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ABSTRACT

Offshore wind energy production is progressing rapidly and is playing an
increasingly important role in electricity generation. Since the Kyoto
Protocol in February 2005, Europe has been substantially increasing its
installed wind energy production capacity. Compared with onshore wind
energy production sites, utilizing offshore sites allows the installation of
larger turbines, more extensive sites, and encounters higher wind speeds
with lower turbulence. On the other hand, harsh marine conditions and
limited access to the turbines are expected to increase the costs of operation
and maintenance (O&M—O&M costs presently make up approximately
20-25% of the levelized total lifetime cost of a wind turbine). Efficient
condition monitoring has the potential to reduce O&M costs. In the analysis
of the cost effectiveness of condition monitoring, cost and operational data
are crucial. Regrettably, wind farm operational data are generally kept
confidential by manufacturers and wind farm operators, especially for
offshore sites.

To facilitate progress, this book investigated accessible Supervisory Control
and Data Acquisition (SCADA) and failure data from a large onshore wind
farm and created a series of indirect analysis methods to overcome the data
shortage, including an onshore/offshore failure rate translator and a series
of methods to distinguish yawing errors from wind turbine nacelle direction
sensor errors. Wind turbine component reliability has been investigated
using this innovative component failure rate translation method from
onshore to offshore, and the translation technique to Failure Mode and
Effect Analysis (FMEA) for offshore wind installations was applied. An
existing O&M cost model has been further developed and then compared to
other available cost models. It is demonstrated that the improvements made
to the model (including the data translation approach) have improved the
applicability and reliability of the model. The extended cost model (called
StraPCost+) has been used to establish a relationship between the
effectiveness of reactive and condition-based maintenance strategies. The
benchmarked cost model has then been applied to assess the O&M cost
effectiveness for three offshore wind farms at different operational phases.

Apart from the innovative methodologies developed, this book also
provides a detailed background and understanding of the state of the art for
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offshore wind technology and condition monitoring technology. The
methodology of the cost model developed in this book is presented in detail
and compared with other cost models in both commercial and research
domains.






CHAPTER 1

INTRODUCTION AND MOTIVATION
FOR THE RESEARCH

It is generally accepted that renewable energy has been taking an
increasingly important role in energy generation worldwide, especially
since the Kyoto Protocol was brought into force in February 2005 when the
adoption of renewable energy formally became governmental action. Wind
energy, as an important form of renewable energy generation, has been
given increasing attention all over the world, within which offshore wind
energy generation is now progressing rapidly. Europe has been substantially
increasing its installed offshore wind capacity in recent years. The offshore
market in the UK has been enlarged rapidly during this period with large
projects given political and economic support.

Compared with onshore wind installations, offshore wind farms allow the
installation of turbines of both larger structural size and rated capacity.
Offshore installations can access more extensive sites with higher wind
speeds and lower turbulence. These obvious advantages have attracted a
large amount of commercial attention. On the other hand, harsh marine
conditions and limited access to the turbines are expected to increase the
cost of operation and maintenance (O&M). O&M costs make up 20-25%
of the total lifetime cost of an onshore wind turbine 0, and a typical 500 MW
offshore wind farm normally requires in the order of £25-40 million for
O&M annually [2]. Maintenance costs include preventive and corrective
maintenance, and account for the main proportion of the O&M costs. It is
therefore important to find a way to reduce O&M costs, especially within
the maintenance component.

To reduce maintenance costs, one train of thought is to improve the
maintenance strategy. One way of achieving this is to apply condition-based
maintenance as a planned preventive method and reduce the dependence on
reactive maintenance as a corrective method, since this usually costs more.
Efficient condition monitoring has the potential to reduce O&M costs, but
it is important to make sure that the investment in condition monitoring
systems is worthwhile. The indicative cost for a condition monitoring—



2 Chapter 1

including Supervisory Control and Data Acquisition (SCADA)—system is
in the order of £0.4-0.8 million for a typical 500 MW wind farm per year
[3]. This is a relatively low cost compared with the overall O&M costs but
still considerable for the entire turbine life time. A promising approach is to
use information from the SCADA system as much as possible to reduce the
costs of any additional condition monitoring hardware.

To study the cost effectiveness of condition monitoring, cost and operational
data are important. However, being a relatively new technology in energy
generation, wind farm operational data are generally kept confidential by
manufacturers and wind farm operators, especially for offshore sites. The
lack of historical cost and operational data (especially failure rate) from
offshore wind farms makes it difficult to investigate the reliability and
undertake the desired cost effectiveness analysis.

This chapter covers the novelty of the research in Section 1.1, an overview
of the book in Section 1.2 with a process diagram highlighting the main
research points, and publications in Section 1.3.

1.1 Novelty of the research

This book has investigated accessible SCADA and failure data from a large
onshore wind farm and SCADA data from selected offshore wind farms,
and innovatively created a series of indirect analysis methods to overcome
the problem of data shortage, including an onshore/offshore failure rate
translator and a series of methods to distinguish yawing errors from turbine
nacelle direction sensor errors. Another novelty of this book is that it has
creatively applied this failure rate translator to a Failure Modes and Effect
Analysis (FMEA) to rank component risks for offshore wind turbines to fill
this gap in the research domain. This data translation approach has been
used to improve and further develop an existing O&M cost model. The
extended cost model (called StraPCost+) has been used to establish a
relationship between the effectiveness of reactive and condition-based
maintenance strategies. The cost model has also been benchmarked against
a number of cost models already in commercial or academic use and it has
been demonstrated as reliable and practical. The cost model has then been
applied to assess the O&M cost effectiveness for three offshore wind farms
at different operational phases, including the planning phase.

This book provides a detailed background to the subject including a
comprehensive literature review. It develops and applies innovative
methods to modelling O&M and the impact of condition monitoring.
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Highlighted topics include the current condition of offshore wind energy,
the state-of-the-art condition monitoring techniques and costs, a detailed
introduction of the cost model developed in this book, and the methodology
of other cost models in both commercial and research domains with detailed
comparisons of model results.

1.2 Overview of the book

Chapter 2 begins this book with a thorough review of the relevant literature
including a comparison of onshore and offshore wind farms and their O&M
requirements. It then presents a technical introduction to condition
monitoring including the benefits, performance and costs. It lists the
different condition monitoring techniques in use. Finally, this chapter
reviews the current situation regarding turbine and component failure rate
and provides the motivation for the failure rate analysis developed in this
book.

Chapter 3 begins with a technical introduction to the actual wind farms used
in this book. It then provides a detailed environmental and generational
analysis of an offshore wind farm that is investigated in detail in this book.
This chapter principally presents a series of yaw error and turbine nacelle
direction sensor error identification methods developed in order to improve
the interpretation of operational data. This technique filters out the data with
misleading failure information and improves the data reliability for further
failure rate analysis and cost effectiveness analysis in the next chapters.

Chapter 4 investigates wind turbine component reliability. It presents a
method of failure rate translation from onshore to offshore data that is
developed and used in this book and discusses its wider potential
applications, in particular, the translation of an FMEA component risk
ranking from onshore to offshore. It quantifies for the first time the risks
associated with key component ranks in an offshore operational context.

Chapter 5 comprehensively introduces the cost model developed and
improved for offshore wind farm performance and O&M cost estimation.
This chapter begins with a detailed technical introduction to the existing
cost model. A number of other cost models in the research and commercial
domain are reviewed and compared with this existing model. The next
section presents the improvement of the original cost model, called
StraPCost+, including the application of the onshore/offshore failure rate
translator developed in Chapter 4. This chapter then compares the
StraPCost+ model with other accessible cost models using an offshore wind
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farm case study and discusses the results. As an innovative function among
all cost models, StraPCostt+ provides an estimation of condition-based
maintenance. This chapter then presents a series of detailed condition
monitoring system detection effectiveness analyses from StraPCost+. The
last section in this chapter presents a series of sensitivity analyses to
examine the impact of changing key factors: the wind and wave parameters,
the weather window threshold, overall turbine annual failure rate, condition
monitoring detection statuses and distance to shore.

Chapter 6 presents two real site case studies using StraPCost+, with a
comparison of other cost models. It firstly provides the analysis of an
existing offshore wind farm and demonstrates the reliable applicability of
StraPCost+. After that, it presents a case study aiming to provide estimates
for a planned offshore wind farm, which shows the potential practical use
of StraPCost+ in terms of assisting decision making for vessel planning.

Chapter 7 concludes this book and proposes areas of potentially useful
future work.

Chapter 8 lists the references used in this book.

A series of Appendices are presented at the end of the book. Appendix-A
presents the wind farm statistics. Appendix-B presents results for the cost
model analysis. In the book contents, a citation from the appendix is given
an indication after the table number of “a” for Appendix-A, and “b” for
Appendix-B.

A progress diagram for the main points in this book is presented on the next
page to aid understanding of the coherence of each research point.
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CHAPTER 2

LITERATURE REVIEW

In order to have a general understanding of the motivation and the issues
investigated later, this chapter provides a thorough literature review
covering the topics of wind energy, offshore wind, condition monitoring
and failure rate.

Section 2.1, the review of offshore wind, lists the top ten largest operating
offshore wind farms in the world and compares the environmental and
technical differences between onshore and offshore wind farms.

Section 2.2 discusses condition monitoring, introduces the main categories
of maintenance strategies in use, describes the benefits of condition
monitoring and lists the different condition monitoring data acquisition and
processing techniques in use.

The last section in this chapter, Section 2.3, reviews the current situation of
component failure rate which motivates the failure rate analysis undertaken
in the next chapters.

2.1. Review of offshore wind

This section presents a general review of onshore and offshore wind farms,
an introduction to wind turbines, a comparison between onshore and
offshore wind energy, and the current situation of offshore wind energy
development in the world and in Europe.

2.1.1 Wind farms

A wind farm is a site that consists of a number of wind turbines, installed
onshore or offshore. Both onshore and offshore wind farms have rapidly
increased their generation capacity in the past decade. Wind energy
delivered in total 3.4% of the world’s electricity in the year 2014 [4]. The
world’s largest onshore wind farms can have thousands of turbines. For
example, Gansu wind farm, China has more than 3,500 turbines installed
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with a current capacity of over 6 GW [5][6]. Offshore wind farms, on the
other hand, seek to enhance the total capacity by not only increasing the
total number of turbines but also having a higher individual capacity of each
turbine, for example 25 MHI Vestas 8 MW turbines have been installed in
the Burbo Bank offshore wind farm (DONG Energy), Liverpool Bay, UK
[7].

With a large number of turbines, an onshore wind farm can have a total
capacity of over several thousand megawatts. Onshore wind farms can be
built in a wide range of different terrains such as mountainous areas, plains,
coastal areas, deserts and even in polar regions. As stated above, many of
the world’s largest onshore wind farms are located in China and India;
following the Gansu wind farm in China in size, Muppandal wind farm in
India has 3,000 turbines generating 1.5 GW of installed capacity [8].

Offshore wind farms, on the other hand, are constructed in bodies of water,
where the wind resource quality is better in terms of higher wind speed and
lower wind turbulence. DONG Energy, Vattenfall and E.ON are leading
operators in the offshore wind industry [4]. The leading countries for
offshore wind farms are the UK, Germany, and Denmark [9]. In 2015, the
London Array in the UK, inaugurated on the July 4, 2013, remained the
world’s largest operating offshore wind farm, with 175 Siemens SWT-3.6-
120 wind turbines and a total capacity of 630 MW [10].

Table 1 lists the top ten largest operating offshore wind farms in the world.
It provides a series of technical details such as distance to shore, maximum
water depth, wind farm area, number of turbines, turbine type, installed
capacity and commission year. The country of location clearly shows that
all of these large offshore wind farms are located in Europe, while seven of
them are within the UK. The next section continues discussing this table
from the perspective of wind turbine types.
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10 Chapter 2

2.1.2 The wind turbine

A wind turbine is a device that extracts energy from the wind and converts
it into mechanical energy, and then electrical energy. Wind turbines can
rotate both horizontally and vertically, known as horizontal axis wind
turbines and vertical axis wind turbines, respectively. The power from
onshore wind turbines is usually less than offshore ones mainly because of
the quality of the wind, and the fact that onshore turbines usually encounter
more noise and visual issues. Offshore wind turbines can be over 6 MW in
capacity. Vestas and Siemens are the two largest wind turbine suppliers
worldwide, followed by General Electric (GE) Energy, Goldwind and
Enercon [4]. From the ten largest offshore wind farms, as shown in Table 1,
seven out of the ten use Siemens wind turbines. This indicates that Siemens
wind technology is presently favoured by European large offshore wind
farm developers. In this book, the main wind farms with accessible data use
Siemens 2.3 MW rated wind turbines, for both onshore and offshore wind
farms. This shows that this type of turbine is widely utilized in Europe. The
consistency of the turbine type for onshore and offshore has provided the
possibility—and eased the development—of the onshore/offshore failure
rate translation introduced in Chapter 4.

Wind
\d\rectlon

Generator High speed

shaft

Swivel
beading Nacelle

Figure 2. Typical wind turbine structure with detailed drive train system in the
nacelle [20]

The complexity of the drive train system increases the frequency and cost
of maintenance. A conventional wind turbine drive train mainly consists of
a low speed shaft, a gearbox, a brake, a high speed shaft and a generator, as
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shown in Figure 2. Alternatives to a traditional gearbox arrangement are
direct drive and hybrid drives in which a low ratio gearbox is combined with
a multi-pole generator. One major branch in direct drive development is
permanent magnet generators (PMGs).

Direct drive systems remove the intermediate link, the gearbox, to improve
the turbine availability, and hence to reduce the total maintenance cost.
Figure 3 shows a low speed direct drive from an Enercon turbine, where the
rotor hub is mounted on the fixed axle [21]. To avoid the complexity and
thus the high failure rate of the gearbox, wind turbine manufacturers such
as Siemens and GE have been devoting themselves to the development of
direct drive turbines. The share of direct drive turbines has increased from
around 16% in 2006 to 26% in 2013 [22]. However, since direct drive is still
a new concept in wind turbine power generation, some research shows that
the economic benefits for direct drive turbines are unclear or even lower
than the gearbox-driven ones [23].

Figure 3. Image of a direct drive of E-48 from Enercon [21]

The hybrid drive system is a compromise between the conventional gearbox
drive train and a direct drive system. It uses a gearbox with a reduced
number of stages which improves efficiency and reliability and uses
intermediate rather than high speed generators. Companies such as Gamesa
use multiple permanent magnet induction generators, as shown in Figure 4
[24].
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Figure 4. Hybrid drive system with multiple PMGs turbine from Gamesa [24]

The different designs of drive train outlined above provide examples of
design improvements of wind turbine components which aim to reduce the
failure rate costs and enhance reliability. From the trends outlined, it can be
seen that a direct drive arrangement with a large multi-pole (usually PMG)
is steadily developing and taking over from conventional geared turbines
for large offshore wind turbines. EDF, for example, has selected the
Haliade® (GE-Alstom) direct drive 6 MW turbine for their French offshore
sites [25].

2.1.3 Offshore vs. onshore

Apart from technical or cost perspectives, there are significant differences
between onshore and offshore wind farms. Over the years, the debate
between installing a cheaper easy-maintenance onshore wind farm or an
offshore wind farm causing less visual pollution and with higher output has
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never stopped. Compared to onshore wind, offshore wind has rather
different characteristics. For example, the total electricity production is
generally higher since wind speeds are higher, and they are also more
persistent which adds value to the electricity generated. From an
environmental perspective, offshore wind farms are exposed to extreme
weather conditions, waves, and corrosion due to salt water. In addition, the
marine environment makes maintenance much more difficult than onshore,
which leads to longer downtime and lower availability. In addition, offshore
maintenance and repair is more expensive due to the cost of accessing
offshore sites.

Table 2, as first presented in [26], lists the benefits and disadvantages of
both onshore and offshore wind farms, and some of the disadvantages
address the issues that O&M might encounter. O&M costs for offshore wind
could be higher for more challenging offshore sites further from shore.
Preventive condition-based maintenance can help to reduce this cost via
inspection and maintenance before catastrophic failure occurs.
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