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FOREWORD 
 
 
 
Crystallographic methods have been very important in the development of 
modern chemistry. Unlike NMR, crystallographic education in the 
chemistry curriculum remains at best minimal and frequently non-existent. 
There are historical and practical reasons for this failure. However, this has 
led to the situation where most chemists cannot really interpret 
crystallographic data. This extends from graduate students to journal 
editors. The goal of this book is to provide assistance and insight into 
crystallography in a language that chemists can understand. It should be 
suitable for advanced undergraduate and beginning graduate students.  

There have been several motivations for producing this book. The first was 
my experience in organizing a session on crystallographic education at the 
American Chemical Society’s Biennial Conference on Chemical Education 
in 2006. Both crystallographers and chemists warned me that there is no 
interest in this topic and to expect few to attend. It surprised me when I 
entered the room for the session to see it fairly full. I gave my talk on the 
importance of crystallographic education and it was received enthusiastically. 
The first question I was asked is what book I would recommend for such a 
course. I listed the standard texts but was told that they were too advanced. 
Faculty from small colleges pointed out that they had no experience with 
crystallography and found it difficult to understand the topic with enough 
depth to teach it. They needed a book that would be the main teaching tool 
and not just a reference. 

A second motivation was the graduate course on applied crystallography I 
taught for many years at Purdue. This provided a platform where I could try 
different approaches to instruction in crystallography. I quickly learned that 
most of the students enrolled were synthetic chemists who only wanted to 
use crystallography as an analytical method. They did not have much 
interest in the theory of crystallography or topics they could not apply to 
their research. I always taught this course in a computer lab so the students 
could run programs instead of studying their input and output. One 
unintended consequence of providing students with computers was that I 
received an instant evaluation on my teaching abilities and their interest in 
the topics covered. If I walked around the lecture room and found most of 
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the students were checking their email, the news, or sports, I knew this 
lecture was not of interest. Much of what I learned from this experience is 
in this book. 
Before stating what this book is, let me stress what it is not. This is not, nor 
was it meant to be a comprehensive text on crystallography. There are already 
many excellent books at various levels and there is no reason to reinvent the 
wheel. Nor is this book a reference book used to answer all questions 
concerning crystallography. Some will complain it is not suitable for training 
professional crystallographers. However, that is not the intent.  
There have been several guiding philosophies in organizing this book. First, 
was to make it as non-mathematical as possible. Equations are provided 
when they can provide insight. Statements are presented as facts rather than 
proved. This is in keeping with what I have observed in teaching. The 
concepts of typical programs are explained. There is no discussion of the 
algorithms, formulas, and approaches. Many programs will be considered 
black boxes where the input and output is more important than what is 
happening in the program. 

The discussion of crystallographic programs presents a problem in writing 
a book such as this. It is a conscious decision to not spend much time on 
software. There are several justifications for this decision. First, there are 
many programs available for running diffractometers, processing data, and 
solving and refining structures. It is not the place of this book to endorse 
any of them. Besides, today most software has excellent manuals typically 
on the internet and in the case of SHELXL there is even a text on its use. 
The one exception to the above involves SHELXL. This program is the most 
widely used crystallographic program. Therefore, the appropriate commands 
are placed in square brackets during discussions of refinement. However, 
only the name of the command is given and its application and usage will 
require research elsewhere. With advances in computers and artificial 
intelligence, software is changing rapidly. No book can keep up with the 
changes. Undoubtedly, new software will become available which will pass 
into common usage. 

Many topics are introduced and some readers will desire more detail. It is 
hoped that the references provided will allow for further exploration. Also, 
as much as possible, terminology and concepts are not used until introduced. 
This creates some unusual wording in the early chapters. 

Chapters 1 to 4 are an introduction that provides information on understanding 
crystallographic data and results. They should be useful to all chemists even 
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if they do not perform crystallographic experiments. Chapter 5 introduces 
the concepts of real and reciprocal space. One theme of this book is the 
nature of these two spaces which are related by Fourier transforms. This is 
essential to crystallography. Chapters 6-8 deal with symmetry. Basic 
symmetry operations are quickly introduced and previous knowledge of the 
concepts of symmetry will be useful. Chapters 9 to 12 deal with the process 
and equipment used to go from a crystal to a crystal structure. They will be 
most useful to those who will actually collect crystallographic data and 
refine structures. Chapter 13 deals with the determination of absolute 
structure and absolute configuration and is important to those working with 
enantiomorphic compounds. Chapter 14 concerns crystals that do not have 
perfectly repeating motifs. Lastly, Chapter 15 is about diffraction methods 
beyond X-rays and single crystals. 

There are several who have provided graphics that have been used in this 
book. Larry Falvello and Esteban Urriolabeitia of the University of 
Zaragoza provided the NMR spectra used. I am grateful to Margret Kastner 
for the use of drawings found on her Crystallographic Courseware web 
page. It is a wonderful resource for those learning crystallography. I also 
thank Kevin Cowtain of York University for allowing me to reproduce 
figures from his web page http://www.ysbl.york.ac.uk/~cowtan/fourier/ 
fourier.html. Lastly I thank the International Union of Crystallography for 
permission to print pages from the International Tables of Crystallography, 
Volume A. 
I never had any formal education in crystallography (and some say it 
shows). There are a great many people who have taught me much over the 
years. First, is my friend Larry Falvello who has always answered my 
ignorant questions with wonderful and frequently humorous explanations. 
He has helped me to gain insight into the crystallographic experiment. I also 
thank David Watkin for his help over the years. David has written many 
articles which clearly explain the workings of crystallography beyond the 
scope of this book. I also thank Ton Spek for many interesting conversations 
over the years from which I have gleaned much. I am also most grateful to 
Mary Hoekstra who proofread this manuscript. Lastly, I thank my wife and 
soul mate Karen, for her encouragement, patience, and help in assembling 
this text. I do not think I would have ever taken on this project without her 
being by my side. 

Phil Fanwick 
West Lafayette, IN  

pfanwick@purdue.edu 



CHAPTER 1 

SINGLE CRYSTAL X-RAY CRYSTALLOGRAPHY 
AS A METHOD OF CHEMICAL ANALYSIS 

 
 
 
During the last fifty years, X-ray crystallography has been an important 
chemical analytical tool capable of routinely solving problems that would 
be very difficult by other methods. In this chapter, an example of such an 
analysis will be discussed as well as the strengths and weaknesses of the 
technique. 

For all but the last chapter, it will be assumed that a high quality crystal 
was the sample and X-rays were the radiation for the diffraction 
experiments. 

1.1 A Case Study 

In 1958 Kotel'nikova and Tronev1 reported the preparation of a compound 
of the formula (C5H5NH)+HReCl4. The addition of the hydrogen ion to the 
chemical formula was required because the oxidation state of the rhenium 
was determined to be +2. Later a single crystal structure of this compound 
was published and the result is shown in Figure 1.1.2  The major portion of 
the publication deals with the difficulties in obtaining structural results in 
1963. However, there are comments on several chemical aspects that are 
worthy of discussion. The most noteworthy comments are: 

“It should be noted that the Re-Re distance = 2.22 Å is less than the Re-Re 
distance in the metal.” 

“The decrease in the Re-Re distance in this structure, compared with the 
Re-Re distance in the metal, indicates that the valence electrons of rhenium 
also take part in the formation of the Re-Re bond. This may explain the 
diamagnetism of this compound.” 
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Figure 1.1 Re2Cl82- 

Possible positions for the H+ ion are provided. However, since there is no 
solvent or other base that could be protonated, the existence of this ion in a 
crystal would be unusual. Even with a crystal structure and other 
supporting chemical analyses, the bonding and even the chemical formula 
of the Re2Cl8

2- ion failed to be established. 

The reported results interested Professor F. Albert Cotton who quickly 
published three papers dealing with this ion. The first dealt with the 
chemical formula.3 Electrochemical analysis revealed that the rhenium 
was in the +3 oxidation state and no hydrogen cation was required to 
balance the charge. This made the formula from the crystal structure 
consistent with the chemistry. In the second paper, the structure of the 
potassium salt of Re2Cl8

2- was determined.4 This was both a check on the 
previously reported structure and provided an improved structure. This 
structure confirmed the previously reported details. The Re-Re distance 
was 2.241Å while the Cl-Cl distance across the Re-Re bond averaged to 
3.32Å which is nearly twice the chlorine van der Waals distance.  

The third paper reported on the bonding in the octachlorodirehenate ion.5 
Unusual features of this ion included the very short rhenium-rhenium 
distance and the eclipsed configuration of the chlorine atoms when 
looking down the Re-Re bond. The chlorine atoms are essentially at the 
minimal non-bonding distance from each other and this results in a Re-Re-
Cl angle of 103.7°. Since there are 8 electrons available from the two 
rhenium atoms that are not involved in the Re-Cl bonding, it was 
suggested that the bond order between the rhenium atoms was 4. Such a 
bond would be composed of a σ bond, two π bonds, and a δ bond. For 
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maximum overlap of the δ bond the chlorine atoms would need to be in an 
eclipsed configuration as observed. The important point is that the stability 
provided by the δ bond was greater than the repulsive forces of the 
chlorine atoms. Hence, the shape of the molecule and the geometrical 
parameters determined by the structure were used to elucidate the metal-
metal bonding. 

This is hardly a unique example of the use of crystallography to solve 
chemical mysteries. There may have been other methods that would have 
eventually led to the geometry, formula, and bonding in this novel 
dimetallic ion. However, the information would be more indirect, require 
much more interpretation, and take more time. The results would have had 
greater uncertainty and not contained as much information. Crystallography 
provided a definitive structure and accurate geometrical parameters in a 
short time. It is for these reasons that crystallography has become an 
essential tool for chemists and changed the nature of chemical analysis. 

1.2 Crystallography and Chemical Analysis 

1.2.1 Qualitative and Quantitative Analysis 

Qualitative and quantitative analyses are the determinations of what 
elements are present in a compound and the relative ratios of each 
element. It appears that crystallography would be perfect for providing this 
information, but that is not totally correct. From Figure 1.1 it appears that 
the formula can easily be determined from a crystal structure, since all the 
atoms are assigned an element. However, these assignments are made by 
the researcher determining the crystal structure; they are not uniquely 
provided by the crystallography. 

This ambiguity results from the nature of the X-ray crystallographic 
experiment. The graphical results such as Figure 1.1 falsely imply that 
crystallography is like a giant microscope able to observe the atoms. Even 
it that were true, it is not clear how the atomic number could be directly 
observed. However, the actual result of the X-ray crystallographic 
experiment is the calculated value of the electron density at any location 
within the crystal. Throughout most of the crystal the electron density is at 
or near zero. It is only in some small locations where the electron density 
is significant. It is assumed this is where the atoms are located. 
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There  is  a  problem  however.  There  is  no  simple  direct  relationship
between the  electron density and the atomic number of an element in a
crystal. There are several reasons for this, most of which have to do with
the movement of the atoms in a crystal. All atoms are vibrating even at  
0 K. The greater the movement of an atom, the more the electron density
will be decreased because of the increasing volume caused by the atomic
displacement. There are also problems such as multiple atoms at a site or
disorder in the structure which will affect the electron density.

A common example of unusually low electron density is observed for the
trifluoromethyl group. This group in some crystals rotates about the C-C
bond. If the displacements are small, this will simply lower the  electron
density and the fluorine atoms will appear to have less  electron density
than even the carbon atom neighboring them. It is also possible that there
will be two sets of positions where the fluorine atoms are located. The
electron density observed in the structural analysis will display the density
averaged over the entire crystal. In this case, six half fluorine atoms will
be observed around the central carbon and the observed electron density
will be half of what would be expected. It is also possible that there is
nearly free rotation around the C-C bond and the fluorine atoms will be
smeared out into a ring of density. It is possible (though not necessarily
likely) that the electron density will be so low as to not be observed above
the  noise.  In  this  case,  it  will  be  difficult  to  assign  locations  for  the
fluorine atoms.

How are the element types assigned to the calculated electron density? In
most cases there is external information about the sample synthesis, and
other analyses are available. This information can be used to guide both a
qualitative and quantitative crystallographic analyses. There is always the
possibility the crystal contains unexpected fragments such as molecules of
solvation.  These  can  usually  be  assigned,  given  more  information.
Therefore, a correct crystal structure contains the chemical formula of the
contents of the crystal and not just the fragment that is of interest. It must
be emphasized that elemental assignments add a bias to the experiment,
not only can that produce an incorrect result but sometimes spectacularly
incorrect chemistry as will be discussed later.

For unknown samples the problem is more difficult. The organic part is
usually the easiest to assign. First, most elements in an organic fragment
have  a  consistent  number  of  bonds  about  them and  a  well-established
geometry. The bond order can be determined by the bond length. Besides,
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the difference in an incorrect  electron density assignment is significant.
For example, if a carbon atom is assigned as a nitrogen atom the electron
count is too great by 17% while as an oxygen the overage is 33%. This
difference  makes a  significance  in  the  quality  of  the  structure  and can
readily be observed  in a  drawing of  the molecule  that  includes atomic
displacement parameters (see Chapter 4).

For  inorganic  compounds  or  fragments,  elemental  assignment  is  much
more difficult. First, heavier elements have variable coordination numbers.
Their bond distances are not as consistent as main group elements. If the
rhenium atom in the structure discussed in Section 1 were replaced by next
heaviest  element  osmium, the  electron  difference  would only be 1.3%.
Lastly, substitution of heavier elements does not significantly affect  the
quality  of  the  structure.  Structures  containing  second  or  third  row
transition metals can be “titrated” by trying different elements at the metal
location. Invariably, the best fit does not contain the correct element. In
the end, if there is any question about the composition of a crystal, further
analytical  means  must  be  employed  to  determine  what  elements  are
present. For the rest of this text, the assumption is that the elements have
been correctly identified and the atoms in the structure have been correctly
assigned, except as noted.

1.2.2 Structural Isomerization

The  greatest  strength  of  crystallography  is  to  provide  unequivocal
evidence of the arrangement of the atoms in a molecule. Structural isomers
are molecules with the same chemical formula but different connectivities,
while stereoisomers have the same connectivity but differ in their three
dimensional orientations.  Obviously,  the drawing of  a molecule from a
crystal structure analysis provides proof of the isomer. 

Crystallography  is  almost  too  good  at  determining  isomers.  There  are
standards  that  must  be  met  if  a  structure  is  to  be considered  a  quality
structure.  This  includes  standards  for  quality  and  quantity  of  data
collected. Also, the calculations required for a finished structure and the
quality  of  the  final  results  are  equally  specified.  The  problem  is  that
frequently the isomer can be determined satisfactorily from even the most
rudimentary data and calculations. This provides frustration because the
structural results may not be publishable, yet the nature of the isomer has
been  determined.  There  is  a  consensus  that  the  quality  of  the  entire
structure must be considered and not just some area of interest. Since a
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crystal structure is considered indisputable evidence of the arrangement of
atoms in the crystal, low quality structures cannot provide this certainty,
even if they appear to provide the desired information. It is essential that
the  proper  amount  of  high  quality  data  be  collected  and  that  all
calculations be completed before any conclusions can be drawn from a
structure. This at times appears to be overkill, but it has proved essential to
eliminating incorrect structures.

1.2.3 Geometric Parameters

A quality crystal  structure provides accurate geometrical  parameters  for
the contents  of  the crystal.  These  include bond distances,  bond angles,
torsional angles (the dihedral angle between two sets of planes formed by
three atoms in which two planes contain two atoms in common), planarity
of a group of atoms, and other special parameters which define the shape
of unsaturated rings, sugars,  etc. These parameters may be calculated for
molecules  or  molecule  like  ions  or  non-bonded  atoms.  Likewise,
parameters  between  fragments  in  a  crystal  can  be  determined.  This
includes intermolecular hydrogen-bonds and π-π interactions.

As shown in the example at the beginning of the chapter, knowledge of
intramolecular distances can be used to determine the strength of a bond
and  its  bond order.  This  is  important  for  the  elucidation  of  functional
groups in the molecule. Unusual bonds such as metal-metal bond orders
can  be assigned. The effect  of  interactions such as  hydrogen bonds on
carbon-oxygen and carbon-nitrogen bonds can be studied. While similar
results can be obtained from vibrational spectroscopy or NMR, the results
provided by a crystal structure are much easier to interpret. 

1.2.4 Optical Isomerization

One  important  use  of  crystallography  is  to  determine  the  absolute
configuration  of  optically  active  molecules.  This  is  important  in  many
cases,  such a pharmaceutical  compounds.  Crystallography is  essentially
the only technique that can provide this information. 

There are certain requirements for this determination to be made. First, the
crystal must be enantiomorphically pure. Frequently, crystals grown from
non-pure materials will be racemic and therefore no determination can be
made. Second, a high quality data set is required for this experiment to
succeed. Lastly, the choice of X-ray wavelengths must be considered so



7 Single Crystal X-ray Crystallography as a Method of Chemical Analysis

that  the calculations will provide a definitive result.  All  of this will  be
discussed in Chapter 13.

1.2.5 Other Uses

In no way does the above discussion reflect the total extent of what can be
done using crystallography. There are experiments for studying the surface
of a crystal. This information can be important to the creation of electronic
devices.  Changes in the crystal, such as reactions,  can be studied using
time-resolved  crystallography.  Experiments  have been  performed where
the geometry of an electronic excited state has been determined. These
experiments however are usually performed at national laboratories where
high  intensity  synchrotron  X-ray  sources  are  available  that  allow  data
collection to be completed in seconds. In the end, crystallography is an
extremely versatile technique able to provide analyses for a wide variety
of chemical and solid state problems.

The above is based on crystal structures from single crystals. However,
one  of  the  most  important  analytical  crystallographic  tools  is  powder
crystallography. If crystalline materials are ground up into a fine powder,
then the diffraction pattern of this powder can be obtained. The pattern can
be matched to previously determined patterns to ensure the material is the
correct crystalline phase. Unexpected  peaks can be used to establish the
presence of impurities. If  the powder pattern of the impurity is known,
then its  concentration  can be determined.  This type of  analysis  is  very
important in pharmaceutical manufacturing where, in general, not only the
identity  and  purity  of  a  compound  is  required,  but  also  the  precise
crystalline  form.  Differences  in  the  crystal  structure  can  change  the
stability of the pharmaceutical, as well as its efficiency as a drug.

1.3 Limitations of crystallography

There are several important limitations to the crystallographic analysis that
must be kept in mind. It appears obvious, but a crystallographic result only
provides information about the crystal sample studied. Clearly, if a crystal
of a minor product is used, it will not provide any data about the major
product  of  a  chemical  reaction.  Also,  some  compounds  react  during
crystallization  and  the  crystal  may  be  completely  different  from  the
original product.
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The second limitation is that the structure only provides information about
the  packing  and  geometry  of  the  components  in  the  solid  state.  The
formation  of  a  crystal  introduces  strong  intermolecular  forces  that  can
distort  a  molecule  or  in  some  cases  even  alter  the  isomer.  It  can  be
expected that geometrical information from crystallography may not agree
with data from studies done in the gas phase or in solution. In many cases
the agreement is excellent.



CHAPTER 2

SCATTERING AND DIFFRACTION—
WHAT IS GOING ON WHEN RADIATION

INTERACTS WITH A CRYSTAL

In order to understand what is happening in the diffraction experiment, it
is important to build a model for the interaction of the radiation and the
sample being studied. In this chapter the concept of scattering of radiation
will be introduced. The use of constructive interference and diffraction to
produce the observed data will be explained. The importance of translation
will be emphasized. Finally, the concept of the primitive unit cell will be
introduced.  The  chapter  will  be  presented  for  X-ray  radiation,  though
much of what is presented can be extended to other forms of radiation.

2.1 Scattering of Radiation

The theory of scattering of radiation by a free electron was first reported
by J. J Thompson in 1906.6 This theory was based on classical mechanics
and assumed the scattering was elastic i.e. the wavelength of the scattered
wave was the same as the exciting radiation. Also, relativistic effects were
not  included.  The discussion here will  be further  simplified in that  the
polarization  of  the  scattered  wave  will  be  ignored.  This  simplified
approach  gives a good starting place as  to the interaction of the X-ray
radiation with the electron and provides a model that can be built upon to
understand crystallography.

When the free electron encounters the electromagnetic radiation, it moves
opposite  to  the amplitude of  the applied field because  of  the repulsive
nature of the interaction.  Since the electron,  a  charged  particle,  is  now
moving, it should emit radiation. The emitted radiation will have the same
wavelength as the exciting source but be 180° out of phase. Since this is a
new wave it will be emitted from the free electron in all directions. This
new radiation  is  called  scattered  radiation  and  it  occurs  at  all  exciting
wavelengths. 
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It is also interesting to look at the intensity of the scattered radiation. The
intensity will be very much weaker than that of the exciting radiation. A
few centimeters from the free electron, the ratio of the intensity of the total
scattered radiation to that of the incident radiation is on the order of 10 -28.7

This value is only slightly less than Avogadro’s number. The electrons in a
chemical  sample will  produce considerable  scattered intensity.  One last
point  is  that  if  the  primary  beam  is  completely  unpolarized,  then  the
intensity  will  fall  off  by  the  factor  (1+cos2θ)/2  where  θ  is  the  angle
between the incoming beam and the scattered beam.

Obviously, scattering by an atom is more complex. First, the electrons in
an atom can hardly be considered free. There are attractive forces with the
nucleus and repulsive interactions between them. Classical physics is not a
valid description for these electrons. However,  the model developed for
the free electron can be applied to the atom. The biggest difference is in
the  calculation  of  the  intensity  of  the  scattering  which  is  much  more
complicated. However, atoms with more total electrons will scatter more
strongly.  

2.2 Diffraction in One-dimension

At first, the fact that atoms will weakly scatter X-ray radiation appears to
be  of  little  use  in  determining a  crystal  structure.  If  an X-ray  beam is
directed  at  any  matter  regardless  of  its  state,  there  will  be  randomly
scattered radiation from the sample. The greater the atomic number of the
atoms in the sample, the more intense this scattering will be. Waves can
interact by constructive or destructive interference as shown in Figure 2.1.
Most of the scattering away from the incident beam will be eliminated by
destructive interference, 
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Figure 2.1 Interactions between waves

However, more complicated effects will occur if the atoms or molecules
are lined up in a regular repeating pattern. The result of such an interaction
is shown in Figure 2.2.  The repeat distance between the arrangement (in
this case the atoms) will be the vector a. If the length of a is on the order
of the wavelength emitted, then interference effects will be observed. The
repeat distance in a crystal is typically measured in Angstroms (Å) which
is 10 -10 meters. While the Angstrom is not an SI unit, it is very convenient
to use in crystallography. Typical bond distances are on the order of a few
Angstroms and repeat distances in crystals typically range from 3 to 100
Å. Since the wavelength of commonly used X-rays is from 0.5-2Å, they
will produce interference interactions when multiple waves interact. Two
waves  can  interact  either  constructively  or  destructively  as  shown  in
Figure 2.1.  Constructive interference will occur whenever two waves are
in-phase. The result will be a new wave. 
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Figure 2.2 Constructive Interference

The case where the incident radiation is perpendicular to the line of the
atoms  is  first  studied.  The  scattered  radiation  will  come  out  in  all
directions and will interfere with other waves scattered by other atoms.
However,  except  for  the  case  where  the  waves  are  in  phase,  they will
interact  destructively  and  no  intensity  will  be  observed.  Obviously,
scattered waves in the direction of the primary beam. will be in phase. The
intensity  of  such  scattered  X-rays  will  be  very  weak  compared  to  the
primary beam and cannot be observed. However, as Figure 2.2 illustrates,
at certain angles υ the scattered beam from one atom will differ by exactly
some integer multiple of wavelengths, and  constructive  interference will
take place.  The number of wavelengths difference will be assigned the
symbol h which must be integral. If h=0 then the scattered beam will be
along the primary  beam. If  h=1 then there  will  be a  difference  of  one
wavelength  between  the  scattered  radiation.  Higher  numbers  work
similarly.

From Figure  2.2  it  can  be  observed  that  there  must  be  a  relationship
between the wavelength of the X-ray radiation, the separation distance |a|
and the angle υ between a and the diffracted wave. It is obvious that a is
the hypotenuse of a right triangle and h times the wavelength(λ) is the side
adjacent  to υ.  Thus, h·λ/|a|=cos(ν).  This provides  a simple equation for
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diffraction.  If  an  X-ray  sensitive  film  is  placed  perpendicular  to  the
primary beam, then various lines representing the diffracted beams will be
observed. Let θ be the angle between the primary beam and the diffracted
beam. The distance between diffracted beams is given by sin(θ) times the
distance to the film.

However, even in one-dimension this result is too simple. It was assumed
that  the primary beam was perpendicular  to  a, which requires  the total
phase  shift  to  occur  only  in  the  diffracted  beam.  If  the  primary  beam
makes an angle μ with a, then a phase shift as illustrated in Figure 2.2 can
also  take  place  for  the  primary  beam.  The  phase  shift  for  either  the
primary  beam or  the  diffracted  beam need  not  be  an  even  number  of
wavelengths as long as the sum is. This creates the condition 

|a|cos(μ) + |a|cos (ν)=hλ (2.1)

 This equation is called the Laue Equation and it provides the most liberal
description of the conditions for diffraction in one dimension.

In order to place some restrictions on the Laue diffraction, it is useful to
make to the angles ν and μ equal and call this new angle Λ. In this case,
the Laue Equation reduces to 2|a|cos(Λ)=hλ. (2.2)

A second way to approach this is to add imaginary lines P perpendicular to
a (see Figure 2.3). Initially, the lines will be spaced at |a| from each other.
The angle θ will be the angle between the incoming beam and P and the
same for the outgoing beam. The angle Λ was defined previously as the
angle between the diffracted radiation and the line defining the distance
between the atoms. This means that 90-Λ = θ. The cosine of 90 minus an
angle is equal to sine of the angle. Therefore, changing to θ and relabeling
|a| as d converts equation 2.2 into

2dsin(θ)=λ (2.3)
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Figure 2.3 Bragg’s Law 

This is the well-known Bragg’s Law if higher and much weaker orders of 
diffraction are ignored. For the beams to be in phase the length of CB plus 
BD must be a multiple of the wavelength. It should be pointed out that in 
Figure 2.3 it appears the primary beam is reflecting off the line P and 
Bragg’s Law is just an example of the familiar equation for reflection that 
the angle of incidence is equal to the angle of reflection. However, this is 
not simply reflection but a complicated diffraction process. It also should 
be pointed out that crystallographers frequently call their data reflections 
even though that is only what appears to be happening.  

The genius of William Lawrence Bragg and his father William Henry 
Bragg was that they derived an explanation for the different diffracted 
beams without using phase differences. Since the line P does not exist, it 
can be modified by changing the distance between the lines by dividing |a| 
by integers and using this new distance in equation 2.3.  The modified 
Bragg’s Law becomes 2|(a|/h)sin(θ)=λ where |a|/h is the distance between 
the lines P. This is a much easier equation to work with as it relates the 
angle θ to distances within the crystal. It should be pointed out that in the 
one-dimensional case P is a line and is perpendicular to the direction of 
stacking making the distance between lines P easy to figure out. Things 
become somewhat more difficult in three dimensions as P becomes a plane 
and the distances between planes are not as simple to determine. It must 
also be emphasized that the line P is an abstraction and has nothing to with 
where the atoms are with respect to the line. The result of both the Laue 
and Bragg descriptions of diffraction is that the location of the diffracted 
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radiation is determined only by the repeat distance |a| and has nothing to
do with what pattern is being repeated along the line.

There are some easy conclusions that can be drawn from Bragg’s Law.
First, as h gets bigger then sin(θ) will increase and the angle between the
incident beam and the observed diffracted beam will increase. Also, as the
wavelength used increases the diffracted beams will become further apart.
Lastly, as the magnitude of a increases, the distance between diffraction
intensities will decrease. This is the well-known reciprocal relationship.

2.3 The Primitive Unit Cell

The derivation of the diffraction of X-ray radiation requires that there be a
regular  repeating  pattern.  In  the  example  just  discussed,  this  is  in  one
dimension but for a solid obviously this should be in three dimensions. It
turns  out  crystals  are  composed  of  just  such  a  repeating  pattern.  The
properties  of crystals such as  the way they allow light to pass  through
them  are  because  of  this  regular  structure.  In  general,  non-crystalline
solids are not transparent unless they are very thin. Yet even large crystals
are ‘crystal clear.’ Also, non-crystalline solids can be cut smoothly in any
direction. Crystals, on the other hand, can only be cleaved along certain
planes. 

In considering the one-dimensional array of atoms, it is observed that the
array is made up of a unique pattern that is translated along the a vector. In
the previously considered array the translation vector was called  a (see
Figure  2.4a).   The  vector  a is  the  basis  vector  for  a  one-dimensional
coordinate system. The familiar  Cartesian coordinates have basis vectors
whose magnitude is 1. However, here the magnitude is |a|. This means that
if we pick a particular place on the one-dimensional pattern, then adding
or subtracting an integer results in a translation to an equivalent position.
This is because the basis vector has length |a| and any integer translation
with respect to this basis vector simply shifts to an equivalent point down
the line. If x is a decimal fraction greater than zero and less than one, it
refers to a point between the equivalent origins of the coordinate system
and x is  called a  fractional  coordinate.  Its distance to the origin of the
coordinate  system  is  given  by  x  |a|.  The  repeating  pattern  can  be
considered a one-dimensional unit cell.
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Figure 2.4 One-Dimensional Unit cells

The  one-dimensional  unit  cell  will  be  more  complicated  and  |a|  will
increase as the number of atoms increases. There is also the question as to
where  to place the origin.  If  the array is made up of atoms or ions,  it
appears  easiest  to place the origin for the pattern on one of the atoms.
However, for linear molecules it is much less clear. Should the origin be
placed on an atom, midway between the bonded atoms, or at some other
place? Actually, for the cases being discussed, it makes no difference. The
only requirement is that the one-dimensional array is formed by translating
the basic pattern by |a|. Note when two different atoms are placed with the
same separation as in Figure 2.4b, the length of the repeat distance doubles
as the old a now translates an atom from one type to another.

Figure 2.4c represents a one-dimensional arrangement of Z shaped objects.
In creating crystals, nature tries to minimize the cell volume to pack the
components  efficiently.  So,  in  2.4c  turning  one  Z  upside  down  with
respect  to  the  other  may  make  sense  in  providing  maximum  packing
efficiency. There is only one type of object in this linear arrangement. The
other is related by a symmetry operation between the two objects. This is
represented by the dot between them. The two form a pair which is the
basic building block of the pattern. Therefore, it makes sense to use the dot
as the origin for the axis system.
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The discussion of 2.4c illustrates some important points about  unit cells.
First, an atom does not need to occupy the origin of the  unit cell. In the
vast  majority  of  structures  there  is  no  atom  at  the  origin.  Second,  a
primitive unit cell can contain more than one formula unit in the unit cell.
In this example there are two. Lastly, in most cases the origin of the unit
cell is determined by the symmetry operations, not the contents.

The  one-dimensional  idea  can  be  extended  to  two  and  even  three
dimensions. Possible repeating patterns in two dimensions are shown in
Figure 2.5. Note that in this figure two different repeating patterns have
been selected as  unit cells. A second vector called  b  becomes the basis
vector  in  the  second  direction.  It  should  be  noted  that  in  both  of  the
repeating patterns displayed, the vectors  a and  b are not orthogonal  i.e.
they do not make a 90° angle with each other. This angle will be called γ.
It can be shown that the area of the parallelogram is given by |a|·|b|·sin(γ).
While  the  two  potential  cells  have  different  shapes,  the  area  of  the
parallelograms is identical. In fact, any cell that has this minimal volume
is acceptable as a valid primitive unit cell.

Figure 2.5 Choices for a unit cell

In three dimensions, it takes six parameters to define the unit cell. Three
are the basis vectors a, b, and c. Three angles are also required. The angle
α is the angle between b and c, β between a and c and γ between a and b.
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The  easiest  way  to  remember  this  is  that  an  angle  name  is  the  Greek
equivalent of the axis not involved in the angle.

The  unit cells presented here are called primitive because they represent
the smallest volume that when repeated forms the crystal lattice. However,
for some cells additional translation within the unit cell can be added that
will result in a unit cell with higher symmetry. These are called centered
cells and will be discussed when  unit cell symmetry is considered. This
means the primitive  unit cell will not always be the cell reported in the
final crystal structure.

Since the unit cell axes are typically not identical in three-dimensions, the
physical  properties  of  the  crystal  will  depend  on  the  direction  of
measurement.  When  properties  differ  when  measured  in  different
directions, they are called anisotropic.  If the direction has no effect, it is
called  isotropic.  The  existence  of  anisotropy  only  occurs  naturally  in
crystalline solids.

2.4 Diffraction in Three-dimensions

Diffraction in three dimensions is much more complicated than in one. If
the  Laue Equation is  to  be  used,  three  equations  like equation  2.2 are
required. In this case, h was an integer that described the offset between
waves that  constructively interfered along the  a-axis. Two new integers
are required for similar interactions along  b and  c. These are assigned k
and l, respectively. Likewise, two more equations are required where the
angles  are  measured  from  b and  c.  Therefore,  the  Laue conditions are
fulfilled whenever all three equations are satisfied and at the point in space
where the beams intersect. The diffracted waves in three dimensions form
spots in space wherever the conditions are satisfied. However, this is not
an easy set of equations to work with.

Bragg’s  Law  provides  a  simpler  approach  to  diffraction  in  three
dimensions. In the one-dimensional approach the trick was to create the
line P which is perpendicular to a. By using |a|/h as the distance between
lines, the location of the various diffraction intensities can be determined.
In three dimensions P must be converted into a plane called the  Bragg
plane. The various Bragg planes will be defined by the three Miller indices
h, k, and l. Each index will indicate the plane intersects the axis a, b, and c
at coordinates 1/h, 1/k, and 1/l. The plane (1,2,3) intersects a at 1, b at 1/2
and c at 1/3. A value of zero means the plane is parallel to that axis. The
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plane (1,0,0) is the plane containing the b and c axes since it never 
intersects these axes. 

What is important is the distance dhkl between the set of planes. Calculating 
this distance is more difficult than might be imagined. Take the (1,0,0) 
plane. It would be expected that the distance between these planes which 
contain b and c would be the length of the a-axis. This may or may not be 
correct. For some unit cells the a-axis is not perpendicular to b or c and 
therefore is not perpendicular to the bc-plane. The perpendicular would 
need to be calculated and this is difficult in non-Cartesian axes. Later the 
concept of reciprocal space and the reciprocal lattice will be introduced to 
make the calculation of d much easier. Until then, it will be assumed that 
d can be calculated. 

If dhkl is known, then Bragg’s Law reduces to 2dhklsin(θ)=nλ. Note that 
addition of n to the equation. The integer n represents the order of the 
diffraction, which in the case of X-ray crystallography is usually treated as 
one and can therefore be ignored. However, for very intense radiation it is 
possible that second order diffraction (n=2) or even higher orders will be 
present with reduced intensity. In nature, n=2 results in a double rainbow. 
If we treat d as a vector and know the alignment of the crystal, then 
diffraction will be observed when d bisects the angle between the 
incoming and diffracted beam. This means it is possible to calculate the 
diffracting position for any indices hkl. 

It is clear that the diffracting position is well-defined by Bragg’s Law. 
However, that does not mean there is only one orientation of the crystal 
that will satisfy it. The only requirement is that the diffraction vector 
bisect the angle between the incoming primary beam and the outgoing 
diffracted beam. However, there is still one degree of freedom. Rotation 
around the diffraction vector will not change this geometry. Therefore, the 
same hkl diffraction spot can be observed at many positions during the 
data collection. This means that it is possible to collect a given reflection 
at different positions.  

Lastly, it must be emphasized that the Bragg planes are an abstraction 
introduced to make the calculations easier. They are simply a function of 
the unit cell parameters and have nothing to do with the contents of the 
unit cell. There is no relationship between the location of the cell contents 
and the Bragg planes. Also, as mentioned above, the concept that the 
primary beam is being reflected by a Bragg plane like light by a mirror 
does not describe what is physically happening. 
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2.5 Review and Using Diffraction Data

This  chapter  represents  a  typical  description  of  X-ray  diffraction.  It
appears that the emphasis has been placed on explaining the existence and
location of the diffraction spots. However, the original idea was to use the
diffraction to calculate the position of the atoms in the crystal. A piece is
still missing.

A review of this chapter will highlight the points made so far. When an 
X-ray beam interacts with an atom, the atom will produce new intensity
which will have the same wavelength as the exciting radiation and be 180°
out of phase. If there is no order to the solid, this scattered radiation will
be of  little use.  However,  if  the material  forms a regular  array as in a
crystal,  then  interference effects will be observed. The Bragg and Laue
approaches were developed to provide a method of calculating where the
diffracted beams will be observed. The concept of the  unit cell was also
introduced.  The  crystal  is  formed  by  translating  the  unit  cell  in  three
dimensions.  The  directions  for  translation  are  the  unit  cell  parameters
which form the basis vectors for a coordinate system. These basis vectors
are  not  required  to  be  orthogonal  which  can  greatly  complicate  any
calculations using them. The location of the diffraction spots in space will
depend only on the unit cell parameters.

However, none of this has answered the question of where the atoms are in
the crystal. If all the unit cells are identical then the problem is reduced to
finding all the atoms in a single  unit cell.  In fact,  this problem can be
further  simplified  if  the  crystal  has  multiple  formula  units  in  the  cell
related by symmetry. In this case it is only necessary to position the atoms
in the unique part of the unit cell called the  asymmetric unit to form the
entire unit cell. 

The key to positioning the atoms is that the diffracted beam is created by
constructive  interference  of  waves  of  differing  intensity.  The  intensity
difference is because of the different number of electrons in each scatterer.
The observed diffraction is a Fourier transform of the electron density in
the  unit  cell.  The indices  (h,k,l)  are Fourier  summation factors  and the
amplitude  of  these  data  are  the  Fourier  coefficients.  The  information
concerning the location of the cell contents is contained in the intensities
measured and their phases. It is possible to talk of two Fourier domains
like in Fourier spectroscopy. One is real space which is defined by the unit
cell parameters and has a dependent value of the  electron density (ρ) at
any location x,y,z inside the unit cell. The other domain is reciprocal space


