Optical Metrology with Interferometry

Optical Metrology with Interferometry

^{By} Dahi Ghareab Abdelsalam Ibrahim

Cambridge Scholars Publishing

Optical Metrology with Interferometry

By Dahi Ghareab Abdelsalam Ibrahim

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2019 by Dahi Ghareab Abdelsalam Ibrahim

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-3723-4 ISBN (13): 978-1-5275-3723-1

1.1 Introduction

λ

λ

N

λ

 $n\lambda \quad \mu t \quad \theta \qquad \lambda$

μ

$$\begin{array}{ccc} \theta & & n \\ \theta & \mu = & n\lambda & t \\ n\lambda & \mu t & \theta \end{array}$$

	t		
μ	θ		
	θ	tλ	
λ	t	τ θλ	

t dt

dn

dn λ/ λ

 $n\lambda$ μt heta

t

1.2 Multiple-beam interferometry at transmission

1.3 Intensity distribution in the parallel plate case

1.4 Intensity distribution in the wedge case

$$I_{M+} = T_g T \frac{-R^{M+} + R^{M+}}{-R + R} \frac{M + \delta}{\delta}$$
$$T$$
$$M$$

М

t

t

- •
- •

1.5 Multiple-beam interferometry at reflection

1.6 Reflected system at infinite number of beams collected

γ

 $e^{i\omega t}$

β

β β

$$R_{r} = r^{i} \omega t + \beta + T r e^{i} \omega t + \gamma + \beta + \delta + T r r e^{i} \omega t + \gamma + \beta + \beta + \delta + \delta$$

$$R_{r} = e^{i \omega t + \beta} \left\{ r + T r e^{i F + \delta} \left[\begin{array}{c} + r r e^{i\delta} + \\ r r e^{i\delta} + \end{array} \right] \right\}$$

$$F = \gamma - \beta - \beta$$

$$\delta = \frac{\pi}{\lambda} \quad \mu t Cos \ \theta + \beta + \beta = \Delta + \beta + \beta$$

$$\begin{bmatrix} + rre^{i\delta} + rre^{i\delta} + rre^{i\delta} + rre^{i\delta} + rre^{i\delta} + \end{bmatrix}$$

$$\boxed{-rre^{i\delta}}$$

$$R_{r} = e^{i\omega t + \beta} \left\{ r + Tre^{iF + \delta} - \frac{-rre^{-i\delta}}{-rre^{i\delta}} \right\}$$

$$R_{r} = e^{i\omega t + \beta} \left\{ r + Tre^{iF + \delta} - \frac{-rre^{-i\delta}}{-rre^{i\delta} - rre^{-i\delta}} \right\}$$

$$e^{i\delta} = \cos \delta + i\sin \delta \qquad e^{-i\delta} = \cos \delta - i\sin \delta$$

$$R_{r} = e^{i\omega t + \beta} \left\{ r + Tre^{iF + \delta} - \frac{-rr}{\delta - i} - \frac{\delta}{\delta} - rre^{-i\delta} - \frac{\delta}{\delta} \right\}$$

$$R_{r} = e^{i\omega t + \beta} \left\{ r + Tre^{iF + \delta} - \frac{-rr}{\delta - i} - rre^{-i\delta} - rre^{-i\delta} - \frac{\delta}{\delta} \right\}$$

$$R_{r} = e^{i\omega t + \beta} \left\{ r + Tre^{iF + \delta} - \frac{rr}{\delta - i} - rre^{-i\delta} - rre$$

δ

$Cos \ \delta = - Sin \ \delta$

 $Sin \ \alpha \pm \beta = Sin \ \alpha \ Cos \ \beta \ \pm Cos \ \alpha \ Sin \ \beta$ $Cos \ \alpha \pm \beta = Cos \ \alpha \ Cos \ \beta \ \mp Sin \ \alpha \ Sin \ \beta$

$$R_{r} = e^{i \omega t + \beta} \left\{ \frac{r + T r \qquad F + \delta - r r \qquad F + i - r r \qquad F + F + \delta}{-r r \qquad \delta + r r} \right\}$$

$$re^{i\theta} = a + ib$$
 $r = \sqrt{a + b}$ $I_R = A_R = a + b$
I

$$I_{R} = \left\{ \frac{r+T \ r \quad F+\delta -r \ r \quad F}{-r \ r \quad \delta +r \ r} \right\} + T \ r \ \left\{ \frac{-r \ r \quad F+\delta}{-r \ r \quad \delta +r \ r} \right\}$$

$$\begin{split} I_{R} &= r + \frac{T rr}{+r r - rr} \frac{F + \delta - rr}{\delta} + \\ \frac{T r}{+r r - rr} \frac{F + \delta + rr}{\delta} + \\ \frac{T r}{+r r - rr} \frac{F - rr}{\delta} + \\ \frac{F + \delta + rr}{+r r - rr} \frac{F - rr}{\delta} + \\ \frac{F + \delta + rr}{\delta} + \\ \frac{F$$

$$I_{R} = r + \frac{T r + rr - rr \delta}{+rr - rr \delta} + \frac{T rr F + \delta - T rrr F}{+rr - rr \delta}$$

$$I_{R} = r + \frac{T r + T rr F + \delta - T rrr F}{+rr - rr \delta}$$

$$I$$

$$\frac{dI}{d\delta} = rrT \qquad F + rrT - rrrT \qquad F \qquad \delta$$
$$rrr \qquad F + rrT \qquad F \qquad \delta$$
$$- rrrT \qquad F =$$

$$M \quad \delta + N \quad \delta \cong P$$

$$\phi = M \quad \sqrt{M + N} \quad \phi = N \quad \sqrt{M + N} \quad \psi = P \quad \sqrt{M + N}$$

$$\phi + \delta = \phi \quad \delta + \phi \quad \delta$$

$$\frac{N}{\sqrt{M + N}} \quad \delta + \frac{M}{\sqrt{M + N}} \quad \delta = \frac{P}{\sqrt{M + N}} = \psi$$

$$\phi + \delta = \psi$$

$$\delta = n\pi + \psi - \phi \quad \delta = n + \pi - \psi - \phi$$

$$\delta \qquad I_R$$

 $\psi = i e \quad \psi = P = rrrT \quad F = F =$

 $I_{R} = r + \frac{T r + T rr}{+r r - rr} \frac{\delta - T rrr}{\delta}$ δ $n\pi$ $I_{R} = r + \frac{T r + T rr - T rrr}{-rr} = r + \frac{T r}{-rr} = I_{R}$ δ $n \pi$. $I_{R} = r + \frac{T r + T rr - T rrr}{+ rr} = r - \frac{T r}{+ rr} = I_{R}$ F n π $I_{R} = r + \frac{T r - T rr}{+r r - rr} \frac{\delta + T rrr}{\delta}$ $\delta n\pi$ $I_{R} = r + \frac{T r - T rr + T rr r}{-rr} = r - \frac{T r}{-rr} = I_{R}$ δ n π $I_{R} = r + \frac{T r + T rr + T rr r}{+ rr} = r + \frac{T r}{+ rr} = I_{R}$

π

< *R* <

 $F = n + \pi$

 $F = \pi \ r = r = R \ t = t = T \qquad \pi + \delta = - \delta$

F

$$I_{R} = R + \left\{ \frac{T R + TR - TR \delta}{+R - R \delta} \right\}$$

$$\delta \quad n \quad \pi \qquad \delta \quad n\pi$$

Minima:

$$I_{R} = R + \frac{RT}{-R} \{T + R - \}$$

$$R + T = I_{R}$$

$$I_{R} \quad A \quad R + T = I_{R}$$

$$I_{R} \quad A \quad R - R$$

$$I_{R} \quad A \quad R - R$$

A R - R

R + T + A =

Maxima:

$$I_R = R + \frac{RT}{+R} \{T + R + \}$$

R + T =

$$I_R = R + \frac{R}{+R} \left\{ - R - R \right\}$$

$$I_{R}^{A} = R + \frac{R}{+R} \left\{ -R - R + A - A \right\}$$

$$A$$

A A

$$I_{R}^{A} = R + \frac{R}{+R} \left\{ \begin{array}{ccc} -R - R & -A \end{array} \right\}$$

$$I_{R}^{A} = I_{R} & -\frac{R}{+R} & A$$

$$A & R + T + A = A$$

$$A = A - R$$

1.7 Reflected system at finite number of beams collected

$$R_r$$

$$\begin{bmatrix} + rre^{i\delta} + rre^{i\delta} + rre^{i\delta} + rre^{i\delta} + \end{bmatrix}$$

$$S_n = \begin{bmatrix} - rre^{i\delta} & M \\ - rre^{i\delta} \end{bmatrix}$$

$$R_{r} = e^{i \omega t + \beta} \left\{ r + T r e^{i F + \delta} \left[\frac{-r r e^{i\delta}}{-r r e^{i\delta}} \right] \right\}$$
$$r = r = r r r r = R$$
$$e^{i\delta} = \cos \delta + i\sin \delta \qquad e^{-i\delta} = \cos \delta - i\sin \delta$$
$$M$$

$$\frac{-i\delta}{-i\delta} \frac{-i\delta}{-i\delta} = \frac{-i\delta}{-R^{M}e^{-i\delta} + R^{M} + e^{i\delta}M^{-}}{-R\cos\delta + R}$$

$$-\frac{-i\delta}{-R^{M}e^{-i\delta} + R^{M} + e^{i\delta}M^{-}}{= \begin{bmatrix} -R[\cos\delta - i\sin\delta] \\ -R^{M}[\cos M\delta + i\sin M\delta] \\ +R^{M} + [\cos M\delta + i\sin M\delta] \end{bmatrix}$$

$$= \begin{bmatrix} -R\cos\delta - R^{M}\cos M\delta + R^{M} + \cos M - \delta + i\sin M - \delta \end{bmatrix}$$

$$r + T r e^{i} F + \delta \left[\frac{-r r e^{i\delta} M}{-r r e^{i\delta}} \right] = \left[\frac{\cos F + \delta - R\cos \delta \cos F + \delta}{-R^{M}\cos M\delta \cos F + \delta} + \frac{R^{M+}\cos M\delta \cos F + \delta}{-R^{M+}\cos M\delta \cos F + \delta} + \frac{iR\sin \delta \cos F + \delta}{iR^{M+}\cos F + \delta \sin M - \delta} + \frac{iR^{M+}\cos F + \delta}{iR^{M+}\cos \delta \sin F + \delta} + \frac{iR^{M+}\cos M\delta \sin F + \delta}{-R\sin \delta \sin F + \delta} + \frac{iR^{M+}\cos M\delta \sin F + \delta}{-R\sin \delta \sin F + \delta} + \frac{R^{M+}\sin M\delta \sin F + \delta}{-R + R\sin M - \delta \sin F + \delta} - \frac{R^{M+}\sin M - \delta \sin F + \delta}{-R + R\sin \delta} \right]$$

$$r + T r e^{i} F + \delta \left[\frac{-rr e^{i\delta M}}{-rr e^{i\delta}} \right] =$$

$$r + \left[\frac{T r \left[\cos F + \delta + i\sin F + \delta \right]}{\left[\frac{-R\cos \delta - R^{M}\cos M\delta + R^{M+}\cos M - \delta}{i[R\sin \delta - R^{M}\sin M\delta + R^{M+}\sin M - \delta]} \right]}{-R + R\sin \delta} \right]$$

$$re^{i\theta} = a + ib$$
 $r = \sqrt{a + b}$ $I_R = A_R = a + b$
 I

$$b = \frac{\begin{bmatrix} r & -R & + rRSin & \delta & + xCos & F + \delta \\ - xRCos & \delta & Cos & F + \delta \\ - xRCos & \delta & Cos & F + \delta \\ - xR^{M} & Cos & M\delta & Cos & F + \delta \\ - xRSin & \delta & Sin & F + \delta + xR^{M}Sin & M\delta & Sin & F + \delta \\ - xR^{M} & Sin & M - \delta & Sin & F + \delta \\ \hline & -R & + RSin & \delta \\ - R & + RSin & \delta \\ - R & + RSin & \delta \\ - R & + RSin & \delta \\ - xR^{M} & Cos & F + \delta & - xR^{M}Sin & M\delta & Cos & F + \delta \\ + xR^{M} & Cos & F + \delta & Sin & M - \delta \\ + xSin & F + \delta & - xRCos & \delta & Sin & F + \delta \\ - xR^{M} & Cos & M\delta & Sin & F + \delta \\ - xR^{M} & Cos & M\delta & Sin & F + \delta \\ - xR^{M} & Cos & M - \delta & Sin & F + \delta \\ - R & + RSin & \delta \\ Cos & \delta & = -Sin & \delta \end{bmatrix}$$

 $\begin{array}{l} Sin \ \alpha \pm \beta \ = Sin \ \alpha \ Cos \ \beta \ \pm Cos \ \alpha \ Sin \ \beta \\ Cos \ \alpha \pm \beta \ = Cos \ \alpha \ Cos \ \beta \ \mp Sin \ \alpha \ Sin \ \beta \end{array}$

$$I_{R} = R = a + b =$$

$$rrT \left\{ F + \delta - R F - R^{M+} M + \delta + F \right\}$$

$$+ rT \left\{ + R^{M+} - \frac{R^{M+} \left[M + \delta + R M + \delta \right]}{-R M + \delta - R M \delta} \right]$$

$$-R + R \delta$$

$$M$$

$$F n\pi T r r r r r = % M$$

$$F n \pi, n = 1, 2, 3, ..., r r r T$$

F n π , n = 1, 2, 3, ..., r r T

r

$$n\pi \qquad n = 1, 2, 3, \dots \qquad \pi$$

$$F$$

$$F \qquad n \qquad \pi$$

$$F \qquad n \qquad \pi$$

