# Predictive Modelling in Food

# Predictive Modelling in Food

Edited by

Fernando Pérez-Rodríguez, Elena Carrasco, Antonio Valero and Guiomar Denisse Posada-Izquierdo

Cambridge Scholars Publishing



Predictive Modelling in Food

Edited by Fernando Pérez-Rodríguez, Elena Carrasco, Antonio Valero and Guiomar Denisse Posada-Izquierdo

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library

Copyright © 2019 by Fernando Pérez-Rodríguez, Elena Carrasco, Antonio Valero, Guiomar Denisse Posada-Izquierdo and contributors

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-3705-6 ISBN (13): 978-1-5275-3705-7

# **CONTENTS**

| PREFACExvii                                              |
|----------------------------------------------------------|
| THE ORGANISING COMMITTEE OF THE ICPMF10xix               |
| CHAPTER 1 1                                              |
| INTERDISCIPLINARY APPROACHES AND NEW ADVANCES            |
| MICROBIAL MODELLING COUPLING THE DYNAMICS OF             |
| DIFFUSED GASES AND MICROBIAL GROWTH IN MODIFIED          |
| ATMOSPHERE PACKAGING2                                    |
| KIRK D. DOLAN, HAZEL MEREDITH, DECLAN J. BOLTON,         |
| VASILIS P. VALDRAMIDIS                                   |
| ZERO-INFLATED REGRESSIONS FOR MODELLING MICROBIAL        |
| LOW PREVALENCE AND SAMPLING PERFORMANCE FOR              |
| FOODBORNE PATHOGENS4                                     |
| URSULA GONZALES-BARRON, MARTA HERNÁNDEZ, DAVID           |
| RODRÍGUEZ-LÁZARO, VASCO CADAVEZ, ANTONIO VALERO          |
| PERFORMANCE OF MICROBIOLOGICAL CRITERIA FOR              |
| HYGIENE CONTROL OF CAMPYLOBACTER IN GERMAN               |
| SLAUGHTERHOUSES6                                         |
| A. VALERO, F. REICH, F. SCHILL, L. BUNGENSTOCK, G. KLEIN |
| GROWTH MODELLING OF WEISSELLA VIRIDESCENS BY REAL-       |
| TIME QUANTITATIVE PCR (QPCR)                             |
| WIASLAN FIGUEIREDO MARTINS, DANIELLE DE SOUSA            |
| SEVERO, FERNANDA CUNHA MARQUES, GLÁUCIA MARIA            |
| FALCÃO DE ARAGÃO                                         |

vi Contents

| CHAPTER 2                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| MODELLING OF TTI SMART LABELS' RESPONSE FOR MONITORING SHELF-LIFE AND VIBRIO PARAHAEMOLYTICUS RISK IN OYSTERS                                        |
| MODELLING ADHESION AND BIOFILM FORMATION ON STAINLESS STEEL BY FIVE DIFFERENT SEROTYPES OF SALMONELLA ENTERICA                                       |
| MARCIANE MAGNANI, JULIANA DE OLIVEIRA MORAES, ELLEN ABREU DA CRUZ, TEREZA C R MOREIRA OLIVEIRA, VERÔNICA ORTIZ ALVARENGA, ANDERSON DE SOUZA SANT'ANA |
| EXTENSIVE CARDINAL PARAMETER MODEL TO PREDICT GROWTH OF PSEUDOMONADS IN SALT-REDUCED LIGHTLY PRESERVED SEAFOOD                                       |
| MODELLING AND IDENTIFICATION OF RELEVANT PATHWAYS FOR NUCLEOTIDE DEGRADATION IN FRESH HAKE DURING TRANSPORT AND STORAGE                              |
| MODELLING ADHESION ON POLYPROPYLENE AND GLASS SURFACES BY DISTINCT <i>SALMONELLA</i> SEROVARS                                                        |
| MATHEMATICAL MODELLING OF MICROBIAL DEVELOPMENT IN MEAT TREATED WITH ROSEMARY ESSENTIAL OIL AND UVC LIGHT                                            |

| MODELLING SPATIOTEMPORAL DYNAMICS IN A FOOD<br>MATRIX INITIATED BY INJECTED STARTER CULTURES 24<br>THORSTEN STEFAN                                                                                                                      | 1 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| MODELLING GROWTH/NO GROWTH BOUNDARY CONDITIONS OF <i>BACILLUS</i> SPECIES SPORES20 SAYURI KURODA, WATARU ISHIDA, TOSHIYUKI MIYAZAKI, SHUSO KAWAMURA, SHIGE KOSEKI                                                                       | 5 |
| MODELLING OF TTI SMART LABELS' RESPONSE FOR<br>MONITORING SHELF-LIFE AND HISTAMINE FORMATION IN<br>AQUACULTURED MUGIL CEPHALUS FISH29<br>PAPAMICHAEL EIRINI, TSIRONI THEOFANIA, GIANNOGLOU<br>MARIANNA, NTZIMANI ATHINA, TAOUKIS PETROS | 3 |
| MATHEMATICAL ASSESSMENT OF THE COMBINED EFFECT OF CHLORINE, BENZYL ISOTHIOCYANATE, EXPOSURE TIME AND CUT SIZE ON THE REDUCTION OF SALMONELLA IN FRESH- CUT LETTUCE DURING THE WASHING PROCESS                                           |   |
| GROWTH PARAMETER ESTIMATES OF <i>LISTERIA</i> MONOCYTOGENES IN COOKED CHICKEN: EFFECT OF  PREPARATION OF INOCULUM                                                                                                                       | 3 |
| MATHEMATICAL MODELS FOR DESCRIBING THE EFFECT<br>OF ELECTROPORATION ON AUTOLYSIS OF YEAST CELLS 3:<br>GEORGE DIMOPOULOS, NEFELI STEFANOU, VARVARA<br>ANDREOU, PETROS TAOUKIS                                                            | 5 |
| QUANTITATIVE ASSESSMENT (SPME/GC-MS) OF SPOILAGE COMPOUNDS AND EFFECTS OF THERMAL SHOCKS IN ALICYCLOBACILLUS SPP. SPORES                                                                                                                | 7 |

viii Contents

| MODELLING BIOCIDE AND BACTERIA INTERACTION IN                          |
|------------------------------------------------------------------------|
| CHEMICAL DISINFECTION                                                  |
| MÍRIAM R. GARCÍA, MARTA L. CABO                                        |
|                                                                        |
| COMPARATIVE KINETIC STUDY OF THE EFFECT OF PULSED                      |
| ELECTRIC FIELDS (PEF) AND HIGH-PRESSURE (HP)                           |
| PASTEURIZATION ON POMEGRANATE JUICE QUALITY 41                         |
| SOTIRIS KOTTARIDIS, ELENI GOGOU, PETROS TAOUKIS                        |
| EFFECT OF OREGANO ESSENTIAL OIL ON THE SHELF-LIFE OF                   |
| VACUUM-PACKED SLICED HAM STORED UNDER NON-                             |
| ISOTHERMAL CONDITIONS                                                  |
| NATIELLE MARIA COSTA MENEZES, DANIEL ANGELO LONGHI,                    |
| WIASLAN FIGUEIREDO MARTINS, GLÁUCIA MARIA FALCÃO                       |
| DE ARAGÃO                                                              |
| MODELLING THE FATE AND GED OTVDE VARIABILITY OF                        |
| MODELLING THE FATE AND SEROTYPE VARIABILITY OF                         |
| ISOLATED L. MONOCYTOGENES STRAINS ON GRATED CURED                      |
| EWE'S CHEESE AT DIFFERENT STORAGE TEMPERATURES 45                      |
| MARTA HERNÁNDEZ¹, ÓSCAR ESTEBAN-CARBONERO²,                            |
| PATRICIA GONZÁLEZ-GARCÍA <sup>1</sup> , A. VALERO <sup>3</sup> , DAVID |
| RODRÍGUEZ-LÁZARO <sup>2</sup>                                          |
| INHIBITORY EFFECT OF <i>LACTOBACILLUS SAKEI</i> AGAINST                |
| LISTERIA MONOCYTOGENES GROWTH IN SMOKED                                |
| MEDITERRANEAN FISH PRODUCTS FROM MARINE                                |
| AQUACULTURE47                                                          |
| ARACELI BOLÍVAR, JEAN CARLOS CORREIA PERES COSTA,                      |
| G.D. POSADA-IZQUIERDO, ANTONIO VALERO, GONZALO                         |
| ZURERA, FERNANDO PÉREZ-RODRÍGUEZ                                       |
| CHAPTER 3                                                              |
| INDIVIDUAL-BASED MODELS                                                |
| ESTIMATING BACTERIAL POPULATION GROWTH RATES                           |
| FROM FLOW CYTOMETRY                                                    |
| ANTONIO A. ALONSO, JOAO FREIRE, MÍRIAM R. GARCÍA                       |
| ANTONIO A. ALONSO, JOAO FREIRE, MIRIAM R. UARCIA                       |

| VARIABILITY OF GERMINATION AND OUTGROWTH OF             |      |
|---------------------------------------------------------|------|
| INDIVIDUAL BACTERIAL SPORES. PHENOMENOLOGICAL           |      |
| AND MECHANISTIC ASPECTS                                 | . 52 |
| JAN P. SMELT, CHRIS G. DE KOSTER, STANLEY BRUL          |      |
| BEHAVIOUR OF INDIVIDUAL SALMONELLA AGONA CELLS          |      |
| SUBMITTED TO MILD STRESS: THE CASE OF SODIUM            |      |
| HYPOCHLORITE                                            | . 54 |
| RAFAEL CHAVES, ZAFEIRO ASPRIDOU, ANDERSON SANTANA       | ١,   |
| KONSTANTINOS KOUTSOUMANIS                               |      |
| CHAPTER 4                                               | . 57 |
| MODELLING MICROBIAL DYNAMICS IN RELATION TO FOOD        |      |
| MICROSTRUCTURE AND THE IMPACT OF MICROBIOLOGICAL        |      |
| INTERACTION IN FOODS                                    |      |
| GENERIC GLOBAL MODELS FOR GROWTH PREDICTION             |      |
| OF SALMONELLA IN GROUND PORK AND PORK CUTS              | . 58 |
| TASJA BUSCHHARDT, TINA B HANSEN, MARTIN I BAHL,         |      |
| DONALD W SCHAFFNER, SØREN AABO                          |      |
| MODELLING EFFECTS OF FOOD CHARACTERISTICS ON            |      |
| INTERACTION BETWEEN LACTIC ACID BACTERIA AND            |      |
| LISTERIA MONOCYTOGENES                                  | . 60 |
| LOUIS MAIMANN LAURSEN, REGITZE LÆRKE PEDERSEN,          |      |
| OLE MEJLHOLM, PAW DALGAARD                              |      |
| MODELLING THE FATE OF <i>LISTERIA MONOCYTOGENES</i> AND |      |
| LACTIC ACID BACTERIA IN TRADITIONAL MINAS CHEESES       |      |
| DURING RIPENING/REFRIGERATED SHELF-LIFE                 | . 62 |
| FERNANDA B. CAMPAGNOLLO, MARCELO D. FELICIANO,          |      |
| ROSICLÉIA A. SILVA, CLARA M. DUFFNER, VERÔNICA O.       |      |
| ALVARENGA, DONALD W. SCHAFFNER, ANDERSON S.             |      |
| SANT'ANA                                                |      |
| COMPARISON OF OBSERVED AND PREDICTED GROWTH             |      |
| KINETICS OF LISTERIA MONOCYTOGENES IN DICED COOKED      | ٠.   |
| HAM                                                     | 64   |
| LUIGI IANNETTI, ROMOLO SALINI, PATRIZIA TUCCI, ANNA     |      |
| FRANCA SPERANDII, FRANCESCO POMILIO, GIACOMO            |      |
| MIGLIORATI                                              |      |

x Contents

| EFFECT OF FOOD (MICRO)STRUCTURE ON GROWTH               |
|---------------------------------------------------------|
| DYNAMICS OF <i>LISTERIA MONOCYTOGENES</i> IN FISH-BASED |
| MODEL SYSTEMS66                                         |
| DAVY VERHEYEN, MARIA BAKA, TORSTEIN SKÅRA, ARACELI      |
| BOLÍVAR CARRILLO, FERNANDO PÉREZ-RODRÍGUEZ,             |
| JAN VAN IMPE                                            |
| THE ROLE OF MILK COMPOSITION AND PACKAGING ON THE       |
| MICROBIOLOGICAL STABILITY OF WHITE SOFT CHEESE 68       |
| EFSTATHIA TSAKALI, SPIRIDON KOULOURIS, EVDOKIA          |
| MASTORAKI, SOTIRIA PSARROU, DIMITRIOS TIMPIS, DIMITRA   |
| HOUHOULA, JAN VAN IMPE                                  |
| CHAPTER 5                                               |
| QUANTITATIVE MICROBIAL RISK ASSESSMENT AND MANAGEMENT   |
| CAN STOCHASTIC CONSUMER PHASE MODELS IN MICROBIAL       |
| RISK ASSESSMENT BE SIMPLIFIED TO A SINGLE FACTOR? 72    |
| MARIA INÊS NEVES, MAARTEN NAUTA                         |
| FARM TO FORK QUANTITATIVE MICROBIAL RISK                |
| ASSESSMENT FOR NOROVIRUS ON FROZEN BERRIES 74           |
| ROBYN MIRANDA, DONALD W. SCHAFFNER                      |
| RISK-BASED STRATEGIES TO ACCOMPLISH "LISTERIA ZERO"     |
| POLICY: DRY-CURED HAM AS A CASE STUDY76                 |
| SARA BOVER-CID, ANNA JOFRÉ, MARGARITA GARRIGA           |
| DETERMINATION OF THE TOTAL VIABLE COUNT ON FRESH        |
| MEAT BY A HANDHELD FLUORESCENCE SPECTROMETER 78         |
| MARTIN HEBEL, ANTONIA ALBRECHT, CHRISTOPH BERGER,       |
| SANDRA KETTERL, LENA STAIB, DENNIS VIER, JUDITH         |
| KREYENSCHMIDT                                           |
| META-ANALYSIS OF OCCURRENCE OF OCHRATOXIN A (OTA),      |
| ZEARALENONE (ZEN), DEOX-YNIVALENOL (DON) AND TOTAL      |
| AFLATOXIN (TAF) IN CEREAL-BASED PRODUCTS 80             |
| AMIN MOUSAVI KHANEGHAH, ANDERSON S. SANT'ANA            |

| UNDERSTANDING BACTERIAL TRANSFERENCE DURING THE WASHING PROCESS OF FRESH-CUT LETTUCE AND SPINACH IN SIMULATED REUSED FRESH-CUT PRODUCE WASH WATER 82 CRISTINA PABLOS <sup>1</sup> , AITOR ROMERO <sup>1</sup> , FERNANDO PÉREZ-RODRÍGUEZ <sup>2</sup> , JAVIER MARUGÁN <sup>1</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAPTER 6                                                                                                                                                                                                                                                                           |
| PREDICTIVE MODELS FOR FOOD PROCESS SIMULATION                                                                                                                                                                                                                                       |
| MODELLING THE INHIBITORY EFFECT OF LAB ON $L$ .                                                                                                                                                                                                                                     |
| MONOCYTOGENES AND ENTEROBACTERIACEAE IN A                                                                                                                                                                                                                                           |
| FERMENTED SAUSAGE DURING RIPENING                                                                                                                                                                                                                                                   |
| VASCO CADAVEZ, FRANCIS BUTLER, ÚRSULA GONZALES-                                                                                                                                                                                                                                     |
| BARRON                                                                                                                                                                                                                                                                              |
| MODELLING AND PREDICTING INTERACTION BETWEEN A                                                                                                                                                                                                                                      |
| BACTERIOCINOGENIC LACTOBACILLUS SAKEI AND LISTERIA                                                                                                                                                                                                                                  |
| MONOCYTOGENES IN GILT-HEAD SEABREAM (SPARUS AURATA)                                                                                                                                                                                                                                 |
| UNDER ISOTHERMAL AND DYNAMIC TEMPERATURE                                                                                                                                                                                                                                            |
| CONDITIONS                                                                                                                                                                                                                                                                          |
| JEAN COSTA, SARA BOVER-CID, G.D. POSADA-IZQUIERDO,                                                                                                                                                                                                                                  |
| GONZALO ZURERA, FERNANDO PÉREZ-RODRÍGUEZ                                                                                                                                                                                                                                            |
| MODELLING THE VARIABILITY IN BACILLUS CEREUS                                                                                                                                                                                                                                        |
| SURVIVAL DURING SPRAY DRYING PROCESS91                                                                                                                                                                                                                                              |
| VERÔNICA ORTIZ ALVARENGA, ERIC KEVEN SILVA,                                                                                                                                                                                                                                         |
| ARHTUR KAEL DA PIA RODRIGUES, MIRIAN DUPAS HUBINGER,                                                                                                                                                                                                                                |
| ANDERSON S. SANT'ANA                                                                                                                                                                                                                                                                |
| NEW INSIGHTS ON THE EFFECT OF LACTATE ON $L$ .                                                                                                                                                                                                                                      |
| MONOCYTOGENES GROWTH IN HIGH-PRESSURE PROCESSED                                                                                                                                                                                                                                     |
| COOKED HAM                                                                                                                                                                                                                                                                          |
| ANNA JOFRÉ, CRISTINA SERRA, PAW DALGAARD,                                                                                                                                                                                                                                           |
| MARGARITA GARRIGA, SARA BOVER-CID                                                                                                                                                                                                                                                   |
| MODELLING THE LOAD OF METABOLITE DIFFUSIVITY                                                                                                                                                                                                                                        |
| ON GROWTH RATE OF NON-STARTER LACTIC ACID                                                                                                                                                                                                                                           |
| BACTERIA DURING CHEESE RIPENING                                                                                                                                                                                                                                                     |
| TAMÁS CZÁRÁN, FERGAL RATTRAY, CLEIDE MØLLER,                                                                                                                                                                                                                                        |
| BJARKE CHRISTENSEN                                                                                                                                                                                                                                                                  |

xii Contents

| MICROBIOLOGICAL AND CHEMICAL SPOILAGE PREDICTION    |
|-----------------------------------------------------|
| OF HIGH AND LOW-FAT RAW GROUND MEAT97               |
| FRANCESCA VALERIO, PANAGIOTIS N SKANDAMIS,          |
| SEBASTIANA FAILLA, MARIAELENA DI BIASE, MARIA PAOLA |
| PIROVANO, PAOLA LAVERMICOCCA                        |
| PHYSICOCHEMICAL PROPERTIES AND STABILITY OF         |
| MARGARINE ENRICHED WITH OLIVE OILS                  |
| LAINCER FIRDOUSSE, TAMENDJARI ABDERAZAK,            |
| BELKACEMI HAYETTE                                   |
| LACTIC ACID BACTERIA AS BIOPROTECTORS IN MINIMALLY  |
| PROCESSED FISH                                      |
| CRISTINA ALCALÁ, ELENA CARRASCO, ARACELI BOLÍVAR,   |
| JEAN CARLOS CORREIA, G.D. POSADA-IZQUIERDO,         |
| FERNANDO PÉREZ-RODRÍGUEZ, GONZALO ZURERA            |
| TERRATION TERES ROBRIGOES, GOINEREO SORERA          |
| APPLICATION OF PREDICTIVE MICROBIOLOGY MODELS       |
| ON GEOTRICHUM CANDIDUM GROWTH103                    |
| ĽUBOMÍR VALÍK, MARTINA KOŇUCHOVÁ, ANNA ŠÍPKOVÁ      |
| MODELLING THE GROWTH KINETICS OF SALMONELLA         |
| SEROVARS DURING THE FERMENTATION OF YOGURT 105      |
| DEYRA SAVRAN, FERNANDO PÉREZ-RODRÍGUEZ,             |
| A. KADIR HALKMAN                                    |
| INFLUENCE OF TEMPERATURE AND UV-C DOSE ON THE       |
| INACTIVATION OF SALMONELLA IN SOYMILK BY UV-C       |
| TECHNOLOGY107                                       |
| ARÍCIA POSSAS, ANTONIO VALERO, ROSA MARÍA GARCÍA-   |
| GIMENO, FERNANDO PÉREZ-RODRÍGUEZ, POLIANA DE SOUZA  |
| STATISTICAL ANALYSIS OF DIFFERENT FACTORS RELATED   |
| WITH THE MICROBIOLOGICAL QUALITY OF RAW MILK 109    |
| LUCÍA REGUILLO, MANUELA HERNÁNDEZ, ELISABETH        |
| BARRIENTOS, FERNANDO PÉREZ-RODRÍGUEZ, ANTONIO       |
| VALERO                                              |

| MODELLING GROWTH INTERACTION OF A                  |     |
|----------------------------------------------------|-----|
| BACTERIOCINOGENIC LACTOBACILLUS SAKEI AND LISTERIA |     |
| MONOCYTOGENES IN COOKED HAM                        | 111 |
| JEAN COSTA, ANNA JOFRÉ, CRISTINA SERRA, FERNANDO   |     |
| PÉREZ-RODRÍGUEZ, SARA BOVER-CID                    |     |
| CHAPTER 7                                          | 113 |
| SYSTEMS BIOLOGY AND WHOLE-CELL MODELLING           |     |
| MECHANISMS TO CONTERACT MEDIUM ACIDIFICATION       |     |
| DURING GLUCOSE FERMENTATION: A METABOLIC           |     |
| MODELLING ANALYSIS OF E. COLI                      | 114 |
| LETICIA UNGARETTI HABERBECK, BRAM VIVIJS, ABRAM    |     |
| AERTSEN, CHRIS W. MICHIELS, ANNEMIE H. GEERAERD,   |     |
| KRISTEL BERNAERTS                                  |     |
| USE OF PREDICTIVE TOOLS TO RANK THE SAFETY OF RAW  |     |
| MILK CHEESES PROCESS VERSUS VEROCYTOTOXIC          |     |
| ESCHERICHIA COLI                                   | 116 |
| ELENA COSCIANI-CUNICO, ELENA DALZINI, PAOLA        |     |
| MONASTERO, PAOLO DAMINELLI, MARINA-NADIA LOSIO     |     |
| CHAPTER 8                                          | 119 |
| DATA BASES, SOFTWARE AND DECISION-SUPPORT TOOLS    |     |
| HARMONISATION OF TERMS AND CONCEPTS FOR RISK       |     |
| ASSESSMENT MODELLING AND KNOWLEDGE                 |     |
| INTEGRATION                                        | 120 |
| CAROLINA PLAZA-RODRÍGUEZ, LETICIA UNGARETTI-       |     |
| HABERBECK, VIRGINIE DESVIGNES, LAURENT GUILLIER,   |     |
| MOEZ SANAA, PAW DALGAARD, MAARTEN NAUTA,           |     |
| MATTHIAS FILTER                                    |     |
| SOURCE ATTRIBUTION OF SPORADIC SALMONELLOSIS       |     |
| BY A META-ANALYSIS OF CASE-CONTROL STUDIES         | 122 |
| URSULA GONZALES-BARRON, VASCO CADAVEZ, VÂNIA       |     |
| RODRIGUES, PAULINE KOOH, MOEZ SANAA                |     |

xiv Contents

| DEVELOPMENT OF A PROBABILISTIC DECISION-MAKING       |
|------------------------------------------------------|
| SCORING SYSTEM FOR QUALITY AND SAFETY REQUIREMENTS   |
| OF ALOREÑA DE MALAGA TABLE OLIVES 124                |
| ANTONIO VALERO, M.A. BELLIDO, FERNANDO PÉREZ-        |
| RODRÍGUEZ, ELENA CARRASCO, G.D. POSADA-IZQUIERDO,    |
| V. ROMERO-GIL, F. RODRÍGUEZ-GÓMEZ, E. MEDINA-PRADAS, |
| R.M. GARCÍA-GIMENO, F.N. ARROYO-LOPEZ                |
|                                                      |
| MICROHIBRO: AN EASY-TO-USE FRAMEWORK FOR             |
| STOCHASTIC MICROBIAL RISK ASSESSMENT 126             |
| ARÍCIA POSSAS, SALVADOR CUBERO, ANTONIO VALERO,      |
| ROSA MARÍA GARCÍA-GIMENO, FERNANDO PÉREZ-RODRÍGUEZ   |
|                                                      |
| THE STARTEC DECISION-SUPPORT TOOL FOR BETTER         |
| TRADEOFFS BETWEEN FOOD SAFETY, QUALITY, NUTRITION    |
| AND COSTS IN PRODUCTION OF ADVANCED READY-TO-EAT     |
| FOODS                                                |
| TARAN SKJERDAL, EDURNE GASTON ESTANGA, ALESSANDRA    |
| DE CECARE, TASSOS KOIDIS, CECILIE FROM, ROBERTO      |
| MULAZZINE, CATHERINE HALBERT                         |
| LICTULA DE DROJECT, DEVELODINO A NEWLICZEDIA         |
| LISTWARE PROJECT; DEVELOPING A NEW LISTERIA          |
| ASSESSMENT TOOL FOR FOOD BUSINESS OPERATORS 130      |
| SIGRUN J. HAUGE, TARAN SKJERDAL, ALESSANDRA          |
| DE CESARE, OLE ALVSEIKE                              |
| FSK-LAB – AN OPEN SOURCE FOOD SAFETY MODEL           |
| INTEGRATION TOOL                                     |
| MIGUEL DE ALBA APARICIO, LARS VALENTIN, CHRISTIAN    |
| THÖNS, ARMIN WEISER, CAROLINA PLAZA-RODRÍGUEZ,       |
| MATTHIAS FILTER                                      |
| MATTHASTILIER                                        |
| OPENFOOD: DEVELOPMENT OF A FOOD MATRIX-RELATED       |
| ONTOLOGY FOR APPLICATION IN PREDICTIVE               |
| MICROBIOLOGY SOFTWARE                                |
| SALVADOR CUBERO GONZÁLEZ, ARICIA POSSAS,             |
| FERNANDO PÉREZ-RODRÍGUEZ                             |
|                                                      |

| CHAPTER 9                                            | 37 |
|------------------------------------------------------|----|
| MODELLING APPROACHES USING METAGENOMICS DATA         |    |
| PREDICTIVE MODELS FOR RISK AND QUALITY ASSESSMENT    |    |
| USING MOLECULAR-BASED SURVEILLANCE IN FOOD           |    |
| MANUFACTURING FACILITIES1                            | 38 |
| CIAN O' MAHONY, SEAMUS FANNING                       |    |
| IN-SILICO SIMULATION OF LYTIC BACTERIOPHAGE          |    |
| POPULATION DYNAMICS AND ITS BACTERIAL HOST           |    |
| SALMONELLA TYPHI1                                    |    |
| AYMAN ELSHAYEB, ABDELAZIM AHMED, MARMAR EL SIDDI     | G, |
| ADIL EL HUSSIEN                                      |    |
| PREDICTION OF CHEESE DRY MATTER DURING CURD          |    |
| TREATMENT1                                           | 42 |
| CHRISTIAN KERN, THORSTEN STEFAN, JÖRG HINRICHS       |    |
| MODELLING COMPETITION IN CO-CULTURES OF A            |    |
| SACCHAROMYCES NON-CEREVISIAE SPECIES AND S.          |    |
| CEREVISIAE IN WINE FERMENTATION                      | 44 |
| EVA BALSA-CANTO, JAVIER ALONSO-DEL-REAL, ANTONIO     |    |
| A. ALONSO, ELADIO BARRIO³, AMPARO QUEROL             |    |
| MODELLING AND STUDY OF DRYING VARIABLES IN THE       |    |
| DRYING OF GRAPE WITHOUT PEDICEL1                     | 46 |
| JUAN MARŢÍN GÓMEZ, M ÁNGEĻES VARO SANTOS,            |    |
| JULIETA MÉRIDA GARCÍA, MARÍA PÉREZ SERRATOSA         |    |
| Chapter 10 1                                         | 49 |
| PREDICTIVE MYCOLOGY                                  |    |
| A SIMPLE BINOMIAL EQUATION DESCRIBES THE RELATION    |    |
| BETWEEN OPTICAL DENSITY, CELL NUMBER, AND CELL DRY   |    |
| WEIGHT IN YEAST SUSPENSIONS1                         | 50 |
| F. J. ARRANZ, E.M. RIVAS, E. GIL DE PRADO, P. WRENT, |    |
| M. I. DE SILÓNIZ, J. M. PEINADO                      |    |

xvi Contents

| RIOGRAPHICAL SKETCHES OF ROOK EDITORS             | 159 |
|---------------------------------------------------|-----|
| REFERENCES                                        | 157 |
| KIRIAKI ZINOVIADOU, TRYFON ADAMIDIS               |     |
| MARIA GOUGOULI, YINGHUA XIAO, ELISSAVET GKOGKA,   |     |
| ASCOSPORES BASED ON CONIDIA DATA                  | 154 |
| PREDICTING THE BEHAVIOUR OF BYSSOCHLAMYS FULVA    |     |
| A. DE GIROLAMO, VÉRONIQUE HUCHET                  |     |
| M DI BIASE, PAOLA LAVERMICOCCA, FLORENCE POSTOLLE | C,  |
| YVAN LE MARC, ANNE LOCHARDET, FRANCESCA VALERIO,  |     |
| ALTERNATA IN A TOMATO-BASED MEDIUM                |     |
| ON THE MYCOTOXIN PRODUCTION OF ALTERNARIA         |     |
| MODELLING THE EFFECTS OF PH AND TEMPERATURE       |     |

## **PREFACE**

During recent decades, food microbiologists have been investigating the diverse roles of microorganisms in different commodities. This gained knowledge has helped to better understand the key elements and underlying mechanisms behind microorganisms' behaviour in different situations. In this commitment, predictive microbiology has identified and shed light on gaps in broad-ranging areas of progress in the assurance of food quality and safety through the development of fit-for-purpose mathematical models. Since foods are essentially multi-element matrices where chemical, physical and microbiological components interact with each other, underlying factors affecting microbial growth and survival may still need to be elucidated.

The International Committee on Predictive Modelling in Food (www.icpmf.org), which was founded in 2011, has the mission to promote the development of predictive models and to generate new knowledge in the field that are relevant to food stakeholders, risk assessors and governmental authorities. This objective is primarily achieved through advancing the success and sustainability of the biennial ICPMF-conferences. The last ICPMF10 conference, held in Córdoba (26-29<sup>th</sup> September 2017), provided outstanding research studies which have contributed with important achievements in *the predictive modelling* field.

This book presents a number of selected communications presented at the 10<sup>th</sup> International Conference on Predictive Modelling in Foods, that are summarised into ten chapters, where the most relevant topics related to our area were addressed:

- Systems biology and whole-cell modelling.
- Individual-based models.
- Modelling approaches using (food) metagenomics data.
- Complex systems modelling approaches for food safety and quality.
- Modelling microbial dynamics in relation to food microstructure.
- Databases, software and decision-support tools in predictive modelling in foods.

xviii Preface

- Predictive models for food safety and quality: decontamination, food formulation, bacterial transfer, microbial spoilage, etc.
- Predictive models for food process simulation: dehydrating, mixing, forming, heat transfer, etc.
- Modelling the impact of microbiological interactions in foods.
- Interdisciplinary approaches and new advances in predictive modelling in foods.
- Quantitative Microbial Risk Assessment and Management.
- Predictive mycology.

We are convinced that *predictive modelling* is going a long way towards providing more and more accurate and useful estimations for food quality and safety assurance, since several scientific disciplines involved in *predictive modelling* are enjoying great development in the last years.

*Predictive modelling in food* will presumably become an immensely useful literature resource for graduate students, researchers, food authorities, risk assessors, managers, and stakeholders in food science, food microbiology, statistics, food engineering, and biotechnology.

We would like to thank all authors of the communications presented in this book for their invaluable scientific contribution in this field. We would also like to thank Mrs. Helen Cryer for giving us the opportunity to disseminate this stimulating research as well as the staff from Cambridge Scholars Publishing for offering excellent support throughout the editing process. All in all, we hope that the readers will enjoy the book and rather consider it as a useful tool, and why not, a source of inspiration.

# THE ORGANISING COMMITTEE OF THE ICPMF10



## **Organising Committee**

#### Chair: Prof. Fernando Pérez-Rodríguez, Ph.D.

Department of Food Science and Technology. University of Córdoba, Córdoba (Spain)

#### Vice-Chair: Prof. Antonio Valero Díaz, Ph.D.

Department of Food Science and Technology. University of Córdoba, Córdoba (Spain)

#### Vice-Chair: Prof. Elena Carrasco Jiménez, Ph.D.

Department of Food Science and Technology. University of Córdoba, Córdoba (Spain)

## Prof. Guiomar Denisse Posada Izquierdo, Ph.D.

Department of Food Science and Technology. University of Córdoba, Córdoba (Spain)

#### Prof. Rosa María García-Gimeno, Ph.D.

Department of Food Science and Technology. University of Córdoba, Córdoba (Spain)

#### Prof. Gonzalo Zurera, Ph.D.

Department of Food Science and Technology. University of Córdoba, Córdoba (Spain)

#### **Scientific Committee**

### Prof. Rosa Maria García-Gimeno, Ph.D.

University of Córdoba, Córdoba (Spain)

# Prof. Gonzalo Zurera Cosano, Ph.D.

University of Córdoba, Córdoba (Spain)

# Prof. Vasilis Valdramidis, Ph.D.

University of Malta, Msida (Malta)

#### Sara Bover-Cid, Ph.D.

Institute of Agrifood Research and Technology (IRTA). Monells, Girona (Spain)

### Prof. Sonia Marin, Ph.D

University of Lleida, Lleida (Spain)

# Prof. Pablo S. Fernández Escámez, Ph.D.

Technical University of Cartagena, Cartagena (Spain)

#### Juan Aguirre García University of Chile, Chile

**Alejandro Amezquita** Unilever, England

## Glaucia Aragao

Federal University of Santa Catarina, Brazil

# Fanny Tenenhaus-Aziza

CNIEL, France

### Jean Christophe Augustin

Alfort Veterinary School, France

#### József Baranyi

Institute Food Research, England

#### **Javier Benedito**

Universidad Politécnica Valencia, Spain

#### Heidy den Besten

Wageningen University, The Netherlands

#### Paw Dalgaard

Danish Technological University, Denmark

# Anderson de Souza Sant'Ana

University of Campinas, Brazil

### **Philippe Dantigny**

LUBEM - Université de Bretagne Occidentale, France

## Frank Devlieghere

Ghent University, Belgium

#### Mariem Ellouze

Nestlé, Switzerland

#### **Matthias Filter**

Federal Institute for Risk Assessment (BfR), Germany

#### Marta Ginovart

Universidad Politécnica de Catalunya, Spain

#### Úrsula Gonzales-Barrón

CIMO - Mountains Research Centre, Portugal

#### Lihan Huang

US Department of Agriculture - ARS, USA

#### Shigenobu Koseki

Research Faculty of Agriculture, Japan

#### Kostas Koutsoumanis

Aristotle University of Thessaloniki, Greece

#### Antonio Martínez

Instituto de Agroquímica y Tecnología de Alimentos (IATA), Spain

#### Jeanne-Marie Membré

National Institute of Agricultural Research (INRA), France

#### Marteen Nauta

Danish Technological University, Denmark

#### **Regis Pouillot**

Food Drug Administration, USA

#### Abani Pradhan

University of Maryland, College Park, USA

#### Ana Sofia Ribeiro Duarte

Danish Technological University, Denmark

#### Tom Ross

University of Tasmania, Australia

#### Fernando Sampedro

University of Minnesota, USA

#### Sofia M. Santillana Farakos

Food Drug Administration, USA

#### Donald W. Schaffner

Rutgers University, USA

#### Panos Skandamis

University of Athens, Greece

#### Alberto Tonda

National Institute of Agricultural Research (INRA), France

#### Jan Van Impe

University of Leuven, Belgium

#### An Vermeulen

Ghent University, Belgium

#### Marcel Zwietering

Wageningen University, The Netherlands

# CHAPTER 1

# INTERDISCIPLINARY APPROACHES AND NEW ADVANCES

2 Chapter 1

# MICROBIAL MODELLING COUPLING THE DYNAMICS OF DIFFUSED GASES AND MICROBIAL GROWTH IN MODIFIED ATMOSPHERE PACKAGING

## KIRK D. DOLAN<sup>1</sup>, HAZEL MEREDITH<sup>2</sup>, DECLAN J. BOLTON<sup>2</sup>, VASILIS P. VALDRAMIDIS<sup>3</sup>

<sup>1</sup>Department of Food Science & Human Nutrition, Michigan State University, E. Lansing, MI, USA

<sup>2</sup>Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland

<sup>3</sup>Department of Food Studies and Environmental Health, Faculty of Health Sciences, Msida, University of Malta

#### INTRODUCTION AND OBJECTIVES

Modified atmospheres (MA) packaging is widely used, to delay spoilage and extend the shelf-life of fresh products such as poultry and fish fillets. Predicting microbial safety of fresh products in modified atmosphere packaging implies taking into account the dynamics of  $O_2$ ,  $CO_2$  and  $N_2$  exchanges in the system and its effect on microbial growth. The bacteriostatic effect of  $CO_2$  within MAP is primarily influenced by  $CO_2$  absorption into the food. The same stands for  $O_2$ , especially when dealing with microaerophilic microorganisms. Therefore, microbial dynamics should be built considering the concentration of the dissolved gases.

In this work, a microbial model describing the dynamics of *Pseudomonas* spp. coupling diffused gas concentrations of CO<sub>2</sub> and O<sub>2</sub> is developed.

#### MATERIAL AND METHODS

Previously published data of skinless chicken fillets stored in gaseous mixtures of 10%, 30%, 50%, 70% and 90% CO<sub>2</sub> balanced with N<sub>2</sub>, 80:20% O<sub>2</sub>:N<sub>2</sub> and 40:30:30% CO<sub>2</sub>:O<sub>2</sub>:N<sub>2</sub> and control conditions (air) at 2 °C were used (Bolton *et al.*, 2014). The carbon dioxide solubility was obtained by monitoring the changes in the headspace volume over time using a buoyancy technique and performing calculations based on volumetric measurements and the Henry's constant. Henry's constant was also used to estimate the oxygen solubility in the chicken fillets. The microbial model

was built by extending the elementary model building block of the two first order differential equations for the Baranyi model (Baranyi and Roberts, 1994). The dependence of the maximum specific growth rate on the microbial adaptation, and the diffused CO<sub>2</sub> and O<sub>2</sub> concentrations were introduced.

A total of seven parameters were in the combined primary and secondary models:  $\beta 1 = \mu_{opt}$  (1/day), optimal growth rate;  $\beta 2 = CO_{2~max-diss}$  (ppm), maximum concentration of CO<sub>2 dissolved</sub> (ppm);  $\beta 3 = O_{2~ref}$ , dissolved O<sub>2</sub> in water at 760 mm HG,  $\beta 4 = O_{2~min}$ , minimum O<sub>2</sub> concentration (ppm);  $\beta 5 = N_{max}$ , maximum microbial concentration (CFU/mL);  $\beta 6 = N_0$ , initial microbial concentration (CFU/mL);  $\beta 7 = Q(0)$  (CFU/mL), parameter having to do with the microbial physiology.

#### RESULTS

A plot of scaled sensitivity coefficients for the parameters revealed that only two parameters could be estimated. For each combination of gas mixtures,  $\mu_{opt}$  and  $CO_{2~max-diss}$  were estimated from the dynamic data. The values of  $\mu_{opt}$  ranged from 1.5 to 10.7 (1/day), increasing exponentially with  $N_2$  concentration. The values of  $CO_{2~max-diss}$  ranged from 255 to 3100 ppm, decreasing linearly with  $N_2$  concentration. The relative errors of the parameter estimates ranged from 0.38 to 10.5%. The RMSE of the fits of logN to time ranged from 0.27 to 0.71 log (CFU/mL) out of a 4-9 log scale.

#### CONCLUSIONS

These favourable parameter estimation results hold promise for the development of more comprehensive models for global regression for relevant dynamic data.

4 Chapter 1

# ZERO-INFLATED REGRESSIONS FOR MODELLING MICROBIAL LOW PREVALENCE AND SAMPLING PERFORMANCE FOR FOODBORNE PATHOGENS

# URSULA GONZALES-BARRON<sup>1</sup>, MARTA HERNÁNDEZ<sup>2</sup>, DAVID RODRÍGUEZ-LÁZARO<sup>3</sup>, VASCO CADAVEZ<sup>1</sup>, ANTONIO VALERO<sup>4</sup>

<sup>1</sup>CIMO Mountain Research Centre, School of Agriculture, Polytechnic Institute of Braganza, Portugal

<sup>2</sup>Laboratory of Molecular Biology and Microbiology, Instituto Tecnolóogico Agrario de Castilla y Leon, Valladolid, Spain

<sup>3</sup>Division of Microbiology, Department of Biotechnology and Food Science, Universidad de Burgos, Burgos, Spain

<sup>4</sup> Department of Food Science and Technology, University of Córdoba, International Campus of Excellence in the AgriFood Sector (ceiA3). Córdoba, Spain

#### INTRODUCTION AND OBJECTIVES

Microbial contamination of raw poultry meat could occur because of improper handling at primary production and slaughterhouse levels. Low microbial prevalence data often consist of a high amount of non-detections (zero positives), so a flexible framework is required to characterise the underlying microbial distribution and conduct reliable inferential statistics. Thus, the objective of this work was to evaluate the performance of Zero-Inflated Binomial (ZIB) regression models to describe the effects of sampling site (carcass, thigh, breast, wings) on the measured incidences of *Salmonella, Listeria monocytogenes* and *Staphylococcus aureus* on chicken meat. For this aim, a number of fixed- and random effects models were evaluated and compared, while sampling performance based on mean prevalence estimates was assessed.

#### MATERIAL AND METHODS

Poultry samples were taken during three consecutive years from a Spanish slaughterhouse (36 sampled batches from 144 sampling periods). Analyses were carried following ISO methods for each pathogen taking 25 g samples from each site. Carcass samples were collected before jointing, while thigh, breast and wings were sampled afterwards. For each pathogen, four ZIB models were fitted to the presence/absence data with sampling site as covariate and random-effects due to sampling occasion either in the binomial probability (p) or in the extra proportion of zero counts (w0). Models were fitted using the Markov chain Monte Carlo (MCMC) technique via WINBUGS 1.4.3.

#### RESULTS

The data sets of the three pathogens presented a high proportion of nondetections. While Salmonella spp. was the pathogen least frequently detected from poultry meat (90.9% non-detections), L. monocytogenes and S. aureus gave positive results slightly more often (14-15% detections); although in general the frequency of positive results was conditional upon the sampling site. For the three data sets, the sampling site exerted a greater effect on the extra proportion of non-detections than on the binomial prevalence itself, with breast bearing the lowest prevalence estimates of Salmonella spp. (mean: 0.0088; 95% CI: 0.0002-0.0195) and S. aureus (mean 0.0148; 95% CI: 0.0001-0.0400). The fitting capacity of the models was further improved when random effects due to sampling occasion were placed in the extra proportion of non-detections (deviances decreased from 146.7-156.7 to 140.2-140.6). At any sampling site (breast, carcass, thigh or wings), the mean prevalence was estimated as 0.0135 (95% CI: 0.0015-0.0270) for Salmonella, 0.0211 (95% CI: 0.0004 - 0.0563) for L. *monocytogenes* and 0.0236 (95% CI: 0.0004 – 0.0512) for *S. aureus*.

#### CONCLUSIONS

Under a ZIB assumption, most of the variability in the occurrence of pathogens on chicken meat was found to lie in the process producing the extra proportion of zero counts rather than in the binomial probability itself. With the basis on an adequate description of microbial contamination, sampling procedures of poultry meat can be effectively addressed.

6 Chapter 1

# PERFORMANCE OF MICROBIOLOGICAL CRITERIA FOR HYGIENE CONTROL OF *CAMPYLOBACTER* IN GERMAN SLAUGHTERHOUSES

# A. VALERO<sup>1</sup>, F. REICH<sup>2</sup>, F. SCHILL<sup>2</sup>, L. BUNGENSTOCK<sup>2</sup>, G. KLEIN<sup>2</sup>

<sup>1</sup> Department of Food Science and Technology, University of Córdoba, International Campus of Excellence in the AgriFood Sector (ceiA3). Córdoba, Spain <sup>2</sup>Institute for Food Quality and Food Safety, University of Veterinary Medicine Hanover, Foundation, Bischof-sholer Damm 15, 30173 Hanover, Germany

#### INTRODUCTION AND OBJECTIVES

Campylobacter is mostly considered as an important foodborne pathogen having a high impact on the public health burden. Source allocation studies identified broiler meat as the most important single food transmission vehicle of Campylobacter. In this regard, microbiological targets are under development in the EU and characterisation of microbial contamination seems to be an essential part to implement sampling schemes.

The aim of this study was to analyse broiler batches processed at three conventional slaughterhouses in Germany for their *Campylobacter* load at the end of processing. Microbial contamination of studied flocks was assessed through the comparison of Log normal, Poisson-log normal and Negative binomial distributions. Sampling procedures were subsequently applied to assess batch acceptability.

#### MATERIAL AND METHODS

Samples of broiler neck skin and caecal content (356 batches) were collected in three German slaughterhouses (A, B and C) for fresh meat production from conventional reared broilers over a period of 36 months from July 2013 to June 2016. Microbial analyses of five-pooled neck skin samples and one-pool of caeca samples out of ten individual samples were performed in accordance with ISO 10272-2. Different concentration distributions (i.e. Log normal, Poisson-log normal and Negative binomial) were fitted to observed data through MLE by using R v3.2.3 (fitdistrplus for censored data and poilog packages). Sampling plan performance was assessed by setting 500 and 1000 CFU/g as microbial limits.

#### RESULTS

In this study, the individual prevalence of *Campylobacter* positive broiler batches processed at the three slaughterhouses ranged between 21.7% (95% CL: 21.1–22.3%) and 47.9% (95% CL: 47.07–48.71%). Significant differences among mean *Campylobacter* counts in neck skin samples were denoted according to the slaughterhouse evaluated ( $P \le 0.05$ ). The results showed that distributions were left-shifted thus indicating a high proportion of low microbial counts in the samples. Negative binomial regression provided better adjustment at low contamination levels.

#### CONCLUSIONS

The results obtained will help food business operators to evaluate the status of microbiological hygiene and safety in relation to *Campylobacter* contamination, and also will assist them in setting their own acceptable microbial limits for process improvement with consideration to existing legal requirements.

8 Chapter 1

# GROWTH MODELLING OF WEISSELLA VIRIDESCENS BY REAL-TIME QUANTITATIVE PCR (QPCR)

# WIASLAN FIGUEIREDO MARTINS, DANIELLE DE SOUSA SEVERO, FERNANDA CUNHA MARQUES, GLÁUCIA MARIA FALÇÃO DE ARAGÃO

Federal University of Santa Catarina, Brazil.

#### INTRODUCTION AND OBJECTIVES

The lactic acid bacteria (LAB) *Weissella viridescens* has been reported as responsible for spoilage of meat products. To identify, quantify and model this bacterium growth in culture medium, a SYBR-Green Real-Time Quantitative PCR (qPCR) procedure has been developed, using the *recN* gene as a target.

#### MATERIAL AND METHODS

To confirm the efficiency and sensitivity of the SYBR-Green based assay, a melting curve analysis was performed to check the specificity of the amplification reaction during the qPCR analysis. The growth curve for a *W. viridescens* ATCC 12706<sup>T</sup> pure culture enumerated by qPCR was compared with the one enumerated by plate counts. The experiment was conducted in optimal growth temperature (30 °C) until the stationary phase. Baranyi and Roberts' model was fitted to growth data using Matlab® software.

#### RESULTS

The results demonstrated that the primers were specific for W. viridescens with specific signals in melting temperatures of  $81.3 \pm 0.1$  °C for this species. Standard curves presented efficiency values of 112% and suitable correlation coefficients ( $R^2 > 0.99$ ). The limit of detection was found to be  $1.2 \log DNA$  copy number that corresponds to  $3.7 \log CFU$ , a suitable CFU enumeration range for spoilage LAB, considering that they should be initially present in meat products. The statistically significant difference (p-value of < 0.05) between qPCR and plate count was observed only during the exponential phase (15 hours of cultivation), corresponding to 7.95 and  $7.6 \log CFU$ , respectively. The model presented a good fit ( $R^2 > 0.99$ ) for