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CHAPTER ONE 

OPTICAL INTERFEROMETRY 
 
 
 

1.1 Introduction 

Optical interferometry has been the platform of choice for featuring surface 
finish for a long time. It can be divided into two- and multiple-beam 
interferometry. Two-beam interferometry is subject to a cosine square law. 
However, multiple-beam interferometry is subject to the Airy formula. The 
difference between two- and multiple-beam interferometry is shown in Fig. 
1. All two-beam interferometry suffers from the fact that these techniques 
produce cos2 intensity distributions capable of revealing topographies of the 
order of λ/250 [1]; however, multiple-beam interferometry is capable of 
revealing 500/1  of an order of separation [2]. 

Multiple-beam interferometry means the generation of interference 
between reflected wavefronts from two surfaces, employing a succession of 
coherent beams. Such beams can combine and produce highly sharpened 
fringes. Multiple-beam interferometers were developed by Fabry and Perot 
in 1897 for the accurate measurement of wavelengths and the meter standard. 
The Fizeau interferometer, originally conceived in 1862 as utilizing two-
beam interference, became widely used in the 1940’s as a multiple-beam 
instrument largely through the expositions of Tolansky. Tolansky (1948) 
and co–workers have developed multiple-beam interference techniques 
which have had many important applications in the precise determination of 
height and depth and in the examination of surfaces and films. In the use of 
multiple-beam interferometry, several differences from the more conventional 
two-beam systems are encountered [3]. In the two beams case as shown in 
Fig. 1.1 (a), the recorded intensity variation follows the cos2 law [4-11]; this 
means the finesse number N = 2, which achieves an error estimation of 
precession (λ/2) for simple fringe counting. In contrast, multiple-beam 
fringes are extremely sharp as shown in Fig. 1.1 (b). The finesse number for 
the essential nature of most multiple-beam fringes is nearly 50, and simple 
measurements with such fringes can reveal surface micro topography with 
a precession close to (λ/500). 
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     As seen in Fig. 1.2, multiple-beam interferometry of aspheric surfaces 
(Fig. 1.2 (b)) surpasses two-beam interferometry (Fig. 1.2 (a)) in term of 
resolution. The hidden fringes in Fig. 1.2 (a) appear well in Fig. 1.2 (b). For 
this purpose, we will focus in this chapter on the theory of multiple-beam 
interferometry and how it is used in surface micro-topography measurement.   

 

 
 
Fig. 1.1 (a) Two-beam cosine fringes. (b) Multiple-beam fringes with finesse of 50. 

 
 
Fig. 1.2 Interference fringes of aspheric surface taken by (a) two-beam 
interferometry and (b) multiple-beam interferometry. 

Interference takes place when a parallel beam of light is incident on a 
wedge-shape surface. Constructive interference must achieve the condition 
nλ = 2µtcos(θ), in which λ is the wavelength, µ is the refractive index of the 
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medium and θ is the angle of incidence and n, the number of orders. Taking 
cos(θ) = 1 and µ = 1, we have nλ = 2t. Based on the interference condition 
nλ = 2µtcos(θ), four general fringe systems are thus generated as reported 
in Table 1.1 [1]. 
     In this chapter, we will focus on the second type listed in Table 1.1, 
which is termed the Fizeau fringes of equal thickness.  
  

Nature of light Constant 
quantity 

Fringe type Name of fringes 

Monochromatic 
light 

t Equal inclination Fabry-Perot 

µ (constant) θ  Equal thickness Fizeau 
White light θ  Equal t/λ Equal chromatic order 
λ (variable) t  Equal tcos(θ)/λ White-light Fabry-Perot 

 
Table 1.1 Classification of the interference fringes. 
 
An irregularity arises from a local change in t, say dt, and this produces a 
change in order dn. These sharp fringes have a width some one-fiftieth of 
an order, and it is possible to detect displacements of one-fifth of a fringe 
width, hence the limit value of dn which is measurable is one two-hundred- 
and- fiftieth of an order. This is λ/500 and for λ = 500Ao this is only 10Ao. 
By such very simple means one can recognize and measure surface details 
which approach molecular dimensions [4].  
     If the surfaces of a wedge are made highly reflecting as in the Fabry – 
Perot interferometer, the intensity distribution in the resulting fringes may 
in suitable circumstances follow the Airy function as with the Fabry-Perot 
interferometer; but the conditions for fringes to be observed are much more 
stringent than for the two-beam Fizeau fringes, because the geometry of 
reflection from highly reflecting inclined surfaces means that it is in general 
difficult for a large number of multiply-reflected beams to interfere. The 
narrowness of the multiple-beam reflected fringes reflects directly on the 
accuracy with which the position of the fringe can be determined. Various 
schemes have been developed for accurately locating fringes [12]. The 
parameters on which they rest are the slope of the fringe profile and the 
minimum detectable differences in signal. Because of the large increase in 
slope for the multiple-beam patterns, improved precision in determining the 
fringe position results. Areas between the multiple-beam fringes yield no 
data, so the interferograms from which data are taken must be adjusted so 
that the fringes pass through the regions of local irregularities. There are 
various methods of filling in the area between the multiple-beam fringes, 
like phase shifting and other methods which are discussed in Chapter Three. 
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 Tolansky [13] used a Fizeau interferometer with its inner surfaces 
coated with silver layers. The wedge fringes produced were fringes of equal 
thickness parallel to the edge of the wedge. Wedge fringes may be formed 
under a wide variety of arrangements, e.g. with monochromatic or wide-
band light, in different conditions and observation methods, and over a great 
range of surface separation and wedge angle. For a large area source and 
collimating lens, the constructive interference conditions nλ = 2µtcos(θ) 
ensure that the fringes are sharp on the side towards the vertex of the wedge 
and are extended on the other side (t increasing). In general, the fringes are 
only localized at the wedge surface for normally incident light. For other 
conditions, the so-called Feussner surfaces of localization are quite complex 
particularly for solid wedges [14]. The first detailed study of multiple-beam 
fringes, both their localization and intensity distribution, was made by 
Brossel [15-16]. The reflected fringes from a wedge similarly show 
asymmetry, but Holden [10] in particular has stressed that this should be 
distinguished from the asymmetry due to the intrinsic phase characteristics 
of the first surface. 

Brossel discussed several aspects of fringe formation including non-
normal incidence, fringe broadening due to light source extension, and 
characteristics of the interference pattern and fringe localization away from 
the wedge. However the first detailed numerical evaluation of a multiple-
beam fringe profile was carried out by Kinosita [17], who laboriously 
performed the sum. He found that the main peak is around 80% as high as 
the corresponding Airy fringe, with at least three subsidiary maxima on the 
side for which the wedge is thicker. Rogers [18] has computed the shape 
and location of multiple-beam transmission Fizeau fringes. Moos et al. [19] 
showed sharp wedge fringes for plate separations as large as 20 cm using 
the He-Ne laser source. Barakat et al. [20] computed fringe energy 
distributions at planes different from the Feussner surfaces. Hall [21] 
determined instrument profiles of the Fizeau interferometer under practical 
conditions and in particular investigated the effect of varying the solid angle 
of acceptance. A useful general account of multiple-beam interferometry 
was given by Polster [22]. Langenbeck [23], using a vector representation 
of fringe formation, showed that under certain conditions of off-axis 
illumination with the beam initially reflected towards the apex of the wedge, 
a notable fringe sharpening could be achieved. 
     The various techniques of multiple-beam interferometry have 
established themselves as methods for investigating the micro-topography 
and micro-motions of surfaces. In such investigations, it is necessary first to 
prepare the surface under examination so that it has a high optical 
reflectivity; it is then matched against a suitably silvered optical flat. If the 
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optical conditions are correct, then, as a consequence of the multiple 
reflections of the beams, very sharp interference fringes can be formed 
between the surfaces. These sharp fringes are in effect topographical micro-
contour lines, and with a correct technique it is possible to measure height 
changes on the surface which are as small as one-thousandth of a light wave, 
i.e. about 5 Ao. This quantity is less than many crystal lattice spacings. When 
surface finish and polish are very high, sharp straight-line fringes are 
obtained, and, conversely, deviations from the straight line are a measure of 
the surface roughness. Types of surface and typical applications of 
interferometry (some but not all are mentioned, since there are thousands of 
applications in various fields) are listed in Table 1.2 [24].  
 

Type of 
Surface 

Examples of applications Desired 
accuracy (nm) 

Dimensions 
(m) 

Flats Straightness and planarity 
(reference flats in the 

optical and other 
industries) 

1 - 30 0.1-1.0 

Spheres Photolithography, optics 1 - 30 0.02 – 0.25 
Cylinders, 

toroids 
Scanner, car industry 10 - 100 0.005 – 1.0 

Anisotropic 
curvature 

Synchrotrons 0.5 - 5 0.02 x 1.0 

Aspheres 
rot. sym. 

VUV – Photolithography, 
optics 

1 - 30 0.1 – 0.25 

Complex 
surfaces 

EUV – Photolithography, 
optical telecommunication 

0.2 - 10 0.1 – 1.0 

 
Table 1.2 Classification of surface types, applications and uncertainty. 

1.2 Multiple-beam interferometry at transmission 

Multiple-beam interference fringes are characterized by their fineness [1-3]. 
Fringe sharpness is mainly a function of the reflection coefficient of the 
coatings of the interferometers’ inner surfaces. The Fabry-Perot 
interferometer has been one of the most versatile and important tools in 
branches such as spectroscopy and atomic physics. However, it was 
Tolansky [1-3] who invented the use of a Fizeau interferometer with its 
inner surfaces coated with silver layers. The wedge fringes produced in such 
an interferometer were fringes of equal thickness parallel to the edge of the 
wedge. 
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     Any surface micro-topographies were contoured by the silver coating 
and showed up as a fraction of the order separation of λ/2. The conditions 
for obtaining high definition fringes in a multiple-beam Fizeau air-silvered 
wedge interferometer were set by a number of publications by Tolansky and 
his co-workers during the period 1945 - 1975. 
     The most important condition is to work at low order interference 
fringes, and at low values of the wedge angle α. In real terms both conditions 
mean a close approximation to the case of parallel plate interferometers of 
the Fabry-Perot type. In the F-P type an extended monochromatic source 
giving a limited source of very small angles of incidence, high reflectance 
of the inner surfaces and a very tight tolerance parallelism will give rise to 
a series of transmitted coherent beams with constant phase difference 
between any two successive beams. 
      Interference will take place at infinity and fringes will be brought to 
focus using a lens with suitable aperture assuming the collection of “an 
infinite number of beams”. In this foregoing analysis two main assumptions 
are made: an infinite number of beams or wavelets are created inside the F-
P cavity, and an infinite number of beams or wavelets are collected to 
interfere outside, thus ensuring a constant phase difference between any two 
successive interfering beams. However, even in this idealized F-P situation, 
neither the creation nor collection of an infinite number of beams may be 
expected for experimental difficulties to do with the apertures of the 
interferometer plates and the collimating lens. Even parallelism of incident 
light has limited validity as well as the monochromaticity of this light. 
     In the case of a Fizeau-Tolansky type of interferometer the approximation 
to the F-P case is a necessary condition for applying the Airy summation to 
describe the intensity distribution of the interferogram. It is worth 
mentioning that Brossell [15-16] studied the effect of the phase lag in the 
case of wedge interferometers, while Kinosita [17] studied the effect of 
collecting a limited number of wavelets. 

1.3 Intensity distribution in the parallel plate case 

Figure 1.3 shows a schematic diagram of the F-P parallel plate model. The 
figure shows the extended source and the multiple reflections inside the 
cavity as well as the constant phase difference between any two successive 
emerging beams. The intensity distribution in the transmitted system [1-3] 
is given by 
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,
)2/(sin

)1(
41)1( 2

2

0
2

2


R
R

I
R

TI






                                             (1.1) 

where I0 is the incident intensity equal to unity if we consider an incident 
plane wave of unit amplitude, δ is the phase difference between any two 
successive beams and is given by δ = (2π/λ)(2μt cosθ) ± 2β, μ is the 
refractive index of the medium between the interferometer plates, λ is the 
wavelength of light illuminating the interferometer, t is the air gap, β is the 
phase change on reflection medium (air)/metal layer [25-26]. The β can be 
calculated as follows: tanβ = 2n0k1/(n0

2
 -n1

2-k1
2), where n0 = 1, n1 = 0.05, k1 

= 3.3, λ = 5000Ao (for silver coatings), tanβ = -0.6671, β =-33.71o = 
+326.29o or β = +146.29o. The wave has a period of 2π, i.e. values at 
intervals of multiples of 2π are equal. The tangent, however, has period of 
π so that corresponding to an angle of -33.710o there is an equivalent angle 
of 146.29o. The value of β is calculated as β = 146.29o/180o = 0.8127 π. 
However, the change of phase upon reflection may be expressed as a path 
travelled by the light wave as follows: (2π/λ) x (2β) = 0.8127 π, thus β = 
1015.9Ao. The above formula (1.1) represents the summation to infinity of 
the emerging beams in amplitude and phase. The symbols of T and R stand 
for the fractions of light intensity transmitted and reflected by a single film 
of the coating layers of the inner surfaces. 

1.4 Intensity distribution in the wedge case 

Tolansky [1-3] set up the conditions for high definition fringes in the air-
silvered wedge interferometer. In fact they meant the closest possible 
approximation to the parallel plate model. Figure 1.4 shows a schematic 
diagram of a silvered air wedge interferometer with an angle α between the 
two inner surfaces of the wedge interferometer, as well as the emerging 
beams. It is clear that there are two important elements which contribute to 
the deviation from the idealized case of the P-P model, namely: (1) the 
destruction of the constant phase difference between any two successive 
beams due to an increasingly effective phase lag that increases with the 
increase of the order of the emerging beam; and (2) the linear displacement 
of the emerging beams due to the effect of the angle of the wedge on the 
multiply-reflected beams within the cavity of the wedge interferometer. 
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Fig.1.3 Parallel plate model with coated silver films. 
 

 
 
Fig.1.4 Wedge interferometer. 
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Figure 1.4 shows that, even at high reflectance values of the inner surfaces 
of the air-wedge interferometer securing a very large number of reflections, 
only a limited number of emerging beams will be collected, thus deviating 
from the assumption of an infinite number of beams contributing to the 
formation of the fringes. 
     Gehrcke [27] derived the mathematical formula representing the 
summation of the limited number of interfering beams 

,
)2/(sin4)1(

)2/)1((sin4)1(
22

2121
22

1 


RR
MRRTTI

MM

gM 







                          (1.2) 

where Tg
2 is an intensity reducing factor due to the transmission of the glass 

substrates, (M+1) is the number of beams collected. Tolansky analysed the 
necessary conditions required to produce multiple-beam localized Fizeau 
fringes using a wedge interferometer. He pointed out the main difference 
between the F-P fringe system and the wedge fringe system is the fact that 
the M reflected beams in the wedge system are not behind each other in an 
exact arithmetic series, while, in the parallel plate case, the phase difference 
is independent of the order of the beam.  

       Tolansky [1-3] has defined the fringe sharpness in terms of the fringe 
half-width W, thus: W = (1-R)/R, where R is the geometric mean of the 
coefficients of reflection (R1 and R2) of the material surface and the 
matching optical surface. When R is near unity, the sharpness is sensitive to 
any changes in R. At a minimum value of R, W is at a maximum. For 
maximum R, absorption in the reflective film should be minimum. In the 
case of the wedge fringes (Fizeau), the path difference between the 
successive reflected beams changes progressively with the order of 
reflection. This causes the beams to get out of step. The relative retardation 
becomes λ/2 and tends to annihilate the condition for fringe sharpness. The 
optical path difference between the first and the nth beams is given by Δ = 
2nt - 4/3 n3ɛ2t, where: t is the wedge thickness (vertical dimension) at the 
point under consideration and ɛ is the wedge angle. In view of the above 
considerations, the optimum in contrast and sharpness will be obtained, if: 
 

1. A minimum of 80 percent value for R  is obtained; 
2. Absorption on a coating is minimized as much as possible; 
3. The term 4/3 n3ɛ2t is not allowed to exceed λ/2, i.e. t is made as small 

as possible; 
4. The linear displacement of the successive beams is not allowed to 

exceed the limit of resolution of the objective, i.e. t is made as small 
as possible; 
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5. Fringe broadening is prevented by making the light incident on the 
surface under examination as normal as possible, i.e. the tolerable 
deviation from normal incidence is around 3o [1-3]. 

 
     In multiple-beam interferometry, it is customary to coat the surfaces of 
actual materials to enhance their natural reflectivity, before studying their 
topographies. Considerable experience by Tolansky [1-3] and others 
indicates that three types of coatings are suitable for use in conjunction with 
reflection interference techniques: 
 

 Silver, aluminium or chromium 
 Non-metallic multilayers, alternating zinc sulphide with magnesium 

fluoride, cryolite or collodion 
 Alternating metallic and non-metallic films 

 
A suitable reflective film should have the following necessary 
characteristics: 
 

 It should have a high ( > 80 percent) reflectivity 
 Absorption in the film should be low 
 It must contour the surface homogenously 
 It should be stable in vacuums of around 10-5 mm of mercury. 

 
     The films are deposited on a surface under appropriate vacuum 
conditions (10-5 mm of mercury). Tolansky [1-3] has given different 
arrangements for deposition of films in a vacuum. The important thing is 
the control of the film. Experience is required to learn about the required 
film thickness and its deposition. Fringes of equal thickness can be used to 
measure the thickness of deposition by creating “step heights” on a glass 
surface (Tolansky [1-3]). The deposition at which the measured step height 
is reasonably different compared to the original step height is the optimum 
thickness of deposition. 

1.5 Multiple-beam interferometry at reflection 

Reflection fringes are of particular value in the examination of opaque 
surfaces, and have other applications where the use of transmission fringes 
would be very inconvenient. Reflection fringes are fine dark lines on a broad 
bright background and, due to this background, monochromatization of the 
light is very necessary. Absorption in the reflecting films also affects the 
fringe visibility. Reflection fringes have, therefore, some disadvantages 
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compared with the normal transmission fringes. Though potentially as sharp 
as the latter, the visibility is dependent very critically on absorption in the 
reflecting film, and the contrast between the fringes and the background 
intensity is considerably lower than that for transmission fringes. 
Transmission-like fringes at reflection have been used also in studying the 
flatness of precision surfaces. Bruce [28] has shown that the transmission-
like fringes at reflection have advantages over the normal reflection fringes 
because of their higher contrast. A particularly interesting application of 
these fringes is their use in studying vibrations. Bruce and Kelly have used 
multiple-beam techniques to determine the amplitudes of vibration of very 
sensitive vibration detectors. Holden [10] has shown how transmission-like 
fringes in reflection can arise if particular reflectivities of the two surfaces 
making up the interferometer system are used. In normal reflection fringe 
systems the interference effects between various multiple reflected beams 
will give rise to transmission-like effects, but the beams reflected externally 
are predominant, since the intensity of the these beams is very much higher 
than any of the internally reflected beams. It is therefore to be expected that 
transmission-like reflection fringes will appear and will show high contrast 
relative to their background, if the externally reflected beams are 
sufficiently suppressed. 

1.6 Reflected system at infinite number of beams collected 

The theory of the intensity distribution of Fabry-Perot fringes at reflection 
was first dealt with by Hamy [25] and then by Holden [10] using 
trigonometric relations. A fuller account is given by Barakat [29] using 
complex quantities and taking into account also the optical phase properties 
of the coating metallic layers. 
      Let eiωt be the incident wave and β1 be the change of phase at 
glass/metallic layer reflection for the upper component of the interferometer 
when facing the incident light. The changes of phases are denoted β2 and β3 
at air/metallic layer reflection for the upper and lower components 
respectively and are denoted by γ for the phase change in transmission.  
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Fig.1.5 Parallel plate model with detailed transmitted and reflected rays. 
 
Here, r1

2 and r2
2 stand for the fractions of light intensity reflected from the 

glass/metallic layer and air/metallic layer of the upper component, r3
2 refers 

to the reflected intensity at air/metallic layer coating from the second 
component and T2 is the transmitted intensity through the metallic layer of 
the upper component. The expression for the resultant of multiple-reflected 
waves resulting from a Fabry-Perot interferometer in reflection Rr as shown 
in Fig.1.5 is given by 
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)2()(
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32
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3
3

21
1









tierrT

tierTtirrR

                 (1.3) 

To simplify the notations, Eq. 1.3 can be written as follows: 

,
....)(

)(1)()(
2

32
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3

2
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1
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
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
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
























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ierrFierTrtierR

                     (1.4) 

where 212  F    

and     
.))(2(2

3232 

  tCos
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The geometric series  


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  ....)()()()(1 4
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32
2

3232
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can be written as  
.

]1[
1

32
ierr                                                    (1.5) 

Then Eq. 1.4 can be written as 
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                        (1.6) 
Multiply by conjugate of Eq. 1.5, then Eq. 1.6 is written as 
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          (1.7) 

Using the facts of ),()(&)()(  iSinCosieiSinCosie   then 
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, 
using the fact     ]]2/[21[)( 2 SinCos   

and      )()()()()(
)()()()()(



SinSinCosCosCos
SinCosCosSinSin


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, 
one gets 
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      (1.8) 
The Eq. 1.8 has real and imaginary parts, so by applying this simplification  

ibaire  , then 
22 bar   and 

222 baAI RR   on Eq. 1.8, one simply 
obtains the number of beams collected at reflection IR for an infinite number 
of beams collected as 
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,
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                (1.9) 

The values of δ at which IR is maximum and minimum are obtained by 
equating dI/dδ to zero or 

.0sin4
cos)sin2sin2(

sin)cos22cos2(

2
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FTrrr
FTrrFrrr

FTrrrTrrFTrr
d
dI






 

This can be written in the form of .cossin PNM    Using the facts
22/)cos( NMM  ,

22/)sin( NMN  , 
22/)sin( NMP  , 

),sin()cos()cos()sin()sin(    

Therefore 
).sin()sin()cos(

222222
 







 NM
P
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M
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N

 
Also, using the fact ),sin()sin(    one gets 

,2   n  or .)12(   n  
These are the values of δ at which IR is maximum and minimum. 
     It is clear that any minimum does not occur half way between any two 
neighbouring maxima. The condition for this case can be written as  

,0sin,0sin4,0sin..0 2
1

2
321  FFTrrrPei   
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i.e. F is equal to a multiple of π. 
We have the following two cases: case 1, when F = 2nπ, Eq. 1.9 can be 
written as  
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When δ = 2nπ, Eq. 1.9 can be written as  
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When δ = (2n+1)π, Eq. 1.9 can be written as      
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In case 2, when F = (2n+1)π, Eq. 1.9 can be written as  
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When δ = 2nπ, Eq. 1.9 can be written as      
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When δ = (2n+1)π, Eq. 1.9 can be written as      
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     The first case corresponds to symmetrical bright lines on a black back 
ground, with transmission-like fringes at reflection. The last case 
corresponds to symmetrical dark lines on a bright back ground, the usual 
Fabry-Perot fringes at reflection. 
     In order to examine the sharpness and contrast of the reflection fringes 
in the range ,0.16.0  R  which is the working range in topographical 
studies, we can take with good approximation)12(  nF . Therefore the 
reflected intensity from symmetrical, high-reflection coatings can be written 
as TttRrrF  2

2
2
1

2
2

2
1 ;; ), using the fact of )cos()cos(   , one gets  
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. 

The maxima occur at δ = (2n+1)π and the minima at δ = 2nπ. 
Minima: the minimum intensity in the reflected pattern min][RI is, therefore, 

 22
)1(

][ 2min 


 RT
R

RTRIR
. 

If there is no absorption in the silver films we can write ,1TR  and the 
minimum reflected intensity in the case of no absorption, ,][ 0

minRI  becomes 
zero. If there is absorption defined by A, such that ,1 ATR  the minimum 
reflected intensity 

A
RI min][  becomes

22 )1/(RRA  . Thus 

2
2

0
minmin )1(

][][ A
R

RII R
A

R 


. 

Therefore the minimum intensity in the reflected pattern is raised from its 
value zero in the case of no absorption to the value 

22 )1/(RRA   when there 
is absorption defined by1 ATR . 
Maxima: the maximum intensity in the reflected pattern  

 22
)1(

][ 2max 


 RT
R

RTRIR
. 

If there is no absorption we can write ,1TR  and the maximum reflected 
intensity becomes 

 2
2

0
max 23

)1(
][ RR

R
RRIR 



. 

If there is absorption defined as before, the maximum reflected intensity 
A

RI min][  for absorption is 

 )4()23(
)1(

][ 22
2max AARR

R
RRI A

R 



. 

Since typical values of A at the higher reflectivities employed in multiple-
beam interferometry are of the order of 0.05, A2 ˂˂ 4A. Therefore  


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


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 ARR
R

RRI A
R 4)23(

)1(
][ 2

2max 



. 

Thus  
.4

)1(
][][ 2

0
maxmax A

R
RII R

A
R 


                                 

Therefore, when absorption A is present, defined by ,1 ATR  the 
maximum reflected intensity is decreased by an amount

22 )1/(RRA  . 

1.7 Reflected system at finite number of beams collected 

If the incident light is parallel and even, and also incident normally, when 
such light falls on a wedge it is apparent that the ultimate emerging beams 
diverge. The higher the beam order, the more the divergence. If a small 
aperture is used then there is incomplete collection of beams. This has two 
effects: (a) the fringes are broadened appreciably, and (b) the fringes are 
accompanied by ghosts. The theory of the fringe pattern produced by a 
multiple-beam series which is a cut-off instead of going to infinity was 
given long ago by E.Gehrcke [27] at transmission. It is essential to prove an 
equation that correlates the number of beams collected with intensity at 
reflection. 
      The multiple-beam intensity at a finite number of beams collected at 
reflection [30] can be established in the same way as at infinity using the 
same parameters, so the expression for the resultant of multiple-reflected 
waves resulting from a Fabry-Perot interferometer in reflection Rr as shown 
in Fig. 1.5 is given by Eq. 1.3. The series  
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can be written for a finite number of beams collected as 
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Equation 1.3 can be written as 
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                                    (1.10) 

When Rrrrrr  )(& 3232  and using the facts 
),()(&)()(  iSinCosieiSinCosie    

The term of number of beams M of Eq. 1.10 can be formulated as 
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After multiplication of all terms inside the brackets of Eq. 1.10, one gets 
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This equation can be abbreviated as: 
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                           (1.11)                     

This Eq. 1.11 has real and imaginary parts, so by applying this simplification  
ibaire  , then 

22 bar   and 
222 baAI RR   on Eq. 1.11, one simply 

gets the intensity IR at reflection for a finite number of beams as 



Optical Interferometry 
 

19 

,
)2/(4)1(

)(])1[(
)()()()(

)(])1[(
)()(

)()(
)()2/(4)1(

22

1

1

2
1

2
1













RSinR
FSinMSinxR

FSinMSinxRFSinxRSin
FCosMCosxR

FCosMCosxR
FCosxRCos

FxCosRSinrRr

a
M

M

M

M













































.
)2/(4)1(

)(])1[(
)()(

)()()(
)1()(

)()()()(

22

1

1











RSinR
FSinMCosxR

FSinMCosxR
FSinxRCosFxSin

MSinFCosxR
FCosMSinxRFCosxRSin

b
M

M

M

M







































 

Using the facts ]]2/[21[)( 2  SinCos   and 

)()()()()(
)()()()()(



SinSinCosCosCos
SinCosCosSinSin




, one gets 

.)2/(sin4)1(

)2/(sin4)1(
)cos()2cos(

)1cos()1cos(2
)(1

))1cos((
))2cos(()cos()cos(2

22

22

2
1

2142
3

2

1
2

31

2
1

222















































































































RR

RR
MRMR

MRMR
RTr

FMR
FMRFRFTrr

r

I

M

M

M

M

R baR

           (1.12) 

Where M+1 is the number of beams collected. The intensity distribution in 
the case of F = 2nπ where T2 = 30%, r1

2 = r2
2 = 65%, r3

2 = 96% and M+1 = 
30 is illustrated in Fig. 1.6 (a), which is transmission-like fringes. In the case 
of F = (2n+1) π, n = 1, 2, 3,…., r1

2 = r2
2 = r3

2 = 85%, T2 = 12%, the intensity 
distribution is shown in Fig.1.6 (b). It is clear that this case represents the 
case of a pure reflected system. 
     In the case of F = (2n+0.5) π, n = 1, 2, 3,…., r1

2 = r2
2 = 50%, T2 = 45%, 

r3
2 = 94%, the intensity distribution is shown in Fig. 1.6 (c). It is clear that 

the fringes are asymmetrical and have tails, and neither the maximum nor 
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the minimum occurs at nπ where n = 1, 2, 3,…., but at a fraction of π. As 
previously mentioned, the F value controls the intensity distribution in 
reflection fringes. For F = (2n+1) π, a pure and perfect reflected system of 
fringes is formed characterized by sharp symmetrical dark lines on a bright 
background [30]. For F = (2n+1±ɛ) π, where ɛ is a fraction, the fringes are 
asymmetrical (this asymmetry can often be useful for distinguishing 
between upward and downward slopes of the surface).  
     This shows the importance of choosing the metallic coatings of the 
interferometer. In performing metrological measurements using fringes at 
reflection, it is essential to choose layers of metals of F = (2n+1) π. Also if 
transmission-like fringes at reflection are to be utilized then the metallic 
coatings should have F = 2nπ. It is preferable to calculate F, which plays a 
significant role in controlling the intensity distribution at reflection, rather 
than to measure it. This has to be done by calculation of β1, β2 and γ and 
substituting in F = 2γ-β1- β2. 
 

 
 
Fig. 1.6 Variation of intensity with phase difference. (a) Transmission-like fringes. 
(b) Pure reflection fringes. (c) Asymmetrical fringes. 


