Optical Metrology with Interferometry

Optical Metrology with Interferometry

By
Dahi Ghareab Abdelsalam Ibrahim

Cambridge Scholars
Publishing

Optical Metrology with Interferometry

By Dahi Ghareab Abdelsalam Ibrahim

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2019 by Dahi Ghareab Abdelsalam Ibrahim

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-3723-4
ISBN (13): 978-1-5275-3723-1

1.1 Introduction

	t		
μ	θ		
	θ	$t \lambda$	
λ	t	$t \quad \theta \lambda$	

$d n$

$$
t \quad d t
$$

$d n$	
$\lambda /$	λ

$n \lambda \quad \mu t \quad \theta$

1.2 Multiple-beam interferometry at transmission
1.3 Intensity distribution in the parallel plate case

$$
\begin{aligned}
& I_{\infty}=\frac{T}{-R} \frac{I}{+\frac{R}{-R} \quad \delta} \\
& I \quad \delta \\
& \delta \\
& \delta \quad \lambda \mu t \quad \theta \quad \beta \mu \\
& t \\
& \beta \\
& \begin{array}{lllllllllll}
\beta & n k & n & n & k & , & n & & n
\end{array} \\
& \beta \\
& \pi \\
& \pi
\end{aligned}
$$

1.4 Intensity distribution in the wedge case

$$
\begin{aligned}
& I_{M+}=T_{g} T \frac{-R^{M+}+R^{M+}}{} \begin{array}{r}
\text { M+ } \delta \\
-R+R \\
\delta
\end{array} \\
& T \\
& \text { M }
\end{aligned}
$$

M

λ
$n t \quad n \varepsilon t \quad t$

1.5 Multiple-beam interferometry at reflection

1.6 Reflected system at infinite number of beams collected

$e^{i \omega t} \quad \beta$
$\beta \quad \beta$

$r \quad r$

$$
\begin{gathered}
R_{r}=r^{i \omega t+\beta}+T r e^{i \omega t+\gamma+\beta+\delta}+ \\
\operatorname{Trr} e^{i \omega t+\gamma+\beta+\beta+\delta}+ \\
R_{r}=e^{i \omega t+\beta}\left\{r+T r e^{i} F+\delta\left[\begin{array}{c}
+r r e^{i \delta}+ \\
r r e^{i \delta}+
\end{array}\right]\right\} \\
F=\gamma-\beta-\beta \\
\delta=\frac{\pi}{\lambda} \quad \mu t \operatorname{Cos} \theta+\beta+\beta=\Delta+\beta+\beta
\end{gathered}
$$

$$
\operatorname{Cos} \delta=-\operatorname{Sin} \delta
$$

$$
\operatorname{Sin} \alpha \pm \beta=\operatorname{Sin} \alpha \operatorname{Cos} \beta \pm \operatorname{Cos} \alpha \operatorname{Sin} \beta
$$

$$
\operatorname{Cos} \alpha \pm \beta=\operatorname{Cos} \alpha \operatorname{Cos} \beta \mp \operatorname{Sin} \alpha \operatorname{Sin} \beta
$$

$$
\begin{aligned}
& R_{r}=e^{i \omega t+\beta}\left\{\frac{r+T r \quad F+\delta-r r \quad F+i-r r \quad F+F+\delta}{-r r}\right\} \\
& r e^{i \theta}=a+i b \quad r=\sqrt{a+b} \quad I_{R}=A_{R}=a+b
\end{aligned}
$$

$$
\begin{aligned}
& {\left[+r r e^{i \delta}+r r e^{i \delta}+r r e^{i \delta}+r r e^{i \delta}+\right]} \\
& -r r e^{i \delta} \\
& R_{r}=e^{i \omega t+\beta}\left\{r+T r e^{i F+\delta} \frac{}{-r r e^{i \delta}}\right\} \\
& R_{r}=e^{i \omega t+\beta}\left\{r+T r e^{i F+\delta} \frac{-r r e^{-i \delta}}{-r r e^{i \delta}-r r e^{-i \delta}}\right\} \\
& e^{i \delta}=\operatorname{Cos} \delta+i \operatorname{Sin} \delta \quad e^{-i \delta}=\operatorname{Cos} \delta-i \operatorname{Sin} \delta \\
& R_{r}=e^{i \omega t+\beta}\left\{r+T r e^{i F+\delta}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& R_{r}=e^{i \omega t+\beta}\left\{\begin{array}{cccccc}
F+\delta-r r & \delta & F+\delta-r r & \delta & F+\delta \\
r+T r i r r & \delta & F+\delta-r r & \delta & F+\delta+ & F+\delta \\
\hline & -r r & \delta+r r &
\end{array}\right\}
\end{aligned}
$$

$$
M \quad \delta+N \quad \delta \cong P
$$

$$
\phi=M \sqrt{M+N} \quad \phi=N \sqrt{M+N} \quad \psi=P \sqrt{M+N}
$$

$$
\phi+\delta=\phi \quad \delta+\phi \quad \delta
$$

$$
\frac{N}{\sqrt{M+N}} \quad \delta+\frac{M}{\sqrt{M+N}} \quad \delta=\frac{P}{\sqrt{M+N}}=\quad \psi
$$

$$
\phi+\delta=\psi
$$

$$
\delta=n \pi+\psi-\phi \quad \begin{array}{ccc}
& \delta= & n+\psi-\phi \\
& \delta & I_{R}
\end{array}
$$

$$
\psi=\quad \text { ie } \quad \psi=\quad P=\operatorname{rrr} T \quad F=\quad F=
$$

$$
\begin{aligned}
& I_{R}=\left\{\frac{r+T r \quad F+\delta-r r \quad F}{-r r \quad \delta+r r}\right\}+T r\left\{\frac{-r r r+}{-r r} \delta+r r\right\} \\
& I_{R}=r+\frac{T r r \quad F+\delta-r r}{+r r-r r \quad \delta}+ \\
& \begin{array}{ccrrrr}
T r & F+\delta+r r & F-r r & F+\delta & F \\
\hline+r r-r r & \delta &
\end{array}+ \\
& \begin{array}{ccrrcc}
T r & F+\delta+r r & F-r r & F+\delta & F \\
\hline+r r-r r & \delta & &
\end{array} \\
& I_{R}=r+\frac{T r+r r-r r \delta}{+r r-r r} \delta \quad+\frac{T r r \quad F+\delta-T r r r}{+r r-r r \quad \delta} \\
& I_{R}=r+\frac{T r+T r r \quad F+\delta-T r r r}{+r r-r r} \delta \\
& \text { I } \\
& d I d \\
& \frac{d I}{d \delta}=\operatorname{rr} T \quad F+r r T-r r r T \quad F \quad \delta \\
& r r \quad F+r r T \quad F \quad \delta \\
& -\operatorname{rrr} T \quad F=
\end{aligned}
$$

$$
\begin{array}{llll}
F & \pi & F & n \pi
\end{array}
$$

$$
I_{R}=r+\frac{T r+T r r \quad \delta-T r r r}{+r r-r r} \delta
$$

$\delta \quad n \pi$

$$
I_{R}=r+\frac{T r+T r r-T r r r}{-r_{r}}=r+\frac{T r}{-r r}=I_{R}
$$

$\delta \quad n \quad \pi$,

$$
I_{R}=r+\frac{T r+T r r-T r r r}{+r r}=r-\frac{T r}{+r r}=I_{R}
$$

$$
F \quad n \quad \pi
$$

$$
I_{R}=r+\frac{T r-T r r \quad \delta+T r r r}{+r r-r r} \delta
$$

$\delta \quad n \pi$

$$
I_{R}=r+\frac{T r-T r r+T r r r}{-r r}=r-\frac{T r}{-r r}=I_{R}
$$

$$
\delta \quad n \quad \pi
$$

$$
I_{R}=r+\frac{T r+T r r+T r r r}{+r r}=r+\frac{T r}{+r r}=I_{R}
$$

$$
\begin{array}{cc}
<R< & F=n+\pi \\
F=\pi r=r=R t=t=T & \pi+\delta=-\quad \delta
\end{array}
$$

$$
I_{R}=R+\left\{\frac{T R+T R-T R \delta}{+R-R \delta}\right\}
$$

$$
\delta \quad n \quad \pi
$$

Minima:

$$
\begin{aligned}
& I_{R}=R+\frac{R T}{-R}\{T+R-\} \\
& R+T= \\
& I_{R} \\
& R+T+A= \\
& A R \quad-R \\
& R+T+A=
\end{aligned}
$$

Maxima:

$$
\begin{aligned}
& I_{R}=R+\frac{R T}{+R}\{T+R+\} \\
& R+T= \\
& I_{R}=R+\frac{R}{+R}\{-R-R\} \\
& I_{R}^{A} \\
& I_{R}^{A}=R+\frac{R}{+R}\{-R-R+A-A\}
\end{aligned}
$$

$$
\begin{array}{rl}
I_{R}^{A}=R+\frac{R}{+R}\{-R-R-A\} \\
I_{R}^{A}=I_{R}-\frac{R}{+R} A & R+T+A= \\
A R-R
\end{array}
$$

1.7 Reflected system at finite number of beams collected

$$
\left[+r r e^{i \delta}+r r e^{i \delta}+r r e^{i \delta}+r r e^{i \delta}+\right]
$$

$$
S_{n}=\left[\frac{-r r e^{i \delta \quad M}}{-r r e^{i \delta}}\right]
$$

$$
\begin{gathered}
R_{r}=e^{i \omega t+\beta}\left\{r+T r e^{i F+\delta}\left[\frac{-r r e^{i \delta m}}{-r r e^{i \delta}}\right]\right\} \\
r=r=r \quad r r=R \\
e^{i \delta}=\operatorname{Cos} \delta+i \operatorname{Sin} \delta \quad e^{-i \delta}=\operatorname{Cos} \delta-i \operatorname{Sin} \delta \\
M
\end{gathered}
$$

$$
\begin{aligned}
& \frac{-i \delta{ }_{M}}{-i \delta} \frac{-{ }^{-} \delta_{M}}{-\quad-i \delta}=\frac{-{ }^{-i \delta}-R^{M} e^{-i \delta M}+R^{M+} e^{i \delta M-}}{-R \operatorname{Cos} \delta+R} \\
& -\quad-i \delta_{-} R^{M} e^{-i \delta_{M}}+R^{M+} e^{i \delta M-} \\
& \left.=\left[\begin{array}{l}
-R[\operatorname{Cos} \delta-i \operatorname{Sin} \delta] \\
-R^{M}[\operatorname{Cos} M \delta+i \operatorname{Sin} M \delta
\end{array}\right] \quad \begin{array}{lll}
\\
+R^{M+}\left[\begin{array}{lll}
\operatorname{Cos} & M-\delta+i \operatorname{Sin} & M-\delta
\end{array}\right]
\end{array}\right] \\
& =\left[\begin{array}{l}
-R \operatorname{Cos} \delta-R^{M} \operatorname{Cos} M \delta+R^{M+} \operatorname{Cos} M-\delta+ \\
i\left[R \operatorname{Sin} \delta-R^{M} \operatorname{Sin} M \delta+R^{M+} \operatorname{Sin} M-\delta\right]
\end{array}\right] \\
& r+T r e^{i F+\delta}\left[\frac{-r r e^{i \delta \quad M}}{-r r e^{i \delta}}\right]=
\end{aligned}
$$

$$
\begin{aligned}
& r+T r e^{i F+\delta}\left[\frac{-r r e^{i \delta M}}{-r r e^{i \delta}}\right]= \\
& r+\left[\begin{array}{l}
T r\left[\begin{array}{lll}
\operatorname{Cos} & F+\delta+i \operatorname{Sin} & F+\delta
\end{array}\right] \\
{\left[\begin{array}{lll}
-R \operatorname{Cos} & \delta-R^{M} \operatorname{Cos} & M \delta+R^{M+} \operatorname{Cos} \\
i[R-\delta+ & \delta+ \\
R \operatorname{Sin} \delta-R^{M} \operatorname{Sin} & M \delta+R^{M+} \operatorname{Sin} & M-\delta
\end{array}\right]} \\
-R+R \operatorname{Sin} \delta
\end{array}\right] \\
& r e^{i \theta}=a+i b \quad r=\sqrt{a+b} \quad I_{R}=A_{R}=a+b \\
& \text { I }
\end{aligned}
$$

$$
\begin{aligned}
& a=\frac{\left[\begin{array}{llll}
r & -R & + & r \operatorname{Sin} \\
-x R \operatorname{Cos} & \delta & \operatorname{Cos} & F+\delta \\
-x R^{M} & \operatorname{Cos} & M \delta & \operatorname{Cos} \\
-x+\delta \\
-x R^{M+} & \operatorname{Cos} & M-\delta & \delta \operatorname{Cos} F+\delta \\
+x R^{M} & \\
-x R \operatorname{Sin} & \delta \operatorname{Sin} F+\delta+x R^{M} \operatorname{Sin} M \delta \operatorname{Sin} F+\delta \\
-x R^{M+} \operatorname{Sin} & M-\delta \operatorname{Sin} F+\delta
\end{array}\right]}{-R+R \operatorname{Sin} \delta} \\
& b=\frac{\left[\begin{array}{l}
+x R \operatorname{Sin} \delta \operatorname{Cos} F+\delta-x R^{M} \operatorname{Sin} M \delta \operatorname{Cos} F+\delta \\
+x R^{M+} \operatorname{Cos} F+\delta \operatorname{Sin} M-\delta \\
+x \operatorname{Sin} F+\delta-x R \operatorname{Cos} \delta \operatorname{Sin} F+\delta \\
-x R^{M} \operatorname{Cos} M \delta \operatorname{Sin} F+\delta \\
+x R^{M+} \operatorname{Cos} M-\delta \operatorname{Sin} F+\delta
\end{array}\right]}{-R+\operatorname{RSin} \delta} \\
& \operatorname{Cos} \delta=-\operatorname{Sin} \delta
\end{aligned}
$$

$\operatorname{Sin} \alpha \pm \beta=\operatorname{Sin} \alpha \operatorname{Cos} \beta \pm \operatorname{Cos} \alpha \operatorname{Sin} \beta$
$\operatorname{Cos} \alpha \pm \beta=\operatorname{Cos} \alpha \operatorname{Cos} \beta \mp \operatorname{Sin} \alpha \operatorname{Sin} \beta$

$$
I_{R}=R=a+b=
$$

M

$$
\begin{array}{ccccccccc}
F & n \pi & T & r & r & r & =\% & M
\end{array}
$$

$F \quad n \quad \pi, n=1,2,3, \ldots . r \quad r \quad r \quad T$

$$
F \quad n \quad \pi, n=1,2,3, \ldots . r \quad r \quad T
$$

$$
\left.\begin{array}{ccc}
& & \\
& & n=1,2,3, \ldots \\
F & & n
\end{array}\right) \pi
$$

$$
F \quad n \quad \pi
$$

$$
F \quad n \quad \pi
$$

$$
n \pi
$$

$$
F \quad \gamma \beta \quad \beta
$$

