Distribution and Supply Logistics
Distribution and Supply Logistics

By

Martin Straka

Cambridge Scholars Publishing
Any meaningful activity or work that is a product of a mental or physical nature requires long-term effort and a large amount of time, not only from those directly involved, but the people around them must also give further, not less important support too.

That is why I would like to thank my family, my friends and all those who helped with the design and production of this book, especially my wife, my daughter and my son for their patience and mental support while I was writing this book.

This publication is dedicated to my family.
“I do the very best I know how – the very best I can; I mean to keep going.
If the end brings me out all right, what's said against me won't matter.”

Abraham Lincoln
CONTENTS

Foreword ................................................................................................................. xvii

Introduction ........................................................................................................... xix

I. The Methodological Basis of Distribution and Supply Logistics

Chapter One ........................................................................................................... 2
The Position of Distribution and Supply Logistics in the Logistics System of a Company

1.1 Logistics divisions ......................................................................................... 5
1.2 Distribution and supply logistics ................................................................. 9
   1.2.1 Connections and relations between the concepts of distribution and supply logistics .................................................. 13
1.3 Distribution, supply and its functions ............................................................ 19
1.4 Distribution policy ......................................................................................... 23
1.5 Further elements of distribution logistics .................................................... 23
   1.5.1 Distribution channels .......................................................................... 23
   1.5.2 Acquisition and logistics distribution subsystem ................................. 28
1.6 Physical distribution and physical supply ...................................................... 29
   1.6.1 Storage ................................................................................................. 30
   1.6.2 Packaging ............................................................................................ 32
   1.6.3 Output of goods, loading ..................................................................... 34
   1.6.4 Transport ............................................................................................. 35

Chapter Two .......................................................................................................... 41
Classification of Items of the Distribution and Supply Space

2.1 Definition of the items and criteria of the distribution space ................. 41
   2.1.1 Items and criteria defining the shape and size of the distribution and supply space ............................................................. 42
   2.1.2 Items and criteria influencing the topology of the distribution and supply network ......................................................... 45
      2.1.2.1 Criteria defining the basic shape of the distribution and supply network .................................................................... 45
      2.1.2.2 Additional criteria that influence the choice of distribution stations ............................................................................ 48
2.1.3 Items and criteria defining the performance (operation) of distribution and supply .......................................................... 49
2.2 Classification of distribution and supply networks ................. 50
  2.2.1 The basic types of distribution and supply networks ............ 50
  2.2.2 Complex structures of distribution and supply networks ...... 53
  2.2.3 Linkages between the items of distribution and supply networks .................................................................................. 55
  2.2.4 Static and dynamic distribution networks ............................ 56

Chapter Three .................................................................................. 58
Rules of Distribution System Nodes
  3.1 Rules of keeping quantities of goods in distribution nodes .......... 58
  3.2 Rules for creation of distribution groups and distribution circuits. 61
  3.3 Rules for choosing a suitable method for locating a distribution centre .......................................................... 66
  3.4 Rules for selection of type of distribution and supply network..... 67

II. Support Processes of Distribution and Supply Logistics

Chapter Four .................................................................................... 72
Designing Warehouses and Technical Facilities
  4.1 Warehousing as part of logistics .................................................... 73
  4.2 Storage systems ........................................................................ 74
  4.3 Types of storage and their functions .............................................. 74
  4.4 Logistics systems in storage ....................................................... 78
  4.5 Warehouse design ...................................................................... 81
  4.6 The top requirements for building warehouses ........................... 82
  4.7 Aspects affecting storage projects ................................................. 84
    4.7.1 Questions that influence warehouse design, ”what?, when?,
      why?, how many?, where?, how?, how much money?, what with?, for whom?” .......................................................... 85
    4.7.2 Warehouse assortment ......................................................... 90
    4.7.3 Packages ............................................................................ 94
    4.7.4 Means of transport .............................................................. 95
    4.7.5 Storage technologies .......................................................... 98
      4.7.5.1 Storage technologies for piece-goods ........................... 98
      4.7.5.2 Storage technologies for storage of bulk material........ 102
    4.7.6 Handling tools in a warehouse ............................................. 104
      4.7.6.1 Handling equipment for piece-goods in a warehouse........ 104
4.7.6.2 Handling equipment for bulk material in a warehouse .............................................. 107
4.7.7 The degree of warehouse mechanization ................................................................. 109
4.8 The PDS model – project for distribution stock ...................................................... 115
4.8.1 Characteristics of PDS model variables .............................................................. 116
4.9 Calculation of warehouse capacity ................................................................. 123

Chapter Five ............................................................................................................... 127
Information and Communication Technologies in Distribution and Supply Logistics
5.1 Information technology items ................................................................. 127
5.2 Automatic identification systems (AIS) .............................................................. 128
  5.2.1 Advantages of using AIS and its significance for logistics ....................... 136
5.3 The importance of communication standards for distribution logistics – electronic data interchange EDI ........................................ 137
  5.3.1 Advantages of communication standards ..................................................... 139
  5.3.2 The use of communication standards in logistics ........................................ 140
5.4 Management of distribution using satellite navigation ........................................ 142
  5.4.1 GPS – Global Positioning System ................................................................. 142
  5.4.2 GLONASS – the Global Navigation Satellite System .................................. 145
  5.4.3 GALILEO – the European Satellite Navigation System ...................... 145
  5.4.4 The use of navigation systems in logistics ............................................... 145
5.5 The internet and its modifications ........................................................................ 146
5.6 Other information technology applications in practice ......................................... 147
5.7 Overview of information systems in distribution logistics ...................................... 149

Chapter Six .............................................................................................................. 151
Logistics Costs and Actions in Distribution and Supply Logistics
6.1 Costs ............................................................................................................... 152
  6.1.1 Cost of circulation of goods ................................................................. 153
  6.1.2 The costs for distribution (the distribution costs) .................................... 154
6.2 Views of physical distribution costs .................................................................... 155
6.3 Costs of logistics ............................................................................................... 160
6.4 Logistics actions ................................................................................................. 164
6.5 Logistics indicators ............................................................................................ 165
  6.5.1 The key indicators of logistics actions ...................................................... 166
III. Methods, Models and Tools of Distribution and Supply Logistics

Chapter Seven ........................................................................................................... 170
Inventory Management
7.1 Inventory optimization options ................................................................. 170
    7.1.1 Inventory control strategies .............................................................. 172
        7.1.1.1 Deterministic models of inventory management .......... 175
            7.1.1.1.1 The inventory management model with a deficit ................................................................. 182
        7.1.1.2 Stochastic models of inventory management .......... 191
            7.1.1.2.1 The control of stochastic inventory consumption – the fixed order quantity method ................................................. 192
            7.1.1.2.2 The control of stochastic inventory consumption – fixed time period method ................................................. 201

Chapter Eight ......................................................................................................... 207
Location as a Strategic Decision
8.1 Location and multi-criteria decision making ........................................ 209
    8.1.1 Definition of criteria ................................................................. 209
    8.1.2 Determination of weights for defined criteria ............................ 210
        8.1.2.1 Direct methods for determining criteria weights .......... 211
        8.1.2.2 Indirect methods for determining the criteria weights ...................................................................................... 214
    8.1.3 Calculation of the overall utility of particular options ............. 221
    8.1.4 Direct methods for assessing the overall utility of options .... 222
        8.1.5 Indirect methods assessing the overall utility of options .... 229
8.2 Location using mathematical-geometrical methods ............................. 244
    8.2.1 Location using the axial distance .............................................. 246
    8.2.2 Location using quadratic distance ......................................... 252
    8.2.3 Location using direct distance, Cooper’s iteration method .................................................................................. 255
    8.2.4 Location using the direct coordinated distance ...................... 264
8.3 Expert systems .............................................................................................. 268
    8.3.1 Expert systems for solving distribution tasks ....................... 270

Chapter Nine .......................................................................................................... 274
Modelling Transport Tasks
9.1 Formulation of transport tasks, type of relation \( m \times n \) .............. 275
9.2 Methods suitable for solving transport tasks, type of relation \( m \times n \) ......................................................................................................................... 280
9.2.1 The North West Corner method ........................................... 281
9.2.2 The index method – Stepping stone ................................. 287
9.2.3 Vogel’s approximation method ......................................... 290
9.2.4 The MODified DIstribution – MODI .............................. 294

9.3 Multi-level distribution networks, circular tasks, type of relation $1 \times m$ ................................................................. 304
9.3.1 Method of distribution potential (MDP), multi-level type of relation $1 \times m$ .............................................................. 305
9.3.2 Circular tasks, Clarke-Wright’s "saving" algorithm, one-level type of relation $1 \times m$ ................................................... 318

Chapter Ten .................................................................................. 339

Dimensioning Items in Distribution Networks

10.1 Mathematical approach to defining the capacity of distribution warehouses .......................................................... 342
10.1.1 Two-stage transport tasks, linkage type $m \times r \times n$ .......... 342
10.1.2 X-stage transport tasks, linkage type $m \times r \times n \times \ldots \times z$ ................................................................... 347

10.2 The use of simulation for the purpose of defining the capacity of distribution elements ........................................... 352
10.2.1 Transactions, requirements – basic dynamic items ......... 353
10.2.2 The warehouse as a parallel queuing theory system, multichannel system .................................................. 354
10.2.3 A warehouse as a queue of un-serviced requests ........... 355
10.2.4 Solution of the transport task in the environment of the EXTENDSIM simulation system .............................. 357

10.3 The heuristic approach to defining the capacity of distribution warehouses .......................................................... 370

IV. Case Studies and Applied Logistics Research
in Distribution and Supply

Chapter Eleven .............................................................................. 374

Applied Research in Distribution and Supply Logistics and the Solution of Specific Tasks in Practice

11.1 The procedure for solving distribution and supply problems..... 374
V. Case Studies from the Conceptual Design of Distribution Systems

### Chapter Twelve
- **Analysis and Proposal for Clothing Distribution within Alfa, Inc**
  - 12.1 Definition of the problem and objective of the task 380
  - 12.2 Analysis of the present state of clothing distribution for Alfa, Inc. Puchov 380
  - 12.3 Planned development of Alfa, Inc. Puchov in domestic and foreign markets 382
    - 12.3.1 Building the retail network 382
    - 12.3.2 Wholesale distribution network 385
  - 12.4 Proposal for the retail distribution network of Alfa, Inc. Puchov 385
  - 12.5 Proposal for the wholesale distribution network of Alfa, Inc. Puchov 392
  - 12.6 Assessment of the results 395

### Chapter Thirteen
- **Proposal for the Distribution System of a Brick Factory of a Virtual Company in Kosice**
  - 13.1 Definition of the problem and objective of the task 396
  - 13.2 Packaging, loading and transportation of products 397
  - 13.3 Analysis of brick sales 399
  - 13.4 Proposal for a suitable distribution system for Brick Factory Kosice 402
    - 13.4.1 One level distribution network – type "Star" 402
    - 13.4.2 Structured distribution network and definition of distribution warehouses 403
      - 13.4.2.1 Dividing the distribution region by the "Method of Distribution Potential" 405
      - 13.4.2.2 Selection of distribution warehouses, distribution network 416
      - 13.4.2.3 Evaluation of results for truck transport 424
    - 13.5 Possibilities for using combined transport 426
      - 13.5.1 Length of the distribution track using railway transport 426
    - 13.6 Cost of distribution analysis 428
    - 13.7 Selection of the most suitable option, conclusion and assessment of results 429
Chapter Fourteen .................................................................................. 432
Proposal for a Distribution Logistics and Transport System at Kapa, Inc.

14.1 Definition of the problem and objective of the task ............ 432
14.2 Characteristics of KAPA, Inc. ................................................. 432
14.3 The range of manufactured goods ....................................... 433
14.4 Analysis of the distribution system at KAPA, Inc. ............... 433
14.5 Warehouses of KAPA, Inc. .................................................... 435
14.6 Customers of KAPA, Inc. ...................................................... 435
14.7 Application of SWOT analysis for evaluation of the distribution system at KAPA, Inc. ................................................ 436
14.8 Conceptual design for the establishment of a separate
distribution department ................................................................. 441
14.9 Proposal for activities of the distribution department
for KAPA, Inc. ................................................................................ 445
14.10 Proposal for creation of distribution plans for KAPA, Inc. in algorithmic form ................................................................. 447
14.10.1 Basic and supporting parts of the planning system ......... 447
14.10.2 Description of basic planning system files ............... 448
14.10.3 Basic algorithm for creating distribution plans ............ 450
14.11 Summary of the defined solutions for KAPA, Inc.
product distribution system .......................................................... 452

VI. Case Studies in the Field of Location Problem Solving

Chapter Fifteen .................................................................................. 456
Location of Warehouses for Gama, Inc. Secovce

15.1 Definition of the problem and objective of the task ............ 456
15.2 Storage analysis in the company .......................................... 456
15.3 Company transportation analysis ........................................ 457
15.4 Proposal for the location of the company distribution centre.. 459
15.5 Location without considering warehouse capacity in the
distribution system ................................................................. 461
15.6 Location considering the capacities of warehouses in the
distribution system ................................................................. 463
15.7 Location of a new place for production .................................. 465
15.8 Assessment of results .............................................................. 467
Chapter Sixteen ................................................................................................................. 468
Proposing Locations for Operational Administration for the Needs of a Power Transmission System
16.1 Definition of the problem and objective of the task .................. 468
16.2 Characteristics of the PTS - analysis of the current state ........ 468
16.3 Deficiencies resulting from the current situation and possibilities for solution ............................................................... 471
16.4 Application of the method of distribution potential for the needs of PTS location ....................................................... 471
16.4.1 Selection and evaluation of criteria for multi-criteria analysis ................................................................ .............. 472
16.4.2 Determination of the PS structure and their subordinate stations ........................................................................ 475
16.5 Applying the geometric approach for the location of operational administration in the Power Transmission System .......... 480
16.5.1 Calculation of the coordinates of the operational administration site ............................................................... 484
16.5.2 Analysis of the results obtained ........................................ 488

VII. Case Studies from the Field of Distribution and Collection of Goods, Circular Tasks

Chapter Seventeen ............................................................................................................. 492
Application of Clarke-Wright’s Saving Algorithm for Increasing the Efficiency of Distribution for Delta Warehouses, Inc. Presov
17.1 Definition of the problem and objective of the task ................. 492
17.2 Characteristics of the Delta Warehouses, Inc. distribution centre in Presov ............................................................... 493
17.3 Presov DC distribution region .................................................... 494
17.4 Distribution of goods from the Presov DC ......................... 495
17.5 Deficiencies determined by analysis of DC Delta warehouses Presov ............................................................... 500
17.6 Planning distribution from Delta warehouses according to Clarke-Wright’s algorithm ....................................................... 501
17.7 Calculation of the savings matrix ........................................... 503
17.8 Requirements of shop units ...................................................... 503
17.9 Planning combined deliveries ................................................. 505
17.10 Determination of the order for implementation of planned deliveries ............................................................... 506
17.11 Summary of the procedure for the daily planning of goods deliveries ............................................................... 507
17.12 Creation of a goods delivery plan with the use of algorithms. 508
17.13 Evaluation of optimization of goods distribution for
DC Delta Warehouses, Inc. Presov .............................................. 513
17.14 Conclusion and evaluation of the results.............................. 515

Chapter Eighteen ........................................................................ 516
Improving the Efficiency of Goods Distribution and Collection in
a Particular Region
18.1 Definition of the problem and objective of the task ............ 516
18.2 Characteristics of the Metrological Centre.......................... 516
18.3 Analysis of the current situation and problems ................ 518
18.4 The possibilities for energy meter distribution ................. 522
  18.4.1 Creation of buffer stores, multi-level
  distribution network ............................................................... 522
  18.4.2 Improving the efficiency of distribution circuits
  and the length of their routes ................................................. 524
  18.4.3 Other proposals for improving efficiency of
  distribution and collection ...................................................... 527
18.5 Evaluation of results and conclusion of the task .............. 529

VIII. Case Studies from the Field of Inventory Management

Chapter Nineteen .......................................................................... 532
Dynamic Models of Supply and Management of Warehouses
at Omega, Inc.
19.1 Definition of the problem and objective of the task .......... 532
19.2 Characteristics of Omega, Inc. ............................................. 533
19.3 The organizational structure of Omega, Inc. ....................... 533
19.4 Analysis of the procurement and supply system at
  Omega, Inc. ............................................................................. 535
  19.4.1 Strengths and weaknesses in purchasing in
  the company ........................................................................ 539
19.5 Analysis of the stock inventories of Omega, Inc.
  using the ABC and XYZ methods ......................................... 540
  19.5.1 The application of ABC analysis in the specific
  business environment ............................................................. 541
  19.5.2 Application of XYZ analysis in the specific
  business environment ............................................................. 544
  19.5.3 Combination of analysis methods ABC and XYZ .... 546
19.6 Graphical assessment of incoming and outgoing materials
  from the warehouse to production ........................................ 547
19.7 Definition of deficiencies and proposals for more effective solutions for purchasing activities at Omega, Inc. ........................ 551
    19.7.1 Possibilities for solution of the personnel coverage of the TPPD position .............................................................. 553
    19.7.2 Warehouse system management solutions ........................ 553
    19.7.3 Possibilities to address entering / not entering, verification of delivery date and planning for means of transport ............ 554
19.8 The proposal for the purchasing and logistics model at Omega, Inc. ................................................................. 555
    19.8.1 Main algorithm of purchasing activities ........................ 555
    19.8.2 The dynamic model of inventory management - application with a fixed order quantity ............................................ 559
    19.8.3 The dynamic model of inventory management - application with a fixed time period ........................................... 566
    19.8.4 Economic calculation .................................................... 571
19.9 Conclusion and summary ........................................................... 572

Conclusion .............................................................................................. 573
References .............................................................................................. 575
List of Abbreviations ............................................................................. 581
List of Figures ........................................................................................ 583
List of Tables .......................................................................................... 591
Index ....................................................................................................... 598
Just as a company progressively undergoes various stages of development, development equally affects the spheres of trade, industry, transport, tourism and so on. At each stage of development, a company searches for the means to enhance and improve particular processes and activities to ensure they are implemented optimally. Whether it is the invention of the wheel, the engine, the telephone or their greater implementation in the lives of people, companies and businesses, it is all closely related to arranging the transport of people as well as goods, animals and things.

This monograph, “Distribution and Supply Logistics”, seeks to draw attention to areas that form part of distribution logistics. It shows a number of methods that can be used in this area to solve specific problems and it points to the possibility of optimizing the cost, time, distance, use of vehicles and other criteria.

The impulse for the creation of this publication has come from a definite need for solutions to problems in distribution and supply. Since the field of distribution logistics is a broad science it is not possible to solve all the problems in a few pages of text, nor is it possible to offer a universal and comprehensive solution to eliminate the shortcomings identified.

What is logistics? What is distribution and supply? What is supply chain management? Which elements create the distribution and supply space? What rules need to be followed when designing distribution and supply systems? Which aspects affect storage design? Which information technologies are suitable for distribution and supply systems? What costs affect distribution and supply systems? How to manage inventories in warehouses? How to select a suitable location for building a warehouse? How to design efficient systems of distribution and supply? How to design logistics systems? How to use various methods to solve the problems of distribution and supply in practice?

These are just some of the questions explored in this book. In addition to providing theoretical analysis of the problems of distribution and supply, it practically demonstrates the many ways of using heuristics to solve specific tasks. It brings together eight case studies to investigate facets such as designing distribution systems, solving location problems,
solving problems for the distribution and collection of goods, and inventory management solutions in particular companies. As such, it will appeal to students in the field of logistics, as well as logistics managers, designers and planners.

There are several rules about distribution and supply which illustrate the importance of them:

- Without distribution and supply, goods cannot exist on the market!
- Distribution and supply costs can comprise up to one third of the total cost of the goods!
- Distribution and supply form an integral whole!
- Distribution and supply exist throughout the world in various forms!

The ambition of this monograph is to show the most common problems addressed by distribution and supply logistics, to encapsulate them with concrete examples and to highlight the methods by which it is possible to achieve a solution to them. Definitions, terms, names and expressions used in the following text are the author's perspective on the particular subject matter from his long experience of work in science, education and practice in this area and they will probably, or certainly, provoke heated discussion by some interested readers. If the publication stimulates readers, whether in the positive or negative sense, I will be satisfied that it has met my expectations. As the whole world develops rapidly, so do the fields of logistics, supply and distribution and it is not possible to accept definitions, concepts and views in this area from a few decades ago or even from a few years ago as something fixed and stable. For this reason, I bring my own perspective into this area, which may be contrary in some cases to traditional views.

I hope that this monograph will contribute to the increased knowledge of workers, researchers and students from different disciplines or professional branches and it will be a guide to help them solve their specific problems and tasks in the field of distribution and supply logistics.

I wish you a pleasant journey through the field of logistics of distribution and supply.

The Author
Economic changes, alternation of periods of crisis (economic, social, moral) and periods of prosperity, the rapid development of technology, industry, business, rising energy costs and increased demands on products, product quality and services lead and force a company to continuously improve the quality and efficiency of production, the efficiency of distribution and of the activities related to it in order to optimize costs and profit with the maximum satisfaction of customer requirements. The goal is to find at least a ‘minor’ saving or savings that might mean survival for the company in difficult times and provide some competitive advantage relative to other competitors. Several years of experience in the practical solution of many problems in distribution logistics have been decisive in leading me to create an integrated work of logistics with a focus on distribution logistics.

Distribution and supply logistics, with its range of solutions, is focused on the following tasks:
- design of distribution and supply systems for industrial concerns and other companies,
- location and placement of companies, warehouses and distribution centres,
- storage and technical equipment,
- improving the efficiency and dimensioning the elements of distribution and supply systems,
- improving the efficiency of and the development of distribution plans and inventory management,
- selection and improving the efficiency of modern information and expert systems in the area of distribution and supply,
- defining distribution and supply routes.

Distribution, as a part of distribution logistics and supply, and as a part of supply logistics, makes contact with the real market; in other words it connects the end of the manufacturing process with the beginning of fulfilling consumer needs. Distribution additionally enables the needs of customers to be fulfilled. It is also a kind of link between the different
parts of the world and it enables the connection of regions with a different culture.

For each solution area, distribution and supply logistics suitably combines and uses the necessary methodology, methods, processes and tools specific to the field of logistics but also methods from other fields. The variation of certain solutions in distribution and supply logistics clearly predetermines the use of methods based on the principle of a multi-criteria decision-making process and heuristic principles that are close to human behaviour.

The monograph is divided into four thematic parts:

- The first thematic area is dedicated to the methodological basis of distribution and supply logistics.
- The second thematic area is focused on support processes in distribution and supply logistics.
- The third thematic area introduces methods, models and tools of distribution and supply logistics.
- The final thematic area of the monograph is dedicated to specific applications of the method of logistics to solutions of problems, projects and reviews from the areas of distribution and supply logistics.

The case studies are records of an appropriate combination of creativity, logical thinking, experience and methods to reduce deficiencies and to achieve the defined objectives of tasks in distribution and supply logistics. For reasons of confidentiality, in some cases I have fictionalised the names of businesses where problems were solved and where approaches and methods of logistics were applied, however the approaches used in their solutions remain original.
I.

THE METHODOLOGICAL BASIS OF DISTRIBUTION AND SUPPLY LOGISTICS
CHAPTER ONE

THE POSITION OF DISTRIBUTION AND SUPPLY LOGISTICS IN THE LOGISTICS SYSTEM OF A COMPANY

What you will learn: In order to solve problems from the area of logistics, it is necessary to become familiar with the basic terms, classification and levels of logistics. This chapter addresses definitions and concepts in logistics in general, with a focus on distribution logistics. It refers to the elements which create distribution logistics. It defines flow, distribution function and distribution policy. It highlights the importance of storage, packaging and preparation of goods for loading and transport and it defines the basic chain which forms the distribution channel.

Basic terms: logistics, distribution, distribution channel, distribution system.

During the reign of the Byzantine Emperor Leontos VI (886 – 911) the term “logistics” began to be used for the first time. The Swiss General H. Jomini (1799 – 1869) used the term “logistics” as specific military terminology. He understood logistics as the science of moving and accommodating soldiers. At the beginning of the twentieth century, the term logistics entered use in the field of economics and in economic literature. At the beginning of the seventies, experts started to apply the theory of logistics in practical use. According to some authors, logistics can be understood as the branch of science which deals with comprehensive planning, management, implementation and control of material flows, creating the necessary material flows and information systems for material processing. Logistics is a summary of all activities for the comprehensive management and implementation of material flow in manufacturing processes and the circulation of goods (Viestova 1993, Straka 2004).

To achieve the highest performance while maximizing production efficiency, logistics defines or proposes actions on the strategic, tactical
and operational levels that lead to achieving the required results using all the available means of science and technology, economics and computer science. Businesses try to reduce and minimize costs by applying a logistical approach to secure their competitiveness in the market.

The aim of logistics is to create a united, integrated, optimized material flow, which arises from different parts of the system in such a way as to ensure a continuous exchange of goods and services. Logistics has developed gradually and many definitions were also developed together with it (Table 1), at the same time, new perspectives on its scope and its level of activity are still being formed.

Table 1 – Definitions of logistics from the different points of view of many authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Views of logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council of Logistics Management¹</td>
<td>1963</td>
<td><strong>Logistics</strong> is the process of planning, management and implementation of the effective and powerful flow and storage of goods and related information from the point of origin to the point of consumption, the aim of which is to satisfy customer requirements.</td>
</tr>
<tr>
<td>J.L. Hesket, N.A. Glaskowsky, R.M. Ivie²</td>
<td>1973</td>
<td><strong>Logistics</strong> is the management of all activities that facilitate the movement and coordination of supply and demand to create benefits of time and place.</td>
</tr>
<tr>
<td>Ch. Schulte³</td>
<td>1991</td>
<td><strong>Logistics</strong> is the integrated, market-oriented planning, creation, implementation and control of flows of material, goods and information from suppliers to businesses, within businesses and from businesses to clients with optimal costs.</td>
</tr>
<tr>
<td>I. Gross⁴</td>
<td>1995</td>
<td><strong>Logistics</strong> is the organization, planning, management and execution of flows of goods, starting with development and purchasing</td>
</tr>
</tbody>
</table>

¹ Council of Logistics Management, 1963  
³ Schulte, Ch.: Logistik, München, 1991  
⁴ Gros, I.: Logistik yes or not?, Logistika, Mesnicik Hospodarskych novin, No. 3, p. 58, 1995
<table>
<thead>
<tr>
<th>Source</th>
<th>Year</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malindzak, D.</td>
<td>1996</td>
<td>Logistics is the means and philosophy of flow (material, information and financial) management, to which there are applied: a systematic approach, methods of planning, algorithmic thinking and coordination in order to achieve global optimization.</td>
</tr>
<tr>
<td>Pernica, P.</td>
<td>1998</td>
<td>Logistics is the discipline that addresses the overall optimization, coordination and synchronization of all activities in self-organizing systems, their combination is essential to achieve a flexible and cost-effective final (synergistic) effect.</td>
</tr>
<tr>
<td>Council of Supply Chain Management Professionals</td>
<td>2005</td>
<td>Logistics is the process of planning, implementing and monitoring the efficiency and effectiveness of the direct and reverse flow and storage of raw materials, materials in processes, products and services, and related information between the point of origin and point of consumption in order to satisfy customer requirements.</td>
</tr>
<tr>
<td>Lenort, R.</td>
<td>2012</td>
<td>Logistics deals with the management of the entire supply chain, i.e. the chain with the initial link being primary suppliers of raw materials and the final link being the final consumers.</td>
</tr>
<tr>
<td>Straka, M.</td>
<td>2013</td>
<td>Logistics is a system in which there is an effect on elements in order to set up coordinated material, information and financial flows, resulting in, or aiming to,</td>
</tr>
</tbody>
</table>

---

7 Council of Supply Chain Management Professionals (CSCMP), http://cscmp.org/aboutcscmp/definitions.asp, 2005
satisfy customer requirements, and the related economic effect.

<table>
<thead>
<tr>
<th>Organization</th>
<th>Date</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Council of Supply Chain Management Professionals</td>
<td>2013</td>
<td>Logistics is the process of planning, implementing, and controlling procedures for the efficient and effective transportation and storage of goods including services, and related information from the point of origin to the point of consumption for the purpose of conforming to customer requirements. This definition includes inbound, outbound, internal, and external movement.</td>
</tr>
<tr>
<td>APICS, © APICS, Inc. All rights reserved – the association for supply chain management</td>
<td>2016</td>
<td>Logistics – 1) In the context of supply chain management this is the subset of supply chain management that controls the forward and reverse movement, handling, and storage of goods between the origin and distribution points. 2) In an industrial context, the art and science of obtaining, producing and distributing material and products in the proper place and in the proper quantities. 3) In a military sense (where it has greater usage), its meaning can also include the movement of personnel. © APICS, Inc. All rights reserved.</td>
</tr>
</tbody>
</table>

1.1 Logistics Divisions

In terms of the development of logistics over time, various streams have been and are still being created that understand Supply Chain Management (SCM) from their point of view (Larson et al. 2007).

From the “traditionalist” point of view (Figure 1a) logistics is considered to be a system of which a part or a special function is Supply

---


Chain Management. SCM provides the link between suppliers and customers to ensure a business performance.

From the “identicalist” point of view (Figure 1b) logistics is identical to SCM. This direction perceives SCM as equivalent to logistics and it tends to cancel the term of logistics and fully replaces it with SCM.

From the “unionist” point of view (Figure 1c) logistics is part of Supply Chain Management. SCM arranges the purchase of raw materials for a company, logistics activities in the manufacturing process, sales, which includes marketing and advertising, product development and order fulfilment.

For protagonists of the philosophy of “conjunction” (Figure 1d) logistics and SCM are understood as two separate units which complement each other and they have separate as well as common parts.

All these philosophies have some common elements. All the philosophies work with flows (material, financial, monetary, etc.) and manage them in relation to the elements that make up the system.

Among the main organizations that also deal with terminology of SCM and logistics can be included APICS, CSCMP and ELA.

The American Production and Inventory Control Society12 (APICS) is the association for supply chain management founded in 1952 by 20 production control managers.

The Council of Supply Chain Management Professionals13 (CSCMP) is an association which has been covering logistics and SCM since 1963.

The European Logistics Association14 (ELA) is a federation of 30 national organisations, covering almost every country in Central and Western Europe. ELA was founded in 1984.

In terms of market and enterprise it can be said that it does not matter what philosophy is applied, what is important is helping businesses gain a competitive advantage in the market, reducing costs, securing resources for running various businesses, securing consumers and correspondingly increasing profits.

12 http://www.apics.org
13 http://cscmp.org
14 http://www.elalog.eu
In terms of hierarchical levels and systems theory, logistics can be classified as (Figure 2):

- **macrologistics** (a business is an item in the logistics network, logistics chain),
- **metalogistics** (logistics at the level of a region),
- **micrologistics** (logistics of a business).

Under the term **macrologistics** it is possible to understand distinctive logistics at the supply chain level, where the elements are industrial concerns, other companies and the government, and the links between them represent materials, information and financial flows (Figure 2).

Under the term **metalogistics** it is possible to understand cooperation at different levels among micrologistics systems and regional specialized entities.

Under the term **micrologistics** it is possible to understand distinctive logistics at the level of an industrial concern or another company, the elements of which are the basic and supporting subsystems of the business (Figure 3).
If we assume the micrologistics model of an industrial concern and consider a systemic approach, the logistics of a company can be divided in terms of sub-processes (Figure 3) (Straka 2012):

- purchase logistics,
- supply logistics,
- logistics of manufacturing,
- sales logistics,
- distribution logistics,
- strategy logistics,
- reverse logistics.
- logistics of service processes,
- logistics of orders,
- information logistics,
- logistics of finance,
- personnel logistics,
- business service,
1.2 Distribution and Supply Logistics

Distribution logistics provides physical, organizational and informational links between the source (the output warehouse of a manufacturing enterprise) and consumers, the input warehouse or point of acceptance (Straka 2007). Distribution logistics (Table 2) can be understood as the subsystem of logistics, where elements are the means of storing and packaging, the product, the service personnel and the links among the elements providing management of means of transport, information and financial flows related to distribution.
Table 2 – Definitions of distribution logistics from the different points of view from many authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Views of distribution logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.B. Ihde</td>
<td>1978</td>
<td>Distribution logistics deals with problems relating to time and spatial bridged transfers of real goods and among the systems of division of labour.</td>
</tr>
<tr>
<td>Ch. Schulte</td>
<td>1991</td>
<td>Distribution logistics is responsible for all storing and transport movements of goods to consumers and related information, management and control activities.</td>
</tr>
<tr>
<td>M. Straka</td>
<td>2004</td>
<td>Distribution logistics has to ensure the most appropriate manner, selection and analysis of transport most suitable for transfer of products manufactured by producers to achieve the failure-free operation of the market.</td>
</tr>
<tr>
<td>DHL Logbook</td>
<td>2008</td>
<td>Distribution logistics includes all activities related to the provision of finished goods and products to the customer. These products may be shipped directly from the manufacturing process or dispatch warehouse to a space for further processing or, where appropriate, through other regional distribution warehouses.</td>
</tr>
<tr>
<td>M. Straka</td>
<td>2013</td>
<td>Distribution logistics has to ensure the most appropriate manner of analysis, selection and implementation of all activities and strategic and other decisions related to the provision of products to a customer so as to achieve the failure-free operation of the market.</td>
</tr>
</tbody>
</table>

---

16 Schulte, Ch.: Logistik, München, 1991
17 Straka, M.: Contribution to the modelling of problems in distribution logistics, TU of Kosice, 2004