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PREFACE  
 
 
 
Over the past thirty years, I have worked in many projects involving the 

acquisition, processing and interpretation of geophysical data. Using 
seismic, electromagnetic and gravity data, I have developed and applied 
approaches and algorithms for the modeling and inversion of multidisciplinary 
geophysical measurements. The output of these methods commonly 
consists of “Earth models” of the spatial distribution of various physical 
parameters, such as seismic velocity, electrical resistivity, density, fluid 
saturation, and porosity.  

Using large datasets, I have frequently applied Data Science and 
Machine Learning approaches for supporting and improving my integrated 
workflow. Sometimes, colleagues, researchers and managers have applied 
the results of my work to improve their geological models and/or their 
decisional process. Indeed, a robust model helps in making key decisions, 
like where to drill a new exploration well. 

Unfortunately, the geophysical and geological models are often affected 
by uncertainties and ambiguities, including the models produced by me, of 
course. Among the main reasons for such intrinsic indetermination, there is 
the fact that the exploration target is frequently located at a depth of several 
kilometers in the terrestrial crust, below complex geological sequences. 
This often happens, for instance, in hydrocarbon exploration. Consequently, 
the geophysical response measured at the surface can be characterized by a 
low signal-to-noise ratio. When geoscientists try to retrieve Earth models 
from that response, the measurement uncertainties propagate from data to 
model space, affecting negatively the reliability of the Earth models. These 
models represent “interpretations” rather than objective information. For 
that reason, Earth disciplines are a typical example of interpretative science. 
In other words, geoscientists can produce (very) different Earth models and 
different interpretations starting from the same experimental observations. 
The differences depend on many factors, not confined to data quality. These 
include the personal technical background, the individual experience and 
sensitivity, the specific ability in using technology for enhancing the signal 
and for reducing the noise, and so forth.  

Under these aspects, geosciences are not very different from many 
medical disciplines where, for instance, physicians must define a diagnosis 
based on multidisciplinary observations affected by large uncertainties. 
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Finally, both geoscientists and physicians must make crucial decisions in 
uncertain domains.  

Over the years, geoscientists, as well as physicians, have learned how to 
manage experimental errors and model uncertainties. However, there are 
still many methodological open questions behind their interpretative work. 

First, how much do they really understand about the data that they use? 
Second, do they properly understand the meaning of the models that they 

retrieve from their data?  
Third, how can they extract the maximum informative value from both 

data and models? 
Fourth, how can they optimize the decisional process in uncertain 

domains using the entire value of information in both data and model space? 
Of course, the above questions are not restricted to the domain of the 

Earth or medical disciplines. The problem of understanding properly the 
data and the models, exploiting their entire informative value, is generalized 
to all the main scientific fields. Unfortunately, that problem often remains 
unsolved: we do not use information in the correct way because we 
understand it just partially. We waste a great part of its potential value.  

The “Gap of Understanding” (“GOU” could be a nice acronym) is 
related in some way with the number (and with the relevance) of obscure 
steps of the workflow through which we move from data to models, and, 
finally, from models to decisions. 

Assuming that we do our work of data analysis and interpretation in the 
most honest and scrupulous way, a problem remains in the background. It 
is data complexity. 

The question is that the rapid growth of information and the intrinsic 
complexity of many modern databases often require extraordinary efforts 
for exploring the entire volume of information and for maximizing its true 
value. Besides the volume of Big Data, there are additional important 
aspects to take into account. These are variety, veracity, velocity, validity 
and volatility. In fact, data complexity increases not only with data volume, 
but also with the heterogeneity of the information, the non-linearity of the 
relationships, and the rate by which the data flow changes.  

As I said, all that complexity can be a problem. Sometimes we think to 
solve this problem by just ignoring it. We tend to simplify. Unfortunately, 
excessive simplification can lead us towards wrong Earth models, wrong 
medical diagnosis, and wrong financial predictions. Finally, that simplistic 
approach drives us towards wrong decisions. On the other side, complexity 
often represents an opportunity rather than a problem. Complexity, if 
properly managed and correctly understood, can trigger positive changes 
and innovative ideas. It is an intellectual, scientific, technical challenge.  
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This book is a systematic discussion about methods and techniques for 
winning that challenge. The final objective of the following chapters is to 
introduce algorithms, methods and approaches to extract the maximum 
informative value from complex information.  

As I said, dealing with “Big Data” and with complex integrated 
workflows is the normal scenario in many Earth disciplines, especially in 
the case of extensive industrial applications. For this reason, the book starts 
from the domain of geosciences, where I have developed my professional 
experience. However, the discussion is not confined to applications in 
geology and geophysics. It is expanded into other scientific areas, like 
medical disciplines and various engineering sectors. Similar to geosciences, 
also in these fields, scientists and professionals are continuously faced with 
the problem of how to get the maximum value from their datasets. That 
objective can be obtained using a multitude of approaches.  

In the book, algorithms, techniques and methods are discussed in 
separate chapters, but in the frame of the same unitary view. These methods 
include data fusion and quantitative approaches of model integration, 
multimodal data analysis in different physical domains, audio-video 
displays of data through advanced techniques of “sonification”, multimedia 
machine learning and hybrid methods of data analysis.  

Finally, human cognition is also taken into account as a key factor for 
enhancing the informative value of data and models. Indeed, the basic 
intuition inspiring me in writing this book is that information is like an 
empty box if we do not extract any coherent significance from it. This can 
be a geological, medical, or financial type of significance, depending on the 
field of application. In other words, the value of information increases if we 
understand its deep meaning. That intuitive principle is true in science as 
well as in ordinary life. We can effectively estimate the value of information 
only after understanding its significance. Consequently, the problem of 
maximizing the information value is translated into a more general problem: 
maximizing our capability to extract significance from the information 
itself.  

This methodological approach requires that human sciences are 
involved in the workflow. In particular, it is important to clarify the concept 
of “significance of information”. This concept is extremely complex and 
has involved philosophers and scientists for many centuries. For that reason, 
I have tried to summarize the “question of significance” in different parts of 
the book, explaining my point of view about it. Especially in the final part, 
I discuss how modern neurosciences, cognitive disciplines and epistemology 
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can contribute to the process of maximization of the information value 
through the analysis of its semantic aspects.1  

A multitude of examples, tutorials and real case histories are included in 
each chapter, for supporting the theoretical discussion with experimental 
evidences. Finally, I have included a set of appendices at the end of the 
book, in order to provide some insight about the mathematical aspects not 
explicitly discussed in the chapters.  

 
Due to the multidisciplinary approach that I use in this book, I hope that 

it can engage the interest of a large audience. This should include 
geophysicists, geologists, seismologists, volcanologists and data scientists. 
Moreover, researchers in other areas, such as medical diagnostic disciplines, 
cognitive sciences and the health industry, can find interesting ideas in the 
following chapters. No specific background is required for catching my key 
messages. In fact, this book is aimed mainly at introducing novel ideas and 
new research directions rather than exhaustively covering specialist topics. 
Consequently, I have often preferred to discuss the technical details in the 
appendices, in order to make the discussion more fluid and readable. 
Furthermore, I have provided the main references and many suggested 
readings at the end of each chapter for those who are interested in expanding 
a specific subject.  

In summary, the only fundamental requirement for deriving benefit from 
this book is to read it with an open mind, with the curiosity to investigate 
the fascinating links between disciplines commonly considered independent.  

 

                                                            
1 In the linguistic field, Semantics is the study of meaning. In the semiotic field, it 
deals with the relations between signs and what they denote. In this book, I use the 
term “semantic” in a very general sense, for denoting the meaning of words, of 
sentences, of concepts, and of information in general. 



 

 

CHAPTER ONE 

VALUE OF INFORMATION 
 

 
 

Abstract 

The rapid growth of information and the intrinsic complexity of many 
databases, require effective approaches and methods for maximizing the 
informative content of the data. Beside the volume of Big Data, there are 
additional important aspects to take into account. These include variety, 
veracity, velocity, validity and volatility. In fact, complexity increases not 
only with data volume, but also with the intrinsic heterogeneity of sources 
and types of data, with the non-linearity of the relationships between the 
data, with the velocity with which the data change, and so on. However, 
data complexity often represents an opportunity rather than a problem. In 
order to take profit from it, it is necessary to develop effective workflows 
for extracting the maximum informative value. In this chapter, after 
introducing some key aspects of informative complexity, I discuss the 
concept of Value of Information. I explain how this can be estimated 
through a Bayesian approach. Then I introduce the roadmap of the process 
of data value maximization. This combines the benefits of different 
techniques and methods including Data Fusion, Multimodal data analysis, 
Audio-Video display and Multimedia Machine Learning, with the 
additional contribution of Cognitive Sciences and Neurosciences.  

Keywords: Big Data, Complex information, Value of Information, 
Bayes’ Theorem. 

1.1. Introduction: Big Data and Complex Information  

Huge amounts of datasets are continuously created in almost all the 
modern scientific fields, in many business sectors, through social media and 
during many other activities of our daily routine. Big Data is one of the most 
inflated expressions used today. It commonly refers to huge volumes of data 
ranging from terabytes to many petabytes. 

Beside the memory size occupied by big databases, there are additional 
important aspects to take into account (Elgendy and Elragal, 2014). Variety 
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refers to the heterogeneity of sources and types of data, both structured and 
unstructured. Velocity is intended as the rate at which the massive and 
continuous data flow changes over time and space. Additional important 
features are veracity and validity, related with the biases, noise and 
abnormality in data, and with information accuracy, respectively. Volatility 
is another important aspect concerning how long data are valid and how 
long they should be stored. Apart from the volume, these features do not 
concern exclusively Big Data, but also databases of ordinary size.  

A general aspect of every type of data is the Value of Information (VOI). 
This is crucial for Big Data as well as for “standard” databases. It is not a 
trivial issue to define and estimate the VOI. From a pragmatic point of view, 
we can think that the VOI is related to how data affect our decisions. In this 
chapter, I will show how this intuitive idea can be transformed into a useful, 
quantitative concept.  

The full informative value can be properly extracted from the dataset if 
we are able to handle its intrinsic complexity (Ahmed, S. Ejaz (Ed.), 2017). 
Thus, data complexity represents an additional general aspect of information 
strictly linked with its value. The reason for that link is not immediately 
clear. The word “complexity” combines the Latin roots com (meaning 
“together”) and plex (meaning “woven”). In fact, a complex system is 
characterized by the inter-dependencies of its components. In particular, in 
a complex informative system, the different components (measurements, 
models, uncertainties, methods of acquisition, techniques of analysis, and 
so forth) are linked and interact in multiple ways. These interactions are 
often “hidden” and implicit, and must be discovered in some way. 
Furthermore, the links are often expressed by non-linear relationships that 
increase exponentially the level of complexity.  

This complexity can strongly affect our work, our final decisions, and 
our performances in using the data, with both negative and positive impacts. 
For instance, data complexity can increase significantly the computation 
time, the storage and/or other resources necessary to execute the algorithms. 
Computational complexity is related to the number of an algorithm’s steps 
(time complexity) and/or the number of storage locations that it uses (space 
complexity) for solving a given computation problem. 

On the other side, data complexity can represent an opportunity rather 
than a problem, but only if we are able to find the relationships hidden in 
the data. In fact, when we are able to link different pieces of information, 
we can discover new meaningful structures like data clusters, important 
correlations, and causal relationships. Finally, that type of semantic 
structure can significantly improve our knowledge. The most intuitive 
example of this fundamental concept is the discovery of a new scientific law 
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or, more simply, a new empirical relationship explaining a set of 
experimental evidences. At first, our observations can appear sparse and 
disconnected, but if we able to find the proper link(s), then the same data 
can be re-organized into significant conceptual clusters.  

In this book, I will show that complex datasets consisting of multi-
physics measurements obtained from multiple and heterogeneous sources, 
can be properly integrated (Data Fusion, Image Fusion, Model Integration). 
Such an integration process allows improvement in the solution of difficult 
problems, like medical diagnosis, geophysical imaging and the decisional 
process in uncertain domains. Of course, transforming the disordered 
complexity (Weaver, 1948) of a huge and heterogeneous dataset into a 
coherent model (or a coherent theory) is not a simple process. I will show 
that it requires specific competences, efficient algorithms, analytical 
methods, and effective workflows. Despite that intrinsic difficulty, the 
reward of data fusion and integration can be extremely high in terms of 
improvement of the VOI. 

In summary, the impressive growth of information, and the intrinsic 
complexity of many databases, require effective approaches and strategies 
aimed at maximizing the Value of Information. In this chapter, I introduce 
the key factors affecting the VOI and how it can be estimated through a 
Bayesian approach. Furthermore, I start discussing the roadmap of the 
process of data value maximization. 

1.2. From simple to hyper-complex  

Few examples can be useful for clarifying the concepts of data simplicity 
and information complexity. For the moment I do not provide any formal 
definition of “simple” and “complex”; however, I illustrate intuitively how 
complexity grows not only with data volume, but also with other 
parameters, like data heterogeneity, non-linearity of the relationships, the 
number of sources of information and spatial dimensionality. 

 Let us start from a trivial geophysical example of a small and simple 
dataset, as shown in Fig. 1-1. In this case, just a few well-log measurements1 
are cross-plotted (x-axis: slowness;2 y-axis: rock density scaled by a factor 
of 100). The points show some scattering; in fact, the parameter R2 is 
significantly less than 1 (it is defined in such a way that it should be equal 

                                                            
1 Borehole logging is the practice of making a detailed record (a well log) of the 
geologic formations penetrated by a borehole. 
2 Slowness is a quantity introduced in Seismology. It is the reciprocal of propagation 
velocity of seismic waves. 
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to 1 for a perfect fit). However, the measurements follow a clear decreasing 
linear trend. This dataset can be considered “simple” not only because it 
consists of a small set of measurements, but also because the variables are 
correlated in a linear way. In this case, I am assuming that simplicity is 
inversely related to the degree of the mathematical relationship linking 
(fitting) our data. 

 

 
 

Fig. 1-1. Example of linear relationship fitting a small dataset. 
 

Continuing with this intuitive idea of simplicity, Fig. 1-2 shows an 
example of a slightly more complex dataset, where the physical 
measurements are linked through a non-linear relationship. In this case, the 
water saturation inside an oil reservoir is related to the electrical resistivity 
through a power-law. The correlation is not perfect, but R2 is not too far 
from the unity. This indicates that the empirical relationship fits the data 
within a good level of approximation. However, there is a certain scattering 
around the curve fitting the data. 
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Fig. 1-2. Non-linear relationship example. 
 
At this point of the discussion, an important question arises: what do I 

mean by the above expression “good level of approximation”? Looking at 
Fig. 1-2, we can notice that the data with a saturation value below 0.3% are 
quite scattered and could be split into two separate clusters. These clusters 
could be fit using two different curves expressed by two different power-
laws. This is an example of the well-known trade-off between accuracy and 
simplicity. If we desire to increase the accuracy of our descriptive models, 
the counterpart is that the models can become more complex. In this 
example, “more complex” means that two curves rather than one are 
necessary for fitting two distinct data clusters. 

In many practical cases, scientists prefer to use the simplest model that 
is able to explain the observations. This approach is known as “Occam’s 
razor”. It can be summarized by the following statement: when there are 
competing hypothetical solutions to a problem, one should select the one 
that makes the fewest assumptions. Unfortunately, in many cases, the 
decision is not simple; increasing the complexity of the models can be 
necessary, for instance, for robust physical reasons. In the example of Fig. 
1-2, it could be more appropriate to split the data into two clusters rather 
than fitting all the points with one relationship only. Indeed, the reason for 
the scattering observed in the figure is that the reservoir consists of two 
stacked geological layers. These have similar sedimentary properties, but 
these are not exactly the same. 
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Fig. 1-3. Normalized cross-plots of composite well logs. This dataset is formed by 
many measurements obtained through different types of acquisition methods. They 
show some degree of correlation, but can be explained (fit) only partially through 
simple mathematical relationships.  
 
 

I will discuss specific methods and algorithms aimed at handling the 
trade-off between the intrinsic complexity of the data and the simplicity of 
the models. The following example will aid a better understanding of this 
point. 

Fig. 1-3 shows a dataset with a higher complexity than the previous 
examples. In this case, there are four cross-plots combining different types 
of borehole measurements: sonic, gamma ray, neutron, spontaneous 
potentials, density and PEF (photoelectric absorption) well logs. We can 
observe “clouds” formed by many measurements. These show some degree 
of correlation, but this is generally nonlinear and there is a high level of 
scattering. The reason is that this dataset includes the measurements 
performed at increasing depths in the well crossing variable geological 
formations. Consequently, the cross-plots mix trends belonging to different 
sedimentary strata. In this example, fitting all the data in each panel with a 
unique mathematical law is geologically inappropriate. In other words, the 
complexity of our data is too high to be handled with simplistic 
mathematical relationships, even if we used non-linear laws. In cases like 
this, it is generally more appropriate to split the data into different clusters, 
before trying to model them through a simplistic mathematical approach. I 
will discuss in dedicated sections, how the trends related to different rock 
formations can be grouped into relatively homogeneous clusters through 
appropriate techniques of clustering analysis. 
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Beyond these specific geophysical examples, the key message is that we 
need to “understand” our datasets as much as possible before trying to 
“model” them through mathematical and statistical approaches. This 
statement is particularly true when data complexity increases. 

In almost all the natural sciences, as well as in medical disciplines, in 
social and psychological sciences, we generally deal with systems that are 
much more complex than a well-log dataset. Hyper-complexity is a higher 
level of complexity typical of datasets characterized by experimental 
measurements obtained through different methods and sources. Data 
generally form huge databases (Big Data), belong to different domains and 
are linked through non-linear mathematical relationships. Typical examples 
of hyper-complex databases are formed by multidisciplinary geophysical 
data or by heterogeneous medical data including blood analysis, statistical 
information, and high-resolution images obtained with different imaging 
technologies.  

Fig. 1-4 shows an example of a multidisciplinary geophysical model. In 
this case, two sections of two different physical parameters are compared. 
In the top panel there is a tomography section obtained through inversion of 
seismic data (travel times); it represents the 2D spatial distribution of 
seismic propagation velocities. In the bottom panel there is a section of 
electrical resistivity obtained through inversion of electromagnetic data 
recorded with the Magnetotelluric method (Cagniard, 1953). The two 
sections show large-scale similarities in the distribution of the two different 
parameters, because these are physically linked. In fact, there is a (non-
linear) relationship between seismic and electromagnetic measurements 
and, consequently the models derived from these data are linked to some 
degree. The physical reason is that both resistivity and velocity change 
consistently in many types of rocks: frequently, although not in every case, 
when seismic velocity increases, the same happens for electrical resistivity, 
as in many carbonate and/or shale rocks.  

Fig. 1-4a also shows the interpretation, marked by the black curves, of 
the main trends of the velocity field. These trends represent high-
velocity/high-resistivity carbonate and shale thrusts, and low-velocity/low-
resistivity basins. The spatial distributions of these geological units are 
typical of the Southern Apennine belt (Italy), where these data come from. 
In the bottom panel, Fig. 1-4b, we can see that the resistivity parameter 
follows approximately the same general geometric trend. There is no rigid 
spatial correlation between the two sections shown in the upper and lower 
panels. However, it is clear that some degree of semblance exists, 
explainable in terms of large-scale geological trends. This is a typical 
example of hyper-complexity, where two different geophysical domains 
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(seismic and electromagnetic) are correlated in some way. Thus, the 
intrinsic complexity of each individual domain is further increased by the 
fact that these domains are reciprocally linked through a non-linear 
relationship. 

The same type of hyper-complexity, but in the 3D case, is shown in Fig. 
1-5. This is an example of the co-rendered imaging of seismic, gravity and 
electromagnetic information (Colombo et al., 2014). Panel a) shows two 
seismic cross-sections extracted from a huge 3D seismic cube. Panel b) 
shows the correspondent velocity models. These highlight the different 
geological units, including the salt layer. Panel c) shows the density model 
obtained from gravity data that provides information about the main trend 
of the basement rocks (the deep layer). Finally, panel d) shows the resistivity 
models obtained from electromagnetic data inversion. Resistivity adds 
significant information about the geometry of the salt formation, including 
interesting shallow details not properly revealed by seismic data. This figure 
is an example of how different geophysical methods can contribute to define 
a multi-physics geological model.  

 

 
 
Fig. 1-4. Example of a multidisciplinary geophysical model: 2D section of the 
tomography seismic velocity model (panel a); 2D section of the resistivity model 
obtained through inversion of electromagnetic data (panel b) acquired along the 
same profile. Topography in panel b is strongly smoothed. 
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Moving from the 2D case of Fig. 1-4 to the 3D case of Fig. 1-5, the 
hyper-complexity is increased by the huge volume of the dataset and by the 
higher spatial dimensionality. Thus, we have an example of Big Data and 
complex information at the same time. Nowadays, this is the ordinary 
scenario in exploration geophysics, in the hydrocarbon industry as well as 
in other sectors of the modern geosciences. I will discuss the importance of 
using the entire complexity of these types of multidisciplinary measurements. 
Furthermore, I will introduce the most modern approaches and methodologies 
used for extracting the maximum Value of Information from these hyper-
complex datasets. 

 
 

 
 
Fig. 1-5. Example of the multidisciplinary geophysical model (Courtesy of Colombo 
et al., 2014, modified). See text for details. 

 
In many scientific disciplines, including geosciences and medical 

sciences, as well as in many financial and business sectors, the databases 
can reach impressive levels of hyper-complexity. The reason is that they are 
not static, but change continuously over time. Let us consider, for instance, 
the case of an oil field during production: huge and heterogeneous databases 
are updated day by day, or even hour after hour, including new information 
coming from production data, geological and geophysical measurements, 
and laboratory tests. Extracting the full information value from such big, 
complex and dynamic databases is the main challenge for many 
geoscientists, engineers and managers. They must make key decisions that 
can have an impact quantifiable in terms of many millions of dollars (or 
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much more). Thus, it is clear that developing effective algorithms, methods 
and workflows for maximizing the Value of Information of big, complex 
and dynamic data represents an important objective, in geosciences as well 
as in other scientific areas. 

1.3. Bayes’ Theorem and Value of Information 

1.3.1. Basic concepts  

A crucial question is, why are many databases big, complex and 
dynamic? An intuitive answer is that in ordinary life, as well as in scientific 
practice, we continuously acquire and combine new observations with 
previous data. Consequently, information grows continuously. The second 
crucial question is whether our knowledge also increases at the same rate as 
information. This is not a trivial question. In fact, information and 
knowledge are not the same thing. 

For instance, in medical diagnosis, physicians generally combine many 
different types of information obtained at different times and with different 
modalities. These can include the patient’s anamnesis, symptoms’ description, 
general statistical information, new specific data coming from blood 
analysis, and results derived from imaging techniques. The same happens 
in geophysical exploration. For instance, new data acquired through 
geophysical prospecting techniques are often combined with data coming 
from previous surveys aimed at estimating the distribution of one or more 
physical parameters in the subsoil.  

The open questions concern if, how and in what measure this massive 
work of data integration can improve our knowledge. In order to answer 
these difficult questions, we can try to reformulate them in probabilistic 
terms. 

In medical sciences, as well as in Earth disciplines and in many other 
scientific sectors, it is important to estimate how the acquisition of new 
information can update the probability distribution of one or more properties 
of the system under study. This problem can be formulated in the frame of 
the Bayesian Statistical Inference Theory (Stone, 2013; Russell and Norvig, 
2016). It allows the estimation of “how the a priori probability distribution 
is transformed into the a posteriori probability distribution, by 
incorporating a physical theory (relating the model parameters to some 
observable parameters) and the actual result of the observations (with their 
uncertainties)” (Tarantola, 2005, Preface). 

Russell and Norvig (2016) consider the unconditional or prior 
probability as “referred to the degree of belief in propositions in the absence 
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of any other information” (p. 485). It represents the best rational assessment 
of the probability of an outcome based on established knowledge before 
performing the present experiment.3 Instead, posterior probability is the 
revised probability distribution of an outcome after taking into 
consideration new information (such as new experimental observations). 

In common scientific practice, estimating the updating of prior 
probability into posterior probability can be a very difficult task. In fact, 
when we acquire new information through a new set of observations, “O”, 
this is combined with an entire system of knowledge. This includes not only 
previous data and models, but also expectations about the future, 
constraints, beliefs, and hypotheses. Consequently, the decisions and the 
behavior of a hypothetical agent (a scientist, a manager …) are affected by 
the new data combined with a complex state of prior knowledge.  

In many practical cases, we are interested in estimating how the new 
data are combined with our previous knowledge, and how this integration 
work affects our decisions. This is the pathway for estimating the Value of 
Information. In fact, “the value of any particular observation must derive 
from the potential to affect the agent’s eventual physical action” (Russell 
and Norvig, 2016). The following example helps an understanding of how 
we can estimate the VOI applying Bayes’ Theorem in a simulated case of 
hydrocarbon exploration (here extremely simplified).4 Beside the specificity 
of the example, the approach is general and can be applied in different fields 
and for many purposes.  

1.3.2. An example 

Let us imagine that we are going to begin a geological/geophysical 
survey for exploring the subsoil of a geographical region, with the objective 
to discover a new oil reservoir. We can assume that our prior information 
supports, for instance, the positive scenario, H, of a possible hydrocarbon 
discovery in that region, if we drill a well at a given location (H = oil). For 
example, our previous geological studies could suggest that there are 
favorable conditions for discovering a commercial hydrocarbon 
accumulation, at a certain depth, in a specific geological formation. Based 
on that prior knowledge, we can estimate the correspondent prior 

                                                            
3 In scientific practice, the expression “prior probability” refers to our state of 
knowledge at a time before a certain experiment. 
4 For a general and exhaustive discussion about this important theorem, I recommend 
the didactical approach adopted by Russell and Norvig (2016; Chapter 13, section 
13.5, pp. 495-499: “Bayes’ rule and its use”). 
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probability, let us say P(oil), that our well will drill a commercial oil 
discovery.5  

Now, let us suppose that we acquire new geophysical data at the surface, 
O. It is reasonable to expect that this new set of observations will change 
the prior probability of the scenario H into a new a posteriori or conditioned 
probability. Qualitatively speaking, the new dataset O has value to the 
extent that it is likely to cause an impact on our state of knowledge and, 
consequently, on our action plans. Quantitatively speaking, we can apply 
the Information Value Theory, for estimating the value of the new 
information O. The posterior probability (conditioned by the new data) is 
commonly indicated with the notation P(oil|O). It indicates the posterior 
probability of having an oil discovery scenario, given the set of new 
observations O.  

Our problem is to quantify the value added by the new geophysical 
information O. This problem is commonly formalized using the Bayes 
formula, well known in statistical applications. It provides the conditioned 
(posterior) probability P(H│O) for a scenario H after modification of 
unconditioned probability (a priori probability) due to a set of observations 
O: 

 ( | ) =  ( | ) ( )( ) .            (1-1) 
 
Symbols in formula (1-1) have the following meaning:  
 

a) P(H) is the a priori probability (without observations O) 
that the scenario H is verified; 

b) P(O|H) is the probability of the observations O when the 
scenario H is verified; 

c) P(O) is a normalization factor that assures the condition 
that 0  P(H|O)  1. Its general form is: 

 
 ( ) =  ∑ ( | ) ∙ ( ) ,            (1-2) 

 
where  is the generic scenario ith in a set of n scenarios. 

The formula 1-1 is often indicated as Bayes’ Theorem. Its demonstration 
is immediate (Russell and Norvig, 2016); however, the formula is very 
intuitive. It says that the product of two probabilistic terms (the denominator 
                                                            
5 In this example, P(oil) denotes a prior probability in the sense that it is 
unconditioned by any new data. 
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is just a normalization factor) gives the posterior probability: one term is the 
prior probability of the scenario H. The other one is the conditioned 
probability of observing the dataset O if the scenario H is verified.  

Returning to our geophysical examples, for instance, I assume that our 
new geophysical data consist of a set of electromagnetic measurements. 
Controlled Source Electromagnetic (CSEM) surveying is a geophysical 
prospecting method that is often used for hydrocarbon exploration, thanks 
to its sensitivity to the presence of electrically resistive oil (or gas) reservoirs 
(Constable et al., 2007; Eidesmo et al., 2002). CSEM data frequently add 
useful information, thus we expect that the new dataset can improve our 
knowledge, reducing the exploration risk in that area.  

As I said, the symbol Hi in formula 1-2 indicates the generic scenario. 
In this example, it can be the scenario of a commercial oil discovery or the 
scenario of a dry well. For the sake of simplicity, we can start defining the 
information O as a binary indicator, where O is a positive indicator if it 
increases the chance of success (for instance, a commercial discovery), and 
a negative indicator otherwise.6 Observation O is the CSEM dataset, but the 
same discussion can be done for any other type of information (gravity, 
seismic, magnetic data).  

Let us summarize, schematically, the terms of our example: 
 
a. P(H) = P(oil) is the unconditioned (a priori) probability of drilling 

an oil filled reservoir. This probability can be statistically estimated 
based on previous theoretical geological studies, for instance.  

b. P(O|H) = P(CSEM/oil) is the conditioned (a posteriori) probability 
of having a significant CSEM response (like electromagnetic data 
with high amplitude) if a commercial oil reservoir is effectively 
present at that location (where we planned to drill a well). It can be 
estimated, for instance, through modeling. 

c. Applying Bayes’ Theorem, the above probabilities allow us to 
estimate the posterior probability for an oil scenario conditioned by 
the CSEM response, P(oil | CSEM), as explained in the following. 

 
For a fixed scenario H (oil, non-oil …), the set of new observations O 

(that can be a “CSEM response”, a “no-CSEM response”, and so on) can 
give a true positive or a false positive. For instance, in the case that we 
                                                            
6 Following the well-known medical definitions, positive and negative indicators can 
be further divided into “true positive”, “false positive”, “true negative” and “false 
negative”. For instance, a significant CSEM response will be a true positive 
hydrocarbon indicator if it corresponds to a true hydrocarbon discovery. Otherwise, 
the same CSEM response will be a false positive if it corresponds to a dry well. 
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observe a significant CSEM anomalous response, the posterior probability 
for an oil scenario is given by the following expression of the Bayes 
formula: 

 ( | ) =  ( | ) ( )( | ) ( )  ( |  ) (  ).   (1-3) 
 
The denominator in formula (1-3) acts as a normalization factor, in order 

to have 0  P(oil|CSEM)  1. In this specific example, it represents the sum 
of the probability to have a true positive and the probability to have a false 
positive. An analogous formula can be written in the case of no detection of 
any CSEM anomalous response.  

The estimation of the posterior probability through the formula 1-3, 
allows the calculating of the value of CSEM information (VOICSEM). It 
depends on how much the new information affects the exploration risk. In 
other words, VOICSEM depends on how the CSEM data affect the value of 
our hydrocarbon prospect and, finally, our decisional process (if and where 
to drill).  

The decisional impact of the CSEM data can be easily estimated from 
the difference of the hydrocarbon prospect value based on the exploration 
risk calculated before and after acquiring the CSEM data.  

 If the drill cost is indicated with C, the net present prospect value is 
indicated with V (excluding the drilling cost) and a prior chance of success 
(without a CSEM response) is indicated with P(oil), then the expected net 
present value without CSEM information is (Buland et al., 2011): 

 ( ) = ( ) ∙  .     (1-4) 
 
Instead the expected net present value with CSEM information is 
 ( )′ = ( | ) ∙  ,    (1-5) 

 
where ( | ) is provided by formula 1-3. 

Finally, the VOI of the new CSEM data is given by the estimated value 
of the prospect with CSEM information (formula 1-5) minus the estimated 
value of the prospect without CSEM information (formula 1-4), minus the 
cost C of the additional CSEM information:  

 =  ( ) −  ( ) −  .   (1-6) 
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1.3.3. Revisiting the example qualitatively 

Summary 
The example described above could appear complicated, especially to 

readers who are not familiar with hydrocarbon exploration. Let us 
summarize and generalize the entire procedure, without using any 
mathematical formalism.  

 
a) Our final goal is to calculate the Value of Information (VOI) of new 

geophysical data that we wish to acquire at the surface to estimate 
the probability to discover (by drilling an exploration well) a new oil 
reservoir in a certain prospect area. 

b) The value of the new geophysical (electromagnetic) data depends on 
their impact on our decisions and, finally, on the value of our 
prospect. Consequently, the VOI of the data depends on how it 
changes the probability of an oil-discovery scenario if we decide to 
drill a well at a given location.  

c) The Bayes formula allows the estimation of how the prior oil-
probability changes into a posterior oil-probability conditioned by 
the new electromagnetic data. 

d) After calculating the posterior oil-probability, we re-estimated the 
value of our “object of interest” (the drilled prospect). We simply 
multiplied the prospect value for the new (posterior) oil-probability. 

e) Finally, we estimated the VOI of the electromagnetic data by just 
subtracting the new prospect value (with electromagnetic data) 
minus the previous prospect value (without electromagnetic data). 
We also subtracted the cost for acquiring the new data. 

 
Buland et al. (2011) effectively estimated the impact of CSEM data on 

exploration risk analysis using the Bayesian approach introduced in this 
chapter. Using a huge industrial database (a real case of Big Data), the 
authors calculated the exploration risk modification by applying Bayes’ 
theorem when electromagnetic (CSEM) information is taken into account 
and when it is properly combined with previous data (seismic, well logs, 
geological knowledge and so forth). The authors confirmed that the CSEM 
method can provide useful information improving the process of risk 
evaluation in exploration, increasing significantly the confidence of 
discovering a commercial hydrocarbon reservoir.  

I performed a similar analysis, after expanding the Bayesian method to 
the integration of seismic, electromagnetic and gravity data (Dell’Aversana, 
2016). I applied all the theoretical concepts explained in the previous section 
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to a real industrial dataset, obtaining positive results about the value added 
by electromagnetic and gravity data. 

 
Remarks 
Beyond the specificity of the geophysical applications here mentioned, 

the examples done help to clarify some key aspects of the Value of 
Information related to data integration. New data are effectively useful if 
they are properly combined with previous information, in order to re-define 
the entire frame of our knowledge. If that integration process is not properly 
performed, the new experimental observations risk creating confusion 
rather than benefits. For instance, it can happen that the new data are in 
conflict with the actual Earth model, and geologists and geophysicists prefer 
to ignore the new observations rather than modify their model. 
Unfortunately, this is a frequent and realistic scenario. The conflict between 
previous knowledge and new evidences can “complicate” the process of 
interpretation leading towards inappropriate decisions.  

The same considerations are true in other fields that are different from 
geosciences, such as in medical disciplines. For instance, it is well known 
that a correct diagnosis can be obtained through the proper combination of 
all the available prior information with new evidences, including the 
patient’s anamnesis, blood analysis, images of the body interior, and 
symptoms’ analysis. As in the geophysical example done in the previous 
paragraph, we can use the same Bayesian approach for estimating how 
much each new medical datum affects the posterior probability of a certain 
medical diagnosis. The effective value of each individual piece of 
information depends on how much this is used in the diagnostic process. 
Unfortunately, for many practical reasons, full data integration often 
represents just an ideal scenario in medical applications, as well as in 
geosciences.  

Applying an effective integration workflow is a general key requirement 
for extracting the maximum value from new and old data. For that reason, I 
will dedicate the next chapter to summarizing the most recent techniques, 
algorithms, methods and workflow of data integration.    
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1.4. The roadmap: from significance to value  

I would like to conclude this introductive chapter by remarking that the 
concepts of “Value” and “Significance” are strictly linked. Indeed, 
information has scarce value if we use it without understanding its 
significance. This can be considered the basic assumption of this book, and 
it can be named “the Semantic Principle of Information Value”. This is a 
crucial point and it needs to be clarified from the beginning.  

In the example discussed in the previous section (1.3.2), I made the 
implicit assumption that the new set of data, O, represents “perfect 
information”. This means that it is a clear (unambiguous) indicator about 
the presence or the absence of a hydrocarbon reservoir in the subsoil, at a 
certain location and at a well-defined depth. Furthermore, I assumed that we 
understood completely its geophysical significance in terms of geological 
implications on the Earth model. That is never true in the real world, 
especially in the practice of interpretative disciplines such as geosciences 
and diagnostic medicine. In general, we make decisions based on our 
interpretation of information that is affected by uncertainties, rather than on 
perfect data. In other words, our behavior and decisions are driven by the 
significance that we assign to (or that we extract from) information 
(measurements, processed data, previous knowledge …). For that reason, in 
the following chapters, I will dedicate part of the discussion to clarifying 
the fundamental concept of the “significance of information”, and how this 
can be progressively improved through a complex workflow. Fig. 1-6 shows 
a schematic view of the main steps of this workflow. Besides integration, 
the Value of Information is increased through the combination of additional 
methods. These involve Data Fusion, Multimodal data analysis in different 
physical domains, the Audio-Video display of data through advanced 
techniques of “sonification”, Multimedia Machine Learning and hybrid 
methods of data analysis.  
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Fig. 1-6. The roadmap for maximization of the Value of Information of big and 
complex data. 
 

Finally, inferring significance from complex information is a process 
where human cognition shows its strength, especially in the case of 
teamwork. Consequently, the workflow of data value maximization must 
take into account crucial human factors, including individual as well as 
interpersonal and social aspects. In the final part of the book, I will discuss how 
modern neurosciences, cognitive disciplines and knowledge management 
approaches can contribute to the process of information value maximization.  
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Abstract 

This chapter is motivated by the assumption that there is a positive 

correlation between data integration, significance and value of information, 

as remarked in Chapter 1. The driving principle is that the more integrated 

are the different pieces of information, deeper is the meaning that we can 

extract from our data. Indeed, integration of heterogeneous information is 

crucial in many scientific areas. For instance, in geosciences, an integrated 

workflow often represents the optimal exploration approach. Especially in 

complex geological settings, combining complementary methodologies 

provides results better than using single prospecting techniques. For similar 

reasons, data, model and image fusion are essential in medical sciences. For 

example, a robust diagnosis can be obtained through the combination of 

complementary imaging techniques, blood analysis, accurate study of the 

patient’s anamnesis and so forth. Despite the intrinsic differences, the 

process by which scientists transform knowledge from data space to model 

space shows similarities and analogies in many different disciplines. For 

instance, both medical and geophysical imaging techniques are often based 

on the same principia of mathematical inversion of multi-source data. 

Consequently, the processes of image fusion and model integration are also 

based on similar criteria in Earth and Health sciences. In this chapter, I 

discuss analogies and similarities between these different disciplines. I 

assume that a comparative analysis of imaging methods and integration 

workflows used in medicine and in geophysics can illuminate both fields. I 

introduce the general aspects of data/image fusion and integration of 

heterogeneous information. Quantitative integration is strongly based on 

mathematical inversion. Consequently, I recall the basic concepts of linear 

and non-linear inversion. Finally, I show how integration represents a 

fundamental step in the process of data value maximization. 

Keywords: Integration, data fusion, image fusion, significance, 

inversion, joint inversion, geophysical imaging, medical imaging. 


