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Preface

Extreme value theory is a progressive branch of statistics dealing with ex-

treme events. The restriction of the statistical analysis to this special field

is justified by the fact that the extreme data, or the extreme part of the

sample, can be of outstanding importance in studying floods, hurricanes, air

pollutants, extreme claim sizes, life spans, etc.

A quick look at the literature reveals that all the known books in the area

of extreme value analysis deal with the modelling of extreme value data

based on extreme value theory under linear normalization. In this book, we

will tackle some modern trends in the modelling of extremes under linear

normalization, such as the bootstrap technique. In addition, we consider the

problem of the mathematical modelling of extremes under power normal-

ization with the hope that this most recent approach will be more routinely

applied in practice. Finally, the present book handles some recent approaches

in order to achieve an improved fit of generalized extreme value distribution

for block maxima data and of generalized Pareto distribution for peak-over-

threshold data, either under linear or power normalization. Among these

approaches is the use of Box-Cox transformation, which provides additional

flexibility in improving the model fit.

This book is designed as an addition to the series of books about the

modelling of extreme value data rather than as a competitor to them. To

the best of the author’s knowledge, no books now in print cover the modelling

of extreme data under power normalization. It is worth mentioning that the

advantage of using the power normalization is that the classical linear model

(i.e., using extreme value theory under linear normalization) may fail to fit

the given extreme data, while the power model (i.e., using extreme value

theory under power normalization) succeeds. On the other hand, although

the book contains several applications, it meets the needs of readers who

are interested in both the theoretical and the practical aspects of extreme

value theory. In addition, the prerequisites for reading the book are minimal;

readers do not need knowledge of advanced calculus or advanced theory of

probability.

The primary readership of this book will be researchers who have a strong

mathematical background and are interested in extreme value theory and

its applications in modelling extreme value data, including statisticians, and

researchers who are interested in environmental and economic issues.



Preface xi

In fact, in some cases, the book may be a primary text (for students of

departments of statistics in faculties of science and postgraduate students

studying ecology) and it may be supplementary or recommended reading for

all students or researchers who are interested in environmental studies and

economics.

I am indebted to the numerous researchers who have enriched this field,

especially in the modelling of extreme data concerning air pollution. Usually,

these researchers worked on their own data arising from their particular

habitats; consequently, we may find some diversities or even divergences in

their results. However, beneath these diversities or even divergences there

lies a shared basis of a general theory. Actually, I am pleased to be part of

this team. In this book, I am trying with some members of my own research

group to present our own experience that has extended over two decades in

this field.

Finally, I would like thank my earlier Ph.D student Dr Hafid A. Alaswed

for many considerable contributions presented in this book, especially in

Chapters 6–8 of this book. I would also like to extend my sincere gratitude

to Adam Rummens who encouraged me to write this book.

The principal author

H. M. Barakat

June 2018
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1

Introduction: Some basic and miscellaneous results

In practice, we usually do not know the true probability models of random

phenomena, such as a human behaviour. George Box once said that there is

no true model, but there are useful models. Even if there was a true probabil-

ity model, we would never be able to observe it. Fortunately, in many cases a

complicated situation can be replaced by a comparatively simple asymptotic

model. The most important example of such cases is when the extremes gov-

ern the law of interest (e.g., air pollution, floods, strength of material, etc.).

More precisely, the asymptotic theory of extreme order statistics provides

approximate probability models that are not true but are definitely useful.

Therefore, we must connect what we can observe with these approximate

models. The key idea here is that we use a large set of observations (or a

set of realizations) to figure out the approximate probability model given

the data we have. Clearly, the cornerstone of the approximate probabilities

model is the concept of the convergence in probability theory. In Section

1.1, we will discuss different types of convergence in the probability theory

and statistics. On the other hand, some important tools of data treatments,

such as the Maximum Likelihood Method, Genetic Algorithms (GA), and

the Kolmogorov-Smirnov (K-S) test, are discussed in Sections 1.1 and 1.2.

1.1 The convergence concept in probability theory

There are several convergence concepts associated with the limiting be-

haviour of a sequence of RVs. Convergence in distribution (or weak con-

vergence), convergence in probability, and almost sure convergence are the

prominent ones. In the case of the sample mean, these concepts lead us to

the classical central limit theorem, weak law of large numbers, and strong

law of large numbers, respectively. In this book we will mostly be concerned

with weak convergence results for order statistics. In the context of weak



2 Introduction: Some basic and miscellaneous results

convergence, we are interested in identifying the possible non-degenerate

limit distributions for appropriately normalized sequences of RVs of inter-

est. These limiting distributions can be of direct use in suggesting inference

procedures when the sample size is large. These concepts and some required

theorems of a purely analytical nature will be briefly discussed in this sec-

tion. Throughout what follows the symbol (−→n ) stands for convergence, as

n→ ∞.

1.1.1 Modes of convergence of RVs

Definition 1.1 (almost sure convergence) We say that a sequence of RVs

X1, X2, ... converges to a RV X almost surely, written Xn
a.s.−→n X, if

{ω ∈ Ω : Xn(ω) −→n X(ω)}

is an event whose probability is one, where Xn and X are defined on the

same probability space (Ω,F , P ).

Definition 1.2 (convergence in probability) A sequence of RVs {Xn} is

said to converge in probability to a RV X, as n→ ∞, written Xn
p−→n X, if

for every ǫ > 0 we have P (| Xn−X |< ǫ) −→n 1, or equivalently P (| Xn−X |
≥ ǫ) −→n 0.

Definition 1.3 (convergence in the rth mean) A sequence of RVsX1, X2, ...

is said to converge in the rth mean, or in the norm ||.||r, to a RV X, written

Xn
r−→n X, if r ≥ 1, E|Xn|r <∞, ∀n, and

lim
n→∞

E(|Xn −X|r) = 0.

The most important cases of convergence in rth mean are:

• When Xn converges in rth mean to X, for r = 1, we say that Xn converges

in mean to X.

• When Xn converges in rth mean to X, for r = 2, we say that Xn converges

in mean square to X.

Convergence in the rth mean, for r > 0, implies convergence in probability

(by Chebyshev’s inequality), while if r > s ≥ 1, convergence in rth mean

implies convergence in sth mean. Hence, convergence in mean square implies

convergence in mean.

Definition 1.4 (convergence in distribution or weak convergence) Assume

that X1, X2, ... is a sequence of RVs with corresponding DFs F1, F2, ... and
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the RV X has the DF F. We say that the sequence of RVs {Xn} con-

verges in distribution to the RV X, as n → ∞, written Xn
d−→n X (or the

sequence of DFs {Fn} converges weakly to the DF F, as n → ∞, writ-

ten Fn(x)
w−→n F (x)) if Fn(x) converges pointwise to F (x) at all continuity

points of F, that is Fn(x) −→n F (x) at all points x, where F is continuous.

Remark Many authors avoid using the notation Xn
d−→n X, since weak

convergence pertains only to the DF of X and not to X itself. However, we

only use this notation in this section for the sake of notation uniformity;

however, in the sequel we will use the notation Fn(x)
w−→n F (x).

Remark Unless otherwise stated, we assume that the limiting function F (x)

is non-degenerate proper DF, i.e., that there exists a real number x such

that 0 < F (x) < 1 and F (∞)−F (−∞) = 1, in this case, we say that Fn(x)

converges properly to F (x) or simply Fn(x) converges weakly to F (x). On

the contrary, if F (∞) − F (−∞) < 1, F (x) will be called improper DF and

in this case the aforesaid convergence will be called improper convergence.

Some important relations between the modes of convergence are given in

the next theorems.

Theorem 1.5 Assume that X1, X2, ..., Xn are RVs on the same probability

space (Ω,F , P ). If so, the following implications hold:

• If Xn
a.s.−→n X, then Xn

p−→n X.

• If Xn
p−→n X, then Xn

d−→n X.

• If Xn
r−→n X, then Xn

p−→n X.

Theorem 1.6 (Continuous Mapping Theorem) Let {Xn}∞n=1 be a sequence

of RVs, f : R → R be a continuous function, and X be an RV.

• If Xn
a.s.−→n X, then f(Xn)

a.s.−→n f(X).

• If Xn
d−→n X, then f(Xn)

d−→n f(X).

• If Xn
p−→n X, then f(Xn)

p−→n f(X).

The preceding results hold equivalently for a sequence of random vectors

and matrices. Also, an important special case here is that X = c, where c ∈
R. In this case, we get f(Xn)

a.s.−→n f(c), if Xn
a.s.−→n c. Similarly, if Xn

p−→n c,

then f(Xn)
p−→n f(c).

Theorem 1.7 (Slutzky’s Theorem) Let Xn
d−→n X and Yn

p−→n C, where

C ∈ R is a constant. Then, YnXn
d−→n CX and Xn + Yn

d−→n X + C.
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An important special case of Theorem 1.7 is that ifXn
d−→n X and Yn

p−→n
0, then Xn+Yn

d−→n X. In this case, we say that Zn = Xn+Yn and Xn are

asymptotically equivalent because Zn −Xn
p−→n 0. Clearly, Slutzky’s theo-

rem, as well as the convergence concepts, can be readily extended to random

vectors and random matrices.

Theorem 1.8 If Fn
w−→n F and F is continuous, then

sup
x

| Fn(x)− F (x) | −→n 0,

which means that the convergence is uniform with respect to x.

1.1.2 Further limit theorems on weak convergence

The meaning of any limit theorem for a random sequence {Xn} is that it

gives a sufficiently simple approximation to the DF Fn(x) = P (Xn < x).

Namely, let Fn(Gn(x)) = P (G−1
n (Xn) < x)

w−→n P (X < x), where Gn(.)

is a monotone continuous function (we may take Gn(x) = anx + bn) and

G−1
n (.) is the inverse of Gn. If the limit F (x) = P (X < x) is continuous,

then Theorem 1.8 implies that

ǫn = sup
x

|P (G−1
n (Xn) < x)− P (X < x)| = ρ(G−1

n (Xn), X) −→n 0.

Since the metric ρ is invariant with respect to strongly monotone continuous

transformations of RVs, we have

ρ(Xn, Gn(X)) = ǫn −→n 0,

i.e., we receive a uniform approximation to P (Xn < x) = Fn(x) by means

of some universal DF of the RV X (see Pancheva, 1984). Such a viewpoint

to the limit theorems deprives the traditionally linear transformation of its

exclusiveness. Thus, it makes sense to extend the class of normalizing trans-

formations, {Gn(x)}, to any strongly monotone continuous transformations

for constructing a simplified approximation if only one can prove a suit-

able limit theorem. Chapter 5 will rely on this idea. The next result gives

equivalent characterizations of the weak convergence.

Theorem 1.9 If ψ and {ψn} are the characteristic functions with the DFs

F and {Fn}, respectively, then the following statements are equivalent:

(i) Fn
w−→n F ;

(ii) ψn(t) −→n ψ(t), for every t ∈ R;

(iii)
∫
g(x)dFn(x) −→n

∫
g(x)dF (x) for every bounded continuous function

g.
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Let F and Fn be the DFs of the RVs X and Xn, respectively (notice that

X1, X2, ... and X need not to be defined on the same probability space).

Let Fn
w−→n F (or equivalently Xn

d−→n X). Then, in this case, the DF F is

usually called the asymptotic (or limiting) distribution of the sequence Xn.

Clearly, the convergence in distribution depends only on the involved DFs

and does not require that the relevant RVs approximate each other. However,

the only relationship between the weak convergence and the convergence in

probability is given in the following theorem.

Theorem 1.10 If Xn
d−→n C, where C is a constant, then Xn

p−→n C.

The following definition and theorem, due to Helly (see Feller, 1979), are

basic tools in studying the weak convergence of the sequence of DFs.

Definition 1.11 Let {Xn} be a sequence of RVs with corresponding DFs

{Fn}. Then, the sequences {Xn} and {Fn} are said to be stochastically

bound, if for each ǫ > 0, there exists a number c such that

P (| Xn |≥ c) < ǫ, for all sufficiently large n.

Theorem 1.12 (A) Every sequence of DFs {Fn} possesses a subsequence

{Fnk
}, that converges (properly or improperly) to a limit F (remem-

ber that the improper convergence means that the limit is an extended

DF, i.e., F (∞)− F (−∞) < 1).

(B) In order that all such limits be proper it is necessary and sufficient that

{Fn} be stochastically bounded.

(C) In order that Fn
w−→n F (x), it is necessary and sufficient that the limit

of every convergence subsequence equals F.

We will end this section with an important known theorem, which will be

needed in the sequel.

Theorem 1.13 (Khinchin’s type theorem) Let Fn(x) be a sequence of

DFs. Furthermore, let

Fn(Gn(x))
w−→n F (x),

with Gn(x) = anx + bn, an > 0. Then, with G∗
n(x) = cnx + dn, cn > 0, we

have

Fn(G
∗
n(x))

w−→n F ∗(x), F ∗ is a non-degenerate DF,

if and only if G−1
n (G∗

n(x)) = G−1
n oG∗

n(x) −→n g(x), ∀x, where g(x) = ax +

b, cnan
−→n a, dn−bnan

−→n b and F ∗(x) = F (g(x)).

Theorem 1.13 leads to the following definition:
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Definition 1.14 We say that the DFs G(x) and G∗(x) are of the same

type, under linear transformation, if there are real numbers A and B > 0

such that

G∗(x) = G(Ax+B).

Clearly the relation between G and G∗ in Definition 1.14 is symmetrical,

reflexive, and transitive. Hence, it gives rise to equivalence classes of DFs.

Sometimes we shall indicate a type by one representative of the equivalence

classes. These facts convince us that the probability limit theory basically

deals with the types of DFs rather than the DFs themselves.

Remark (Why the weak convergence mode?) It is natural to wonder why

we use weak convergence in statistical modelling, although it is the weakest

mode of convergence. Actually, Barakat and Nigm (1996) have investigated

the mixing property of order statistics. The notion of mixing sequences of

RVs was first introduced by Rényi (1962, 1970). In the sense of Renyi, a

sequence {Xn} of RVs is called mixing if for any event E of positive proba-

bility, the conditional DF of Xn under the condition E converges weakly to a

non-degenerate DF, which does not depend on E. Barakat and Nigm (1996)

have shown that any sequence of order statistics (extreme, intermediate, and

central), under linear normalization, is mixing. On the other hand, they also

showed in the same work that any mixing sequence of RVs X1, X2, ..., Xn

cannot converge in probability to an RV X∞ that has non-degenerate DF.

This simply means that any sequence of order statistics, particularly the

sequence of extreme order statistics, cannot converge in probability to any

RV with non-degenerate DF (except for convergence in probability to a con-

stant) and the only available mode of convergence is the weak convergence.

1.2 Statistical methods

1.2.1 Maximum likelihood method

A general and flexible method of estimation of the unknown parameter θ

within a family F is the maximum likelihood method. Each value of θ ∈ Θ

defines a model in F that attaches (potentially) different probabilities (or

probability densities) to the observed data. The probability of the observed

data as a function of θ is called the likelihood function. Plausible values

of θ should have a relatively high likelihood. The principle of maximum

likelihood estimation is choosing the model with greatest likelihood, among

all the models under consideration, i.e., this is the one that assigns highest

probability to the observed data.
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To see this in greater detail, we can refer back to the situation in which we

have a data setX whose density is defined by some d-dimensional parametric

model with parameter θ = (θ1, ..., θd). Write the density evaluated at X = x

in the form

f(x; θ).

The likelihood function for θ based on the data X is just f(x; θ) interpreted

as a function of θ. Usually, we work with the log likelihood

ℓX(θ) = log[f(x; θ)].

The maximum likelihood estimate (MLE) θ̂ (of the parameter θ) is the value

of θ which maximizes ℓX(θ). Usually, we assume ℓX(θ) is differentiable with

a unique interior maximum, so the MLE is given by solving the likelihood

equations

∂ℓX(θ)

∂θj
= 0, j = 1, ..., d.

For the maximization of ℓX(θ), for a general model indexed by θ, this may

be performed using a packaged nonlinear optimization subroutine, of which

several excellent versions are available.

Example 1.15 Consider the general extreme value DF under linear nor-

malization (GEVL)

Gγ(x;µ, σ) = exp

{
−
[
1 + γ

(
x− µ

σ

)]− 1
γ

}
(1.1)

defined on {x : 1+γ(x−µ)/σ > 0}. In this distribution γ is a shape param-

eter, µ is a location parameter and σ is a scale parameter. This DF is the

foremost pillar of the statistical modelling of extreme value data under linear

normalization that will be discussed in detail in Chapter 4. For the GEVL

(1.1), the density g(x;µ, σ, γ) is obtained by differentiating Gγ(x;µ, σ) with

respect to x. The likelihood function based on observations x1, ..., xk is

k∏

i=1

g(xi;µ, σ, γ)

and so the log likelihood is given by

ℓX(µ, σ, γ;x) = −k log σ

+
k∑

i=1

{
−
[
1 + γ

(
xi − µ

σ

)]− 1
γ −

(
1 +

1

γ

)
log

[
1 + γ

(
xi − µ

σ

)]}
, (1.2)
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provided {1+γ(xi−µ)/σ > 0} for each i; otherwise, (1.2) is undefined. The

following practical points should be considered for this example:

1. Although the maximization is unconstrained, there are some practical

constraints. For example, (1.2) requires γ > 0 as well as {1+γ(xi−µ)/σ >
0} for each i. It is advisable to test explicitly for such violations and to

set −ℓX(θ) equal to some very large value if the conditions are indeed

violated.

2. All Newton-type routines require the user to supply starting values, but

the importance of good starting values can be overemphasized. Simple

guesses usually suffice, e.g., in (1.2), one might set µ and σ equal to the

sample mean and sample standard deviation respectively, with γ equal

to some crude guess value such as 0.1. However, it is important to check

that the initial conditions are feasible and this can sometimes not be so

easy to achieve.

3. In cases of doubt about our application, where a true maximum has been

found, the algorithm may be re-run from different starting values. If the

results are highly sensitive to starting values, this is indicative that the

problem may have multiple local maxima, or alternatively that a mistake

has been made in programming.

A few further comments are necessary regarding the specific application

of numerical MLE to the GEVL family. There is a singularity in the likeli-

hood for γ < 0, as µ → Xmax = max(X1, ..., Xk) in (1.2) and the effect is

that ℓX(θ) → ∞. However, in the most practical cases, there is a local max-

imum (of ℓX(θ)) that is some distance from the singularity and the presence

of the singularity does not interfere with the convergence of the nonlinear

optimization algorithm to the local maximum. In this case, the correct pro-

cedure is to ignore the singularity and use the local maximum. However,

it is possible that no local maximum exists and the singularity dominates.

In this case, MLE fails and some other method must be sought. However,

this very rarely happens with environmental data. Finally, we should say

something about the theoretical status of the approximations involved. The

asymptotic theory of MLE for the GEVL model is valid provided γ > −0.5

(cf. Smith, 1985). Cases with γ ≤ −0.5 correspond to an extremely short

upper tail and hardly ever occur in environmental applications. A more se-

rious problem is that even when γ > −0.5, the asymptotic theory may give

rather poor results with small sample sizes, see Hosking et al. (1985).

In summary: it is possible that MLEs will fail either numerically or in

terms of their asymptotic properties, especially if the sample size is small.

The user should be aware of their possible difficulties but should not be
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deterred from using these extremely powerful and general methods. For more

details about this subject, see Prescott and Walden (1980, 1983), Mached

(1989), and Smith (1985).

An alternative method for quantifying the uncertainty in the MLE is based

on the deviance function, or the likelihood ratio test (LRT) (see Theorems

2.6 and 2.7 in Coles, 2001), which is defined by

LRT = −2(logL0 − logL1), (1.3)

where logL0 and logL1 are the values of the log-likelihood under the null

and alternative hypothesis, respectively. The statistic LRT is distributed as

χ2
n, with degrees of freedom equal to the number of restrictions under the

null hypothesis. The method of the LRT is summarized as follows:

1. Let L0(M0) and L1(M1) be the maximized values of the log-likelihood

for models M0 and M1, respectively.

2. Test of the validity of model M0 relative to M1 at a suitable chosen level

of significance.

Reject M0 in favour of M1 if LRT = −2(logL0 − logL1) > cα, where cα is

the (1− α) quantile of the χ2
n distribution.

1.2.2 Kolmogorov-Smirnov (K-S) test

In statistics, the K-S test is a nonparametric test of the equality of con-

tinuous one-dimensional DFs that can be used to compare a sample with a

reference DF (one-sample K-S test), or to compare two samples (two-sample

K-S test). It is named after Andrey Kolmogorov and Nikolai Smirnov.

The K-S statistic quantifies a distance between the empirical DF of the

sample and the DF of the reference distribution, or between the empirical

DFs of two samples. The null distribution of this statistic is calculated under

the null hypothesis that the sample is drawn from the reference distribution

F̂ (x) (in the one-sample case) or that the samples are drawn from the same

distribution (in the two-sample case). In each case, the considered distri-

butions under the null hypothesis are continuous DFs, but are otherwise

unrestricted.

Let X1, X2, ..., Xn be independent and identically random sample dis-

tributed under the null-hypothesisH0, as F0. Therefore, the K-S test statistic

Dn is defined by

Dn = sup
x

|F0(x)− Fn(x)|,
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where supx is the supremum of the set of distances and Fn(x) is the empir-

ical DF that increases by 1
n at each data value. Namely,

Fn =
1

n

n∑

i=1

I[−∞,x](Xi),

where I[−∞,x](Xi) is the indicator function, which is equal to 1 if Xi ≤ x

and is equal to 0 otherwise. By the Glivenko-Cantelli theorem, if the sample

comes from the DF F0(x), then the statistic Dn converges to 0 almost surely

in the limit when n goes to infinity. Kolmogorov strengthened this result, by

effectively providing the rate of this convergence. In practice, the statistic

requires a relatively large number of data points to properly reject the null

hypothesis.

The K-S statistic has been used for goodness-of-fit testing for continuous

populations for decades, although other tests have made slight improvements

in terms of power. The K-S test appeal includes the straightforward compu-

tation of the test statistic and the distribution-free characteristic of Dn. Its

drawback is that the DF of Dn, under the null hypothesis (i.e., the assump-

tion that data was drawn from a population with DF F0(x)), is difficult to

determine, leaving one to calculate critical values with various approxima-

tion methods. An algorithm for computing the distribution of Dn, for small

to moderate values of n, was given by Drew et al. (2000). As the supremum

must be achieved at a data value, the computational formula for computing

Dn, is Dn = max
x

(D+
n , D

−
n ), where

D+
n = sup

x
[Fn(x)− F0(x)] = max

[
max
1≤i≤n

[
i

n
− F0(Xi:n], 0

]
,

D−
n = sup

x
[F0(x)− Fn(x)] = max

[
max
1≤i≤n

[F0(Xi:n −
i− 1

n
], 0

]

and X1:n, X2;n, ..., Xn:n are the order statistics corresponding to the random

sample X1, X2, ..., Xn. The maximum positive difference, Dn, detects the

largest vertical deviation between the two DFs, where the fitted DF F0(x) is

below the empirical DF. Likewise, the maximum negative difference detects

the largest vertical deviation between the two DFs, where the fitted DF is

above the empirical DF. The smallest value of Dn that can be achieved is

1/2, which corresponds to the DF of the fitted DF F0(x) bisecting all the

risers of the steps associated with the empirical DF.

Assume we have the random sample X1, X2, ..., Xn and the hypothesis-

testing situation H0 : FX(x) = F0(x), for all x, where F0(x) is a completely

specified continuous DF. The differences between FX(x) and F0(x) should be


