
Introduction to 
Particle Physics 



 



Introduction to 
Particle Physics 

By 

Dezső Horváth and Zoltán Trócsányi 
 
 



Introduction to Particle Physics 

By Dezső Horváth and Zoltán Trócsányi 

This book first published 2019  

Cambridge Scholars Publishing 

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK 

British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library 

Copyright © 2019 by Dezső Horváth and Zoltán Trócsányi 

All rights for this book reserved. No part of this book may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, without 
the prior permission of the copyright owner. 

ISBN (10): 1-5275-2808-1 
ISBN (13): 978-1-5275-2808-6 



Contents

Foreword xii

I Particle phenomenology 1

1 Particles and symmetries 3
1.1 Symmetries in particle physics . . . . . . . . . . . . . . . . 3
1.2 Symmetry groups and spin . . . . . . . . . . . . . . . . . . 4
1.3 Fermions and bosons . . . . . . . . . . . . . . . . . . . . . 6
1.4 Mirror reflection: parity . . . . . . . . . . . . . . . . . . . 8
1.5 Charge conjugation . . . . . . . . . . . . . . . . . . . . . . 10
1.6 CPT symmetry . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Isospin and strangeness . . . . . . . . . . . . . . . . . . . . 11

2 What is measured in experiment? 15
2.1 Cross section . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Quark model 19
3.1 Coloured quarks . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Colour interaction, QCD . . . . . . . . . . . . . . . . . . . 21
3.3 Reminder: summing up spins . . . . . . . . . . . . . . . . . 21
3.4 Lightest mesons . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Meson nonet (flavour SU(3)) . . . . . . . . . . . . . . . . . 22
3.6 Ground-state baryons . . . . . . . . . . . . . . . . . . . . . 25
3.7 Baryon multiplets . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Three families of fermions . . . . . . . . . . . . . . . . . . 26

v



vi Table of Contents

4 Dirac equation 31
4.1 Covariant formalism . . . . . . . . . . . . . . . . . . . . . 31
4.2 Gamma matrices . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Bilinear products of spinors . . . . . . . . . . . . . . . . . . 33
4.4 Free fermions . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Lagrangians and equations of motion . . . . . . . . . . . . . 34
4.6 Conservation of fermion current . . . . . . . . . . . . . . . 35
4.7 Isospin algebra and conservation . . . . . . . . . . . . . . . 35
4.8 Nucleon as quark atom . . . . . . . . . . . . . . . . . . . . 37

5 Interactions 39
5.1 Three interactions of particle physics . . . . . . . . . . . . . 39
5.2 Electromagnetic interaction . . . . . . . . . . . . . . . . . . 40

5.2.1 Local U(1) invariance . . . . . . . . . . . . . . . . 40
5.2.2 Quantum electrodynamics (QED) . . . . . . . . . . 42
5.2.3 Current-current interaction . . . . . . . . . . . . . . 42
5.2.4 Photon . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Mandelstam variables . . . . . . . . . . . . . . . . . . . . . 44
5.4 Strong interaction . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Colour charges . . . . . . . . . . . . . . . . . . . . 45
5.4.2 Nuclear forces . . . . . . . . . . . . . . . . . . . . 47
5.4.3 Local SU(3) invariance . . . . . . . . . . . . . . . . 48
5.4.4 Running coupling . . . . . . . . . . . . . . . . . . . 48
5.4.5 Gluons . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Electroweak interaction . . . . . . . . . . . . . . . . . . . . 50
5.5.1 Spontaneous symmetry breaking . . . . . . . . . . . 51
5.5.2 BEH mechanism . . . . . . . . . . . . . . . . . . . 52

5.6 Basic bosons . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.7 Electroweak Lagrangian with interactions . . . . . . . . . . 54

II Experimental methodology 57

6 Accelerators 59
6.1 Magnets: bending and focusing . . . . . . . . . . . . . . . . 60
6.2 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3 Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4 Flux and luminosity . . . . . . . . . . . . . . . . . . . . . . 62
6.5 Beam cooling . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6 CERN’s accelerator complex in the LEP era . . . . . . . . . 63



Introduction to Particle Physics vii

6.6.1 Electrons and positrons . . . . . . . . . . . . . . . . 64
6.6.2 Protons . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.3 Heavy ions . . . . . . . . . . . . . . . . . . . . . . 66
6.6.4 Antiprotons . . . . . . . . . . . . . . . . . . . . . . 66

6.7 Other accelerators . . . . . . . . . . . . . . . . . . . . . . . 66
6.7.1 Tevatron at Fermilab . . . . . . . . . . . . . . . . . 66
6.7.2 HERA at DESY . . . . . . . . . . . . . . . . . . . 67
6.7.3 RHIC at Brookhaven NL . . . . . . . . . . . . . . . 67

6.8 CERN’s facilities in the LHC era . . . . . . . . . . . . . . . 67
6.8.1 LHC, the Large Hadron Collider . . . . . . . . . . . 67
6.8.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . 70
6.8.3 Antiprotons . . . . . . . . . . . . . . . . . . . . . . 70

7 Detectors, calorimetry 73
7.1 Event registration . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Energy loss in matter . . . . . . . . . . . . . . . . . . . . . 74
7.3 Particle identification . . . . . . . . . . . . . . . . . . . . . 77
7.4 Detector types . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4.1 Multiwire chambers . . . . . . . . . . . . . . . . . 79
7.4.2 Scintillation counters . . . . . . . . . . . . . . . . . 79
7.4.3 Shower detectors . . . . . . . . . . . . . . . . . . . 80
7.4.4 Cherenkov detectors . . . . . . . . . . . . . . . . . 80
7.4.5 Transition radiation detectors . . . . . . . . . . . . . 81

7.5 The CMS detector . . . . . . . . . . . . . . . . . . . . . . . 82

8 Event registration 85
8.1 LEP events . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.2 Transverse momentum, pseudorapidity . . . . . . . . . . . . 87
8.3 Observation of the top quark . . . . . . . . . . . . . . . . . 89
8.4 Mysterious events . . . . . . . . . . . . . . . . . . . . . . . 89

9 Data analysis 91
9.1 Statistical concepts of particle physicists . . . . . . . . . . . 92
9.2 Basic concepts of statistical analysis . . . . . . . . . . . . . 93
9.3 Fitting parameters . . . . . . . . . . . . . . . . . . . . . . . 95

9.3.1 Goodness of fit . . . . . . . . . . . . . . . . . . . . 95
9.3.2 Confidence level . . . . . . . . . . . . . . . . . . . 95

9.4 Estimating (fitting) parameters . . . . . . . . . . . . . . . . 96
9.4.1 Arithmetic mean and standard deviation . . . . . . . 96
9.4.2 Linear fitting . . . . . . . . . . . . . . . . . . . . . 97



viii Table of Contents

9.4.3 Non-linear fitting . . . . . . . . . . . . . . . . . . . 99
9.5 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.6 Lower and upper limits . . . . . . . . . . . . . . . . . . . . 101
9.7 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . 103
9.8 Event selection . . . . . . . . . . . . . . . . . . . . . . . . 103

III Basic experiments 107

10 Experimental tests of the quark model 109
10.1 Three fermion families . . . . . . . . . . . . . . . . . . . . 109

10.1.1 Z width . . . . . . . . . . . . . . . . . . . . . . . . 109
10.1.2 Invisible width and the families . . . . . . . . . . . 110

10.2 Hadron jets . . . . . . . . . . . . . . . . . . . . . . . . . . 111
10.3 Fractional charges . . . . . . . . . . . . . . . . . . . . . . . 112

10.3.1 Neutral vector mesons . . . . . . . . . . . . . . . . 112
10.3.2 Pion scattering . . . . . . . . . . . . . . . . . . . . 112

10.4 Colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11 Parity violation, pions and muons 117
11.1 Parity violation . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1.1 τ − θ paradox . . . . . . . . . . . . . . . . . . . . . 117
11.1.2 Wu’s experiment . . . . . . . . . . . . . . . . . . . 118
11.1.3 Parity violation in pion decay . . . . . . . . . . . . 118
11.1.4 Muon spin rotation (µSR) . . . . . . . . . . . . . . 119

11.2 Anomalous magnetic moment of the muon . . . . . . . . . . 120
11.2.1 (g − 2)µ: non-relativistic measurement . . . . . . . 121
11.2.2 (g − 2)µ with relativistic muons . . . . . . . . . . . 122
11.2.3 (g − 2)µ with magic momentum . . . . . . . . . . . 122

12 Kaons and CP violation 125
12.1 Kaons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.2 Neutral kaons . . . . . . . . . . . . . . . . . . . . . . . . . 126
12.3 Kaon oscillation . . . . . . . . . . . . . . . . . . . . . . . . 127
12.4 CP violation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13 Neutrinos 133
13.1 Weak currents . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.2 Neutrino mass . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.3 Early neutrino mysteries . . . . . . . . . . . . . . . . . . . 135
13.4 Neutrino oscillation . . . . . . . . . . . . . . . . . . . . . . 137



Introduction to Particle Physics ix

13.4.1 Phenomenology . . . . . . . . . . . . . . . . . . . 137
13.4.2 Super-Kamiokande experiment . . . . . . . . . . . . 138
13.4.3 SNO experiment (1999-2003) . . . . . . . . . . . . 139
13.4.4 Neutrino mixing and masses . . . . . . . . . . . . . 140
13.4.5 Neutrino experiments at nuclear reactors . . . . . . 141
13.4.6 Long distance neutrino experiments . . . . . . . . . 142
13.4.7 Sterile neutrinos? . . . . . . . . . . . . . . . . . . . 142

13.5 Present neutrino mysteries . . . . . . . . . . . . . . . . . . 144

14 Higgs boson 147
14.1 Search for the Higgs boson . . . . . . . . . . . . . . . . . . 148

14.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . 148
14.2 Exclusion at LEP . . . . . . . . . . . . . . . . . . . . . . . 150
14.3 Search and observation at LHC . . . . . . . . . . . . . . . . 151

14.3.1 Reactions of the media . . . . . . . . . . . . . . . . 153
14.3.2 Observations . . . . . . . . . . . . . . . . . . . . . 153
14.3.3 Is it really the Higgs boson? . . . . . . . . . . . . . 154

14.4 Vacuum stability . . . . . . . . . . . . . . . . . . . . . . . 155
14.5 BEH field and inflation . . . . . . . . . . . . . . . . . . . . 156

15 Heavy ion physics 159
15.1 Quark gluon plasma . . . . . . . . . . . . . . . . . . . . . . 159
15.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 161
15.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 163
15.4 Jet quenching . . . . . . . . . . . . . . . . . . . . . . . . . 164
15.5 Heavy ions at LHC . . . . . . . . . . . . . . . . . . . . . . 165
15.6 Big questions . . . . . . . . . . . . . . . . . . . . . . . . . 165

16 Practical applications 167
16.1 Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . 167

16.1.1 World Wide Web . . . . . . . . . . . . . . . . . . . 168
16.1.2 Grid computing . . . . . . . . . . . . . . . . . . . . 168
16.1.3 Computer simulation . . . . . . . . . . . . . . . . . 169

16.2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
16.3 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . 169
16.4 Medical diagnostics . . . . . . . . . . . . . . . . . . . . . . 170
16.5 Medical therapy with radiation . . . . . . . . . . . . . . . . 171

16.5.1 Teletherapy . . . . . . . . . . . . . . . . . . . . . . 171
16.5.2 Hadron therapy . . . . . . . . . . . . . . . . . . . . 172
16.5.3 Neutron therapy . . . . . . . . . . . . . . . . . . . . 172



x Table of Contents

16.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 172

17 Coloured figures 175

Intermezzo 209

IV Standard model of elementary particles 213

18 Gauge theories in the standard model 215
18.1 Underlying gauge group . . . . . . . . . . . . . . . . . . . . 215
18.2 Basics of quantum electrodynamics . . . . . . . . . . . . . 216
18.3 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . 221
18.4 Quantum chromodynamics . . . . . . . . . . . . . . . . . . 224
18.5 Basics of colour algebra . . . . . . . . . . . . . . . . . . . . 229
18.6 Are we done? . . . . . . . . . . . . . . . . . . . . . . . . . 232
18.7 Symmetries of the classical Lagrangian . . . . . . . . . . . 234
18.8 SU(N)-amplitudes at tree level . . . . . . . . . . . . . . . . 238
18.9 Spinor helicity formalism . . . . . . . . . . . . . . . . . . . 239

18.9.1 Helicity Feynman rules for colour sub-amplitudes
(with massless fermions) . . . . . . . . . . . . . . . 241

18.9.2 A simple application of the helicity formalism . . . . 242

19 Electron-positron annihilation into hadrons 247
19.1 Electron-positron annihilation into hadrons . . . . . . . . . 247
19.2 Ultraviolet renormalization of QCD . . . . . . . . . . . . . 248
19.3 Running coupling . . . . . . . . . . . . . . . . . . . . . . . 255
19.4 Quark masses and massless QCD . . . . . . . . . . . . . . . 260
19.5 Consequences of renormalization and renormalization group

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
19.6 Re+e− at NLO . . . . . . . . . . . . . . . . . . . . . . . . . 264

19.6.1 Real corrections in d = 4 dimensions . . . . . . . . 271
19.6.2 Real corrections in arbitrary d dimensions . . . . . . 273

19.7 Origin of the singular behaviour . . . . . . . . . . . . . . . 281
19.7.1 Event shapes . . . . . . . . . . . . . . . . . . . . . 282
19.7.2 Jet algorithms . . . . . . . . . . . . . . . . . . . . . 283

19.8 Factorization of |Mn |
2 in the soft limit . . . . . . . . . . . . 288

19.9 Factorization in the collinear limit . . . . . . . . . . . . . . 290
19.9.1 Regularization of real corrections by subtraction . . 293



Introduction to Particle Physics xi

20 Deeply inelastic lepton-proton scattering 297
20.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 297
20.2 Parametrization of the target structure . . . . . . . . . . . . 298
20.3 DIS in the parton model . . . . . . . . . . . . . . . . . . . . 299
20.4 Measuring the proton structure . . . . . . . . . . . . . . . . 302
20.5 Improved parton model: perturbative QCD . . . . . . . . . 303
20.6 Factorization in DIS . . . . . . . . . . . . . . . . . . . . . . 306
20.7 DGLAP equations . . . . . . . . . . . . . . . . . . . . . . . 308

21 Hadron collisions 313
21.1 Factorization theorem . . . . . . . . . . . . . . . . . . . . . 313
21.2 Are we happy? . . . . . . . . . . . . . . . . . . . . . . . . 315
21.3 Modelling events . . . . . . . . . . . . . . . . . . . . . . . 315
21.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 317

22 Electroweak sector of the standard model 319
22.1 Weinberg mixing . . . . . . . . . . . . . . . . . . . . . . . 319
22.2 U(1) Brout-Englert-Higgs mechanism . . . . . . . . . . . . 324
22.3 Brout-Englert-Higgs mechanism in the standard model . . . 326
22.4 GIM (Glashow, Iliopoulos, Maiani) mechanism . . . . . . . 331
22.5 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . 332
22.6 Flavour mixing . . . . . . . . . . . . . . . . . . . . . . . . 334
22.7 Parameters and Feynman rules of the

standard model . . . . . . . . . . . . . . . . . . . . . . . . 337
22.8 Neutrino mixing and oscillation . . . . . . . . . . . . . . . 340
22.9 Anomaly cancellation . . . . . . . . . . . . . . . . . . . . . 346

23 Outlook 351

Bibliography 355

Index 361



xii Foreword

Foreword

One of the methods of studying Nature is to penetrate deeper and deeper in
the structure of matter ever increasing the spatial resolution, i.e., studying
smaller and smaller objects. In the history of natural sciences new and new
particles appeared which were thought to be elementary: the four atoms
(a-tom = not divisible) of Anaximenes and Democritus, the elements/atoms
of Dalton andMendeleev, the atomic nucleus of Rutherford and the so-called
elementary particles of which the proton, the neutron, the electron and the
neutrino are the most well-known. Between 1930 and 1960 hundreds of such
particles were discovered, thus a new level of elementariness was needed
and the quark model appeared. We will see that, in fact, the proton and the
neutron are also composite particles although the electron stays elementary.
This development was crowned by the standard model (SM) in the late
sixties and it is still the uncontested global theory of matter, supported by all
available theoretical and experimental evidence.

In this textbook we summarize the present knowledge of particle physics
at an introductory level. Particle physics is a very broad subject including
many different sub-fields. While we mention many of these, a detailed
account on all is impossible. Our clear focus is on high energy collider
physics that is among the most widely pursued subfields where the threshold
of current research is high. With the Large Hadron Collider in operation new
results appear regularly. Our goal here is to keep the level introductory, yet
help students reach this high threshold making them acquainted with both
the experimental and theoretical minimum needed to comprehend current
research at colliders. Our treatise is detailed on established results of collider
physics while mostly marginal on current developments with the exception
of the discovery of the Higgs particle due to its utmost importance.

The first part (written by D. Horváth) is planned to be accessible for
advanced BSc or freshmen MSc students, while the second part (written
by Z. Trócsányi) on the theory is intended for advanced MSc or freshmen
PhD students in particle physics, with some attempt to go into the rather
complex mathematical formalism of the field. Our aim is to provide concise
but hopefully comprehensive account on the subject and also try to help
students in their decision whether to orient themselves towards experiment
or theory. We assume that the book can be covered during a full academic
year with about 10 hours of serious effort per week. Although the reader
may be confused on several occasions when not all details are given, the
theory is very precisely elaborated and its predictions beautifully agree with
the experimental observations. All present day experimental evidence is
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summarized in the biennial Particle Physics Review of the Particle Data
Group [Beringer et al., 2012]; for a theoretical introduction we recommend
the textbooks of Halzen and Martin [Halzen and Martin, 1984], Collins,
Martin and Squires [Collins et al., 1989], and Perkins [Perkins, 1982]. The
theory provides a nice glance at the key experiments as well.

Experimental particle physics is also called high-energy physics, because
of its basic method of study. Energy is measured in units of electroplate,
eV, the energy gained by a particle of unit charge (e.g. an electron or
proton) when crossing a gap of 1V voltage. One of the earliest means of
structural studies was the optical microscope. Its resolution is limited by the
wavelength of visible light (corresponding to an energy of ∼ 1 eV) to the size
of bacteria, 10−5 m. The smaller a detail, the shorter wavelength is needed
to see it. For the atoms (10−10 m) we need X-rays or electron beams of
keV (1 keV = 1000 eV) energies, for the atomic nucleus of 10−14 m electrons
or protons between MeV (106 eV) and GeV (109 eV) energies, and for the
quarks (below 10−18 m) up in the TeV (1012 eV) region. Higher energymeans
smaller distances and so studying finer details of the structure of matter. As
far as we know at present, the basic particles of the standard model are really
elementary: point-like and structureless.

Throughout this book we use the natural units of particle physics where
the speed of light c and Planck’s reduced constant ~ = h/(2π) are both equal
to unity and thus both distance and time can be expressed in inverse energy
units, i.e. in GeV−1 (see Table 1).

We shall quote only selected, but not all original publications as this is
intended to be an introductory textbook, not a monograph and we do not
want to overwhelm students. Yet we encourage the reader to consult some
trustworthy sites on the Web (like Wikipedia http://en.wikipedia.org/, Hy-
perphysics http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html and Google
Scholar http://scholar.google.com/) for simple explanations and the inSpire
(http://inspirehep.net/) publication data base for reviews and original pub-
lications. Typing in the author’s name and the date will produce all kind
of information at any depth for the reader. We consider especially use-
ful the web version of Particle Physics Review by the Particle Data Group
(http://pdg.web.cern.ch/pdg/) which provides reliable and comprehensive re-
views. Reliability is important in high energy physics as it is in the very front
of knowledge and as such it is full of speculations, untested ideas and uncon-
firmed experimental findings. At some points we shall only mention some
examples of those: Earth-absorbing black holes produced in high-energy
particle collisions, faster-than-light neutrinos and pentaquarks.

The authors acknowledge the support of the Hungarian Scientific Re-
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Quantity MKS particle physics natural unit ~ = c = 1
Energy 1 J 6.24 · 109 GeV GeV GeV
Momentum 1 kgm/s 5.61 · 1026 GeV/c GeV/c GeV
Mass 1 kg 5.61 · 1026 GeV GeV/c2 GeV
Distance 1m 5.07 · 1015 GeV−1 ~c/GeV 1/GeV
Time 1 s 1.52 · 1024 GeV−1 ~/GeV 1/GeV
Electric
charge (e) 0.16 aC

√
4πε0α~c

√
4πε0~cα

√
4πε0α

Table 1: Natural units of particle physics. α = 1/137 is the fine structure
constant, ε0 = 8.8 · 10−12 F/m is the electric permittivity of vacuum. In the
last column only energy units appear, which permits the use of the power of
GeV to characterize the unit as “mass dimension”, e.g., the unit of length,
GeV−1 is referred to as mass dimension minus one. In this book we use the
units of the last column, except for two cases. One is momentum, which
has natural units GeV/c, to become GeV if c = 1. However, in order not to
confuse it with energy, we keep the natural unit for momentum. The other
exception is the electric charge, for which we use the conventional notation√

4πα, i.e., we use ε0 = 1, which should not cause any confusion.

search Fund and National Research, Development and Innovation Fund of
Hungary (under contractsK101482, K103917, K109703, K125105, K124850
andK128786), and also collaborationwith their students especiallyG.Luisoni
and G. Somogyi. Z.T. is grateful for the hospitality at the CERN Theoretical
Physics Department where this book was completed.
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Chapter 1

Particles and symmetries

MOTTO:

Central to that theory is the concept of sponta-
neously broken gauge symmetry. According
to this concept, the fundamental equations of
physics have more symmetry than the actual
physical world does.

(Frank Wilczek)

1.1 Symmetries in particle physics
Symmetries in particle physics are even more important than in chemistry or
solid state physics. Just like in any theory of matter, the inner structures of
the composite particles are described by symmetries, but in particle physics
everything is deduced from the symmetries (or invariance properties) of
the physical phenomena, or from their violation: the conservation laws, the
interactions and even the masses of the particles. Symmetries that are not
connected to space and time are called internal symmetries. Continuous
symmetries can be global, i.e. independent of the space-time coordinates, or
local. The latter means that we can choose the orientation of the (external or
internal) coordinate axes freely at any space-time point. These symmetries
are also called gauge symmetries or gauge invariance laws.

3



4 Chapter 1

In field theory, according to the theorem of Emmy Noether any con-
tinuous global symmetry leads to a conservation law. Thus the freedom
to choose the origin and orientation of our coordinate system leads to the
conservation of momentum and angular momentum, that of the origin of
time measurement to the conservation of energy. The conserved quantities
due to continuous global internal symmetries are called conserved charges.
An example is the free choice of the phase of the electron wave function
as it is not measurable experimentally. This global phase invariance is also
a continuous symmetry and the emerging conservation law is the conser-
vation of the fermion charge in general. The global gauge invariance of
electrodynamics leads to the conservation of the electric charge.

Gauge symmetries have far reaching consequences as they lead to in-
teractions between particles. In the theory part (Part IV) of this book we
formulate gauge symmetries in a precise mathematical sense to discover the
three fundamental interactions of particles (the strong, weak and electro-
magnetic forces). Local symmetry always implies the existence of a related
global symmetry as well, but a global symmetry may not necessarily imply
a local symmetry, hence an interaction.

1.2 Symmetry groups and spin

The characteristic features of particles are described in terms of symmetry
groups. The language of physics is mathematics: the mathematical formu-
lation makes the difference between theory and speculation in physics as
that allows for making quantitative predictions, which then can be checked
experimentally. A new physical theory is accepted if the predictions agree
with all available experimental information.

As symmetries usually appear at transformations of our coordinate sys-
tems the mathematical apparatus is chosen accordingly. A trivial example
is the rotation of a 2-dimensional coordinate system around its origin by
an angle Θ. As shown by Fig. 1.1 the new (x ′, y′) coordinates of point P
are obtained in the rotated system from the old (x, y) coordinates by the
transformation

x ′ = a + b = x cosΘ + y sinΘ ,
y′ = y′′ − c = y cosΘ − x sinΘ .

The point P, just as any two-dimensional vector, undergoes the following
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Figure 1.1: Rotation of a coordinate system in two dimensions: coordinate
system [X ′,Y ′] is obtained by rotating system [X,Y ] by an angle Θ.

coordinate transformation:(
x ′

y′

)
=

(
cosΘ · x + sinΘ · y
− sinΘ · x + cosΘ · y

)
=

(
cosΘ sinΘ
− sinΘ cosΘ

)
·

(
x
y

)
.

This means that the vector
(
x′

y′

)
is obtained by multiplying the vector

(
x
y

)
with the matrix in front of it. An important property of these rotation
transformations is that they do not change the length of the vector pointing
to P (its absolute value) as

x ′2 + y′2 = (x2 + y2) ·
(

cos2
Θ + sin2

Θ

)
= x2 + y2.

The condition that the length of the vector remains unchanged demands
that the complex transformation matrix be unitary:

U†U =
(

U∗11 U∗21
U∗12 U∗22

)
·

(
U11 U12
U21 U22

)
=(

U2
11 +U2

21 U∗11U12 +U∗21U22
U∗12U11 +U∗22U21 U2

12 +U2
22

)
=

(
1 0
0 1

)
Rotations of this type have the following mathematical properties:

• they are additive: rotation by Θ1 and then by Θ2 is equivalent to a
rotation by Θ = Θ1 + Θ2;

• their addition is associative: (Θ1 + Θ2) + Θ3 = Θ1 + (Θ2 + Θ3);
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• they have a unit element: rotation by Θ = 0 which does not do
anything;

• the rotations can be inverted (Θ − Θ = 0 and the inverse elements are
also members of the set.

Sets with operation among its elements obeying these properties are
called groups. Spin is a three-dimensional quantity with the properties of
the rotation group and its mathematical description (representation) is called
the SU(2) group of special (determinant = 1) unitary complex 2×2 matrices.
SU(2) can be applied not only for spin, but for any physical quantity with
similar symmetry properties, like for example the isospin to be introduced
later.

Whenwe increase the degrees of freedomwe get higher symmetry groups
of similar properties. The next step, SU(3), which is also used in particle
physics, is the symmetry group of special unitary complex 3 × 3 matrices.
It has three possible eigenstates which can be interpreted as three corners
of a triangle with an SU(2) symmetry between any two of its corners (see
Chapter 3).

In case of complex quantitieswe can also decrease the degrees of freedom
of rotations, then we get the U(1) group of 1 × 1 unitary matrices, i.e. eiφ

complex phases. That is the symmetry group of the gauge transformations
of the electromagnetic interaction. The simplest manifestation of the gauge
symmetry of electromagnetism is that we can freely choose the zero point
of the electrostatic potential as demonstrated by the birds sitting on high-
voltage wires. The global U(1) symmetry of Maxwell’s equations leads
to the conservation of the electric charge. In the more general case, the
U(1) symmetry of the Dirac equation [Dirac, 1931], the general equation
describing the motion of a fermion, causes the conservation of the number
of fermions or fermion charge [Halzen and Martin, 1984].

1.3 Fermions and bosons
Particles are categorized according to various properties. Themost important
one is spin, the intrinsic angular momentum. Spin cannot be interpreted as
related to actual rotation, but it is added to the orbital momentum. Its natural
unit is the reduced Planck constant ~ = h/(2π). Spin is strange: the spin of
the electron is added to its orbital momentum, but it has two eigenstates only:
it is either left or right polarized as compared to its momentum (or points
either up or down in a vertical magnetic field) in any coordinate system. Thus
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spin is characterized by two independent quantities in three dimensions: by
its length and one of its vector components.

The particles with half-integer spin (S = 1
2,

3
2,

5
2 ...) follow the Fermi–

Dirac statistics and they are called fermions, whereas those with integer
spin (S = 0, 1, 2 ...) follow the Bose–Einstein statistics and called bosons.
They have very different symmetry and other properties. The wave function
describing a system of fermions changes sign when two fermions switch
quantum states whereas in the case of bosons there is no change; all other
differences can be deduced from this property. Fermion number is conserved
whereas one can create and absorb bosons: a lamp can irradiate any number
of photons (S = 1) and an antenna can absorb them, assuming that the energy
and momentum are conserved. At the same time the electrons (S = 1

2 ) in
order to illuminate a lamp or a cathode tube of an old-fashioned TV set
have to be brought there and then conducted away. Another very important
difference is that any number of bosons can be put in any particular quantum
state, but only one fermion: this is Pauli’s exclusion principle. That is why
the electrons of the atom fill discrete energy levels and this is the force which
prevents the atoms ofmatter and the nucleons in the nucleus from penetrating
each other; it provides macroscopic forms for our material objects.

Actually, themathematics behind Pauli’s exclusion principle is extremely
simple. The state function for a two-fermion system changes sign when you
exchange its particle states, ψF (1, 2) = −ψF (2, 1), while that of a bosonic
system does not, ψB(1, 2) = +ψB(2, 1). Thus if the two fermions would have
exactly the same quantum numbers, their state function should be zero as
that is the only function which does not change at changing its sign.

Some basic properties of fermions and bosons are compared in Table 1.1.
The elementary fermions of the standard model are the six leptons and
six quarks, the elementary bosons are the mediators of the three particle
interactions and the Higgs boson.

The standard model assumes that our world is constructed of three
fermion families, each consisting of a pair of quarks and a pair of lep-
tons, and their interactions, deduced on the basis of symmetry principles,
are mediated by vector bosons of spin 1. All fermions have antiparticles
with opposite charges and otherwise the same properties. The interaction
of a particle with its antiparticle leads to their annihilation. When an elec-
tron and its antiparticle, the positron annihilate they produce two or three
photons, whereas the annihilation of a proton with an antiproton releases so
much energy, almost 2 GeV, that half a dozen particles (mostly pions, the
lightest mesons) could be emitted.

The lack of antimatter in the Universe [Cohen et al., 1998] implies a
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Property fermion boson
Spin half-integer ( 12,

3
2 . . .) integer (0, 1, 2, . . .)

ψ(1, 2) = ±ψ(2, 1) − +

Pauli exclusion yes no
Particle number

conserved yes no

Condensation no yes

Statistics Fermi-Dirac Bose-Einstein

Table 1.1: Comparison of the properties of fermions and bosons

possible asymmetry between particle and its antiparticle, and that is one of
the great mysteries of physics. Were there antimatter galaxies, they would
emit antiparticles and they would be encircled by a halo of annihilation when
meeting the particles emitted by neighbouring galaxies of ordinary matter,
but the astronomers do not see such phenomena anywhere.

1.4 Mirror reflection: parity
Changing signs of all three coordinates, i.e. changing the directions of all
three axes of a rectangular (Cartesian) coordinate system is equivalent to
changing just one sign: we call it going from the usual right-handed coor-
dinates to left-handed ones as in the usual coordinate system rotating the
x-axis to y defines the direction of z according to a right-handed screw. This
is explained in Fig. 1.2.

Parity is a general property of the mathematical functions of physics.
Any function f (x) can be written as a sum of two functions of odd and even
parities, e.g. by separating even and odd terms in its Taylor or trigonometric
expansion or simply by writing f (x) = 1

2 [ f (x) + f (−x)] + 1
2 [ f (x) − f (−x)].

The parity operator is of course unitary,

Pψ(r, t) = ψ(−r, t); P2 = 1 .

Any interaction with a spherically symmetric potential, e.g. the Coulomb
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Figure 1.2: Mirror reflection and parity change (after D. Kirkby, APS, 2003)
from right-handed to left-handed coordinates.

potential of a point-like electric charge, conserves parity:

V(r) = V(−r)⇒ H(r) = H(−r)⇒ [P,H] ≡ PH − HP = 0 .

As a result, parity is a good quantum number1 of particles. For instance,
the wave function of the hydrogen atom is a parity eigenstate:

PỲ m(Θ, φ) = Ylm(π − Θ, π + φ) = (−1)`Ỳ m(Θ, φ)

with an eigenvalue of Pem = (−1)` where ` is the orbital momentum. As the
minimal electromagnetic transition, E1means a change of orbitalmomentum
∆` = ±1, the photon emitted in electromagnetic reactions should have at least
Pγ = −1, the photon has a negative intrinsic parity (it can have an orbital
momentum as well, of course). Anti-fermions have the opposite parities
as fermions, whereas particles and antiparticles of composite bosons2 have
the same parity determined by the parity and angular momentum of its
constituents.

Parity quantum numbers are multiplicative, e.g. for a system of three
particles: P(123) = P1 · P2 · P3. As mesons are bound states of quarks and

1Quantum number: such a physical quantity which can change in definite quanta
only, like charge or angular momentum, and a set of which can uniquely characterize
a physical state.

2Fundamental bosons do not have antiparticles as the existence of antiparticles is
related to the Dirac equation of the fermions.
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anti quarks, their ground state (` = 0) parity is P(qq) = P(q) · P(q) = −1.
By definition for the nucleons Pp = Pn = +1, thus the parities of quarks are
+1, and of anti-quarks –1. For the particles spin J and parity P are denoted
as JP , e.g. for charged pions π± : 0−.

We shall see later that parity is not conserved by the weak interaction, it
is a broken symmetry. Stephen Weinberg calls such symmetries accidental
symmetries.

1.5 Charge conjugation
Charge conjugation converts a particle into its antiparticle, C |p〉 = ±|p〉. It
is also a unitary operator,C2 = 1. It changes the signs of all kinds of charges:
electric, baryon, lepton charges, but not the spin. Only neutral particles could
be C-eigenstates, the eigenvalue is the C-parity. Strong and electromagnetic
interactions conserve it. For instance, in the electromagnetic decay of the
neutral pion 2 photons are emitted, π0→γγ and C |π0〉 = C |γγ〉 = |γγ〉 =
|π0〉, thus Cπ0 = +1. As C |γ〉 = −1, the π0 cannot decay to three photons,
π0 9 γγγ.

1.6 CPT symmetry
Antiparticles can mathematically be treated as particles of the same proper-
ties going backward in space and time. This is a very important symmetry
of Nature: the physical laws do not change when charge (C), space (P) and
time (T) are simultaneously inverted:

• charge conjugation (i.e. changing particles into antiparticles),
Cψ(r, t) = ψ(r, t);

• parity change (i.e. mirror reflection), Pψ(r, t) = ψ(−r, t), and

• time reversal, Tψ(r, t) = ψ(r,−t)K where K denotes complex conju-
gation.

This is called CPT invariance. As time reversal is an anti-unitary opera-
tion, CPT is also anti-unitary, it conjugates the phase of the system, but does
not change any measurable properties. The electron-positron annihilation
can be mathematically described as if an electron arrived, irradiated two or
three photons and left backward in space and time. Using an analogy with
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the electric current we call this particle current; in the above example the
incoming electron and positron constitute a lepton current.

In the simplest case of particle collision two such particle currents ex-
change a boson. This is made possible by the uncertainty principle of
Heisenberg, as it allows a violation of energy and momentum conservation
for very small time and space intervals: ∆E · ∆t ≥ ~/2 and ∆p∆x ≥ ~/2,
where∆ indicates a very small change in the quantity behind it and E, p, t, x
the energy, momentum, time and space position. The very small value of the
reduced Planck constant (~ ' 1.055 ·10−34 J·s) ensures that the conservation
laws are fulfilled in the macro-world. The boson mediating the interaction
can be real or virtual depending on whether or not it satisfies the on-shell
condition E2 = m2c4 + ®p2c2. Effects of virtual particles can be detected
experimentally: in the inelastic scattering of high energy electrons on each
other quark pairs could be produced when a virtual photon emitted by one
of the electrons is absorbed by a quark of a virtual quark-antiquark pair
produced momentarily by another photon emitted by the other electron.

CPT invariance is supported by ample experimental evidence. Its role
is so important in quantum field theory that according to some theorists it
is impossible to test experimentally: in the case of observing a small de-
viation one should rather suspect the violation of a conservation law than
CPT violation. In spite of this, there are considerable efforts to test it exper-
imentally. The most precise of those tests is the very small possible relative
mass difference between neutral kaon and anti-kaon which is less than 10−18.
The European Particle Physics Laboratory, CERN has built the Antiproton
Decelerator facility in 1999 with the aim to test CPT invariance using pre-
cision spectroscopy of antihydrogen, the bound state of an antiproton and a
positron and also that of anti-protonic atoms where an electron is replaced
by an antiproton. The latter measures the mass and charge of the antiproton
(antimatter physics).

If CPT invariance is indeed a fundamental symmetry of nature, then
the violation of time reversal is equivalent to the violation of the combined
CP symmetry. We shall see later the weak interaction breaks not only P
(maximally), but also CP (a little). As a result, time invariance is also
violated by the weak interaction, in contrast to classical mechanics.

1.7 Isospin and strangeness
One of the earliest observations implying an inner structure of particles
thought to be elementary is the similarity of the proton and the neutron:
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these have almost the same mass and apart from a charge effect the strong
interaction within the atomic nucleus affects them identically. Heisenberg
introduced the concept of the nucleon which has two eigenstates, the proton
and the neutron. This needed a new quantum number characterizing it; as
its symmetry properties are identical to those of the spin he called it the
isospin I from isotopic spin (isobaric would be more precise as isotopes
have different numbers of nucleons whereas isobaric nuclei have the same
numbers of nucleons). The nucleon has an isospin I = 1

2 , the proton is the
nucleon state with I3 = +

1
2 and the neutron3 is that of I3 = −

1
2 .

With the development of experimentalmethodsmany strongly interacting
particles, hadrons were observed and all had characteristic isospins, i.e. all
could be arranged in groups of particles of similar properties but different
charges according to their isospins. The nucleon has an isospin I = 1

2 and
two similar states, with I3 = ±

1
2 . The lightest hadron, the π-meson or pion

has I = 1 with three eigenstates (I3 = -1, 0 and +1) and three charge states
π+, π0 and π−. The ∆ hyperon has I = 3

2 :

∆
−(I3 = −

3
2
) , ∆0(I3 = −

1
2
) , ∆+(I3 = +

1
2
) , ∆++(I3 = +

3
2
) .

A unit change of I3 involves a corresponding unit change in charge.
Then a third quantum number, strangeness S was discovered. Pairs of

particles were produced in collisions of energetic protons with probabilities
characteristic of the strong interaction and lived long enough that they must
have decayed via weak interactions. They were called V-particles as their
tracks curved in the magnetic field of the detectors in opposite directions.
To explain this Murray Gell-Mann, Abraham Pais and Kazuhiko Nishijima
introduced strangeness S as a new additive quantum number which is con-
served in strong interactions but not in weak reactions. For instance, the Σ−
hyperon (S = −1, I = 1) created in π−p→ K+Σ− decays via Σ−→ nπ− with
a lifetime of τ ∼ 10−10 s whereas the ∆+ hyperon (S = 0) decays in ∆+ →
nπ+ with a lifetime of τ ∼ 10−23 s. It was postulated that only the weak
interaction can change the new quantum number.

Strangeness and isospin made together an SU(3) group which made it
possible to construct a unique frame for all known particles. In order to
explain this, Murray Gell-Mann and George Zweig suggested the quark
model of hadrons. Using three new elementary fermions, three quarks
(Table 1.2), all observed hadrons could be described. Isospin became the

3In nuclear physics often a converse convention is used and I3 = +
1
2 is associated

with the neutron.
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quantum number of the two lightest quarks and because of the analogy to the
spin the I3 = +

1
2 state was named up quark with the sign u and the I3 = −

1
2

state down quark, d. The third quark’s quantum number is the strangeness,
so that is the strange (s) quark. The isospin and strangeness, characterizing
the various kinds of quarks are called flavour quantum numbers.

The quark model postulates that quarks can bind together only in two
ways: in quark-antiquark pairs, those are called mesons, and three-quark
states, those are the baryons. As the quarks have spin 1

2 , naively we expect
that mesons are bosons and baryons are fermions. Quarks have baryon
number 1

3 and fractional electric charges: in units of elementary charge e
the u quark has charge + 2

3 while the d and s quarks − 1
3 . This of course gives

the proper charges to the proton p = [uud] and the neutron n = [udd] or the
pions: π+ = [ud], π0 = 1√

2
[uu + dd], π− = [ud]. Thus the third component

of the isospin is directly connected to the charge, as its unit increase means
replacing a d by a u quark, i.e. increasing the total charge by + 2

3 − (−
1
3 ) = 1.

quark J eq B I3 S Y = B + S

u 1
2 + 2

3
1
3

1
2 0 + 1

3

d 1
2 − 1

3
1
3 − 1

2 0 + 1
3

s 1
2 − 1

3
1
3 0 −1 − 2

3

Table 1.2: The first three quarks (up, down and
strange): their spin J, electric charge eq, baryon num-
ber B, isospin third component I3, strangeness S and
hypercharge Y = B + S.

Strangeness and isospin constitute together an SU(3) group which made
it possible to construct a unique frame for all known particles. Gell-Mann
and Zweig proposed in 1964 the quark model with the first three quarks
(Table 1.2). The quark model postulated that quarks cannot exist free, only
in bound states of two combinations: the three-quark bound states make
baryons and the quark+antiquark states mesons. As the quarks are fermions
(J = 1

2 ), the baryons are also fermions with baryon number B = 1 while the
mesons are bosons with B = 0. The proton is a [uud], the neutron a [udd]
ground state (i.e. J = 1

2 with zero orbital momentum) whereas the pions are
the lightest [qq′] (q, q’ = u, d) combinations.
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Exercise 1.1
What invariance principles are violated by the weak, electromagnetic and
colour interactions?

Exercise 1.2
What are the analogies and differences between spin and isospin?

Exercise 1.3
How can the three-dimensional spin be characterised by two independent
quantities?

Exercise 1.4
What gauge symmetry facilitates the conservation of electric charge and
fermion number?
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What is measured in
experiment?

MOTTO:

I was brought up to look at the atom as a nice
hard fellow, red or grey in colour, according
to taste.

(Ernest Rutherford)

Physics is experimental science, in particle physics every single statement
has to be based on experimental observations. In high energy physics the two
most important experimentally measurable quantities are the cross section
and the resonance with its invariant mass and width.

2.1 Cross section
The probability of an interaction in accelerator experiments of nuclear and
particle physics is usually characterized by the ratio of the measured tran-
sition probability of the reaction in unit time, and the intensity of the bom-
barding beam, the flux:

σ = W/Φ ,
15
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measured in units of cross section (see Fig. 2.1).

Figure 2.1: Cross section characteriz-
ing interaction in particle scattering

The flux of a beam, Φ = nb · vb
is the number density times velocity
of the particles in a beam, number
of particles divided by cross sec-
tion and time. The σ cross section
of a reaction is measured in units
of barn (1 barn = 10−28 m2). That
unit comes from atomic physics and
it is very large in particle physics
(that is how it got its name), so large
that in high energy physicswemost often express ourmeasured cross sections
in pico-barn (1 pb = 10−12 barn) or femto-barn (1 fb = 10−15 barn).

When the interaction is perturbative, i.e. the Hamilton operator can be
written in the form H = H0 + H ′ with eigenvalues E ′ � E0, the transition
probability between an initial and a final state can be written as

W(i→ f ) =
2π
~
|Mi f |

2ρ f

where ρ f = dn
dECM

is the density of final states in unit centre-of-mass energy
and Mi f ≈

∫
ψ∗f H ′ψidτ is the transition matrix element, the overlap between

the two approximate wave functions. As the strong and electromagnetic
interactions are invariant under CP (charge and parity) reflection, CPT
invariance, which is supposed to be valid in field theory, demands that they
should also be invariant against time reflection T , and so |Mi f |

2 = |Mf i |
2

(the principle of detailed balance).
In a centre-of-mass system a non-relativistic a + b → c + d particle

scattering reaction will have the cross section

σ =
W

navi
=

1
π~4 |Mi f |

2 (2Sc + 1)(2Sd + 1)
viv f

p2
f

where p f = | ®pc | = | ®pd | is the final state momentum, na = 1 is the number
of scattered particles, vi = |®va − ®vb | and v f = |®vc − ®vd | are the relative
velocities. The density of available final states will be

dp f

dE0
=

EcEd

p f E0
≈

1
v f
.


