyclic-ability, electrolytes also 
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have a crucial role in determining the current density, power density, time 
stability, and safety of the battery in electrochemical devices (8). Henceforth, 
ILs open up a new platform to improve the ion conductivity of 
electrolytes. The favorable properties of IL like non-volatility, high ionic 
conductivity (0.1–740 mS/cm), high thermal stability, and wide 
electrochemical window made it suitable for an ideal electrolyte. Further, 
ILs opens up an avenue for improving the properties of conducting 
materials. Thus ILs act as an excellent substitute for the legendary organic 
and non-organic electrolytes in the gadgets. A list of such ionic liquid with 
their characteristic properties is tabulated in Table 2.  
 
Table 2. List of commonly used ionic liquids for the electrochemical application 
(9). 

 
Ionic liquids Conductivity Electrochemical 

window 
a) Highly conductive     
1-Ethyl-3-methylimidazolium 
dicyanamide 

27 mS/cm 2.9 V 

1-Ethyl-3-methylimdazolium 
thiocyanate 

21 mS/cm 2.3 V 

b) Electrochemically stable     
Triethylsulphonium 
bis(trifluoromethylsulfonyl)imide 

8.2 mS/cm 5.5 V 

N-Methyl-N-trioctylammonium 
bis(trifluoro-methylsulfonyl)imide 

2.2 mS/cm 5.7 V 

N-Butyl-N-methylpyrrolidinium 
bis(trifluoro-methylsulfonyl)imide 

2.1 mS/cm 6.6 V 

c) Combined properties     
1-Ethyl-3-methylimidazolium 
tetrafluoroborate 

12 mS/cm 4.3 V 

1-Ethyl-3-methylimidazolium 
trifluoromethylsulfonate 

8.6 mS/cm 4.3 V 

   
 

Generally, ILs with imidazolium cations exhibit higher conductivity 
while pyrrolidinium and sulphonium cations exhibit a wider electrochemical 
window. However, the liquid nature of ILs still limits their application as 
electrolytes in the current scenario, since safety had to be assured rather 
than their performance (10). A large number of works were already 
reported on the relevance of ILs and their effectiveness in 
electrochemistry. However, our main concern is devoted to overcoming 
the limitations of ILs owing to their liquid nature including leakage, gas 
formation from solvent decomposition, etc., and will not venture too much 
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to other areas. This work is solely concentrated on two ILs with high 
conductivity, namely: 1-Ethyl-3-methylimidazolium thiocyanate and 1-
Butyl-1-methyl pyrrolidinium bis (trifluoromethyl sulfonyl imide). 

1.2.1. 1-Ethyl, 3-methylimidazolium thiocyanate 

1-Ethyl-3-methylimidazolium thiocyanate [EMIM] [SCN], with the 
formula C7H11N3S, is a room temperature IL with a molecular weight of 
169.25 g/mol extensively used as an electrolyte in energy storage devices. 
The chemical structure of [EMIM] [SCN] is shown in Figure 1. 

 

N

N

CH3

H3C
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Figure 1. The chemical structure of 1-Ethyl-3-methylimidazolium thiocyanate. 
 

[EMIM] [SCN] has a high conductivity of 2.1Sm−1 and low viscosity 
at room temperature compared to other ILs, e.g. [EMIm]BF4, [BMIm]BF4, 
and organic electrolytes (11). The literature emphasizes that though the 
ionic conductivity of [EMIM] [SCN] is about 1/40 of that for 35 wt% 
H2SO4 and about five times that for 0.1M (CF3SO2) 2NLi in PC: DME 
(1:2, v/v), the electrochemical performance of [EMIM] [SCN] lie between 
the two specified electrolytes. Due to high capacitance, uncompromised 
performance, and stability, [EMIM] [SCN] can be used as a potential 
electrolyte in capacitors, double layer capacitors, supercapacitor, dye-
sensitized solar cells, etc. 

1.2.2. 1-Butyl-1-methyl pyrrolidinium bis (trifluoromethyl 
sulfonyl imide) 

1-Butyl-1-methyl pyrrolidinium bis (trifluoromethyl sulfonyl imide) 
[[BMPyr] [TFSI]] with the formula C11H20F6N2O4S2 is also a room-
temperature ionic liquid with a molecular weight of 422.41 g/mol with 
high conductivity and viscosity. The chemical structure of [BMPyr] 
[TFSI] is shown in Figure 2. 


