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Introduction

This monograph presents the author’s results that have only been
previously partially published in the form of journal articles.1 These
results relate to the special section on the theory of random processes
and their application in solving aviation problems.2 This section is
known in literature as outliers of random processes, or crossings prob-
lems.3

The book consists of three chapters. In the first chapter, the
basic concepts in the theory of probability and random processes are
stated at an elementary level in order to prepare the reader for the
second and the third chapters. Specialists in the theory of probabil-
ity and random processes can skip the first chapter. In this chapter,
we have introduced the concepts of probabilistic space, random vari-
ables, random processes, correlation function, and the spectral density
of random process, and other important concepts. We have defined
types of convergence in a probabilistic space and we have formulated
the corresponding characteristics in the smoothness of random pro-
cesses. Stationary, Gaussian, and Markov processes are considered.
Questions of the integration of random processes are discussed.

1 See, for example, the following articles:
(a) S.L. Semakov, First Arrival of a Stochastic Process at the Boundary, Autom.

Remote Control, 1988, vol. 49, no. 6, pp. 757-764;
(b) S.L. Semakov, The Probability of the First Hiting of a Level by a Component

of a Multidimensional Process on a Prescribed Interval under Restrictions of the
Remaining Components, Theor. Prob. App., 1989, vol. 34, no. 2, pp. 357-361;

(c) S.L. Semakov, The Application of the Known Solution of a Problem of
Attaining the Boundaries by Non-Markovian Process to Estimation of Probability
of Safe Airplane Landing, J. Comput. Syst. Sci., 1996. vol. 35, no. 2, pp.
302-308;

(d) S.L. Semakov, Estimating the Probability That a Multidimensional Random
Process Reaches the Boundary of Region, Autom. Remote Control, 2015, vol. 76,
no. 4, pp. 613-626.

2 The formulations of the main results are listed at the end of the book in the
”Conclusion”.

3 See, for example, the book: H. Cramer and M.R. Leadbetter, Stationary and
Related Stochastic Processes, New York-London-Sydney: Wiley, 1967.



2 Introduction

The behavior of any real system is a process which is, to a greater
or lesser degree, probabilistic. As a rule, it is impossible to specify
exactly what external influences and internal mechanisms in the in-
teraction of the system components will be decisive in the future. As
a consequence, we cannot accurately predict the behavior of the sys-
tem. We can only talk about a probability that the system will come
to a particular state in the future. If we pose the problem of the prob-
abilistic description of all possible future states of the system, then
this problem will be very difficult. Fortunately, for research purposes,
it is often enough to get answers to simpler questions; for example,
the question “How long will on average the system operate in a given
mode?” or the question “What is the probability that the process of
functioning of the system will come out of a given mode to a specific
point in time?” Problems of this type are called problems about out-
liers of random processes, or problems about the crossing of a level.
In the second chapter, we have stated some of the most important
fundamental results, which are related to crossings problems. Known
problems about attaining boundaries in a random process will be dis-
cussed in detail. We have stated the well-known solution of diffusion
Markov processes for these problems and presented the author’s re-
sults for arbitrary continuous processes.

In the third chapter, we have applied the mathematical results
of the second chapter to an investigation on the safety of airplane
landings. We have not considered simple examples and model prob-
lems, whose purpose is only to illustrate the theory, but real concrete
problems posed by practice. We have shown how the results of the
second chapter can be used to calculate the probability of an airplane’s
safe landing. A safe landing is defined as an event when the airplane
touches down the landing surface on a given segment for the first time,
and, at this moment, the coordinates of the airplane (elevation angle,
banking angle, vertical velocity and so on) remain inside admissible
ranges. These restrictions are established by flight standards and their
violation leads to an accident. The scheme for this calculation is de-
scribed and the implementation of this scheme is given for overland
and ship-landing options. The results of the numerical calculations
are discussed in detail.

The first chapter, and part of the second chapter are used to car-
rying out of lessons with students of the Moscow Institute of Physics
and Technology and the Moscow Aviation Institute. The author’s re-
sults in the second chapter will be of interest for mathematicians who
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study crossings problems. The third chapter is addressed to special-
ists in the field of aviation, as well as engineers and scientists who
are interested in the application of random processes theory and use
its methods. Some results of the second and third chapters were pre-
sented in the author’s report at the 57th IEEE Conference on Decision
and Control (Miami Beach, FL, USA, December 17-19, 2018).1

This monograph was recommended for publication by the Divi-
sion of Mathematical Sciences at the Russian Academy of Sciences.

1 S.L. Semakov and I.S. Semakov, Estimating the Probability That a Random
Process First Reaches the Boundary of a Region on a Given Time Interval, Pro-
ceedings of the 57th IEEE Conference on Decision and Control (CDC), Miami
Beach, USA, 2018, pp. 256-261.



Chapter 1

Main Classes and
Characteristics of Random Processes

1.1 Intuitive Prerequisites of the Theory

Let us consider the practical situation connected with an exper-
iment E when each outcome of E is defined by a casual mechanism
and the influence cannot be predicted in advance. In any event we are
interested in A, which is connected with E; this is in the sense that
the event A can either occur or not as a result of E. In many life situ-
ations there is a necessity to predict the possible degree of realization
of the event A as a result of carrying out E. This degree of possibil-
ity is characterized by the number P{A}. This number is called the
probability of A and is defined by the frequency of occurrence of A in
numerous repetitions of the experiment E or, more precisely,

P{A} = lim
N→∞

NA
N

,

where N is the number of experiments carried out, NA = NA(N) is
the number of experiments within which the event A was observed.
We will put aside the question about the existence of the above limit
and the possibility of its practical calculation.

As a rule, certain quantitative characteristics can be connected
with the experiment E. These characteristics accept numerical values
that change in a random way from one experiment to another. These
characteristics are called random values. For example, if the experi-
ment E consists in n tossings of a coin, the number of dropped-out
coats of arms, the maximum number of coats of arms which dropped
out in a row, the number of coats of arms dropped out at even throw-
ing, and so on will be random values. It is convenient to describe the
problematic behavior of a random value X by means of the function

F (x)=P{X<x},
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which is called a distribution function of X and is the probability of an
event concluded in braces: i.e., the event consisting of the experiment
value of X less the real number x. It turns out that knowledge of
F (x) provides a chance to receive the probability that a random value
of X belongs to the preset subset of real numbers. This problem often
arises in the solution to various practical tasks.

It is possible to consider a random vector value (X1, . . . , Xn),
where every Xi has a scalar random value. It is important from the
practical point of view to be able to determine the probability that a
casual point (X1, . . . , Xn) in the n-dimensional space Rn as a result
of E will get to the preset subset from Rn. For the big class of
such subsets in the case of a scalar random value, this probability
is unambiguously defined by the joint distribution function of the
random values X1, . . . , Xn:

F (x1, . . . , xn) = P{X1 < x1, . . . , Xn < xn},

which is the probability that each of Xi appeared less than the corre-
sponding value of xi as a result of E.

A vector random value (X1, . . . , Xn) can be considered and de-
fined as a family of random values {Xt}, where t runs some set of
indexes T ; in this case T = {1, . . . , n}. If T represents a set of inte-
gers, then the family {Xt} is called a random process with a discrete
parameter. If T is an interval of a real axis, then a family of random
values {Xt} is called a random process with a continuous parameter.
In this case, an outcome of the experiment is a set of values Xt, where,
for example, t ∈ [a, b]; in other words, an outcome of this experiment
gives a function of the variable t, where t ∈ [a, b]. The parameter t is
called the argument of a random process. Most often the argument of
a random process is time (from here and the chosen designation of t);
however, this is optional. We will consider, for example, a process of
change in the flying height H of a trip plane in its flight from point A
to point B. This is dependent on the flying range l; l∈ [0, L], where L is
a distance between points A and B. Here the experiment E is the flight
of the plane from A to B. A result of E is the concrete (corresponding
to this concrete flight) height change function of the variable l. It is
clear that this type of function can change from flight to flight and
depends on many random factors: weather conditions, the technical
condition of the plane, the health of the pilot, indications of the land
services of air traffic control, and other factors. At every fixed value
of the l value, the Hl from experiment to experiment (from flight to
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flight) will change in an unpredicatable fashion and can, therefore, be
considered a random value, and the family {Hl} can be considered as
a random process.

Therefore, in a definite sense, the random process combines the
features of a random value and a function; at the fixed argument it
turns into a random value, and at each implementation of an exper-
iment it turns out to be a determined (not random) function of this
argument. As a rule, we will further designate the random process
as X(t); specifying that if it is necessary then the possible range of
change in the argument t, and the physical sense of magnitudes in X
and t can be various.

1.2 Fundamental Concepts and Results Underlying
the Construction of the Mathematical Theory

1. We consider the experiment E without being interested in
its concrete type. An event A is connected with E and is called
observable if we can say unambiguously that event A has occurred or
that event A has not occurred as a result of E. An event is called
a persistent event and denoted by Ω if this event occurs every time
when carrying out experiment E. An event is called an impossible
event and denoted by 0 if this event never occurs when carrying out
experiment E. We consider that events, Ω and 0, are observable. Let
A and B be observable events that are connected with carrying out
experiment E. We define:

1) the additional event concerning A; this event is denoted by Ā
and consists in the fact that A does not occur;

2) the sum, or crowd of events A and B; this event is denoted by
A + B or A ∪ B and consists in the fact that at least one of
events A or B occurs;

3) the product, or intersection of events A and B; this event is
denoted by AB or A ∩ B and consists in the fact that both
events A and B occur.

We consider that if events A and B are observable, then events
Ā, B̄, A+B, and AB are also observable. The family of all observable
events connected with E forms a field of events F0: i.e., the class of
events such that Ω ∈ F0 and if A,B ∈ F0, then Ā, B̄, A+B,AB ∈ F0.
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It can easily be checked out that events of field F0 satisfy the following
relations:

A+A = AA = A, A+B = B +A, (A+B) + C = A+ (B + C),

AB = BA, (AB)C = A(BC), A(B + C) = AB +AC, A+ Ā = Ω,

AĀ = 0, A+ Ω = Ω, AΩ = A, A+ 0 = A, A0 = 0.

Let A′, B′, . . . be sets of points ω of any space Ω′. The sets
A′, B′, A′ + B′, A′B′ are defined in the elementary theory of sets.
These definitions (which are assumed known for the reader) show that
all ratios given above for events remain fair when A,B, . . . are sets.
A family of sets from Ω′ is called a field of sets in Ω′ if this family
includes the entire space Ω′ and is closed relative to operations A′,
A′ +B′, and A′B′.

It turns out that the following result takes place: for any field
F0 of events satisfying the listed above ratios it is possible to find
some space Ω′ of points ω and field F ′0 of ω-sets. This means that
a biunique correspondence exists between events A taking from F0

and sets A′ taking from F ′0. If the event A corresponds to set A′ and
event B corresponds to set B′, then event Ā corresponds to set A′,
event A + B corresponds to set A′ + B′, and event AB corresponds
to set A′B′. Points ω correspond to some elementary events which
can or cannot be observed separately (i.e., can enter or cannot enter
F0 separately); a persistent event corresponds to the whole space Ω′,
and an impossible event corresponds to the empty set ∅.

The formulated result allows us to use the technique of the theory
of sets for an analysis of fields of events. Further strokes are omitted
and the same designations F0, A,B, . . . are used for events and ω-
sets. A set from F0 is called an observable event, or ω-set, and Ω is
considered as a persistent event or as the whole space.

We now assume that the number P0{A} is placed according to
each event A from F0. This number is called the probability of
event A. We consider that P0{A} is a function, so that P0{A} is
determined for all A ∈ F0 and the following conditions are satisfied:

1) 0 ≤ P0{A} ≤ 1;

2) P0{Ω} = 1;

3) if A = A1 + . . .+An, where Ai ∈ F0, i = 1, . . . , n, AjAk = ∅ for
j 6= k, then P0{A} = P0{A1}+ . . .+ P0{An}.
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The statement about the existence of the function P0{A} with these
properties is accepted as an axiom, i.e., as a statement which does not
demand proof.

Let A1, A2, . . . be any countable sequence of sets from F0. Sets
of a type A1 +A2 + . . . and A1A2 . . . (i.e., sets that are denumerable
number of crowds and intersections of sets from F0) may not be el-
ements of field F0. A field of ω-sets is called a borelevsky field or
σ-field if this field includes all countable (finite or infinite) crowds and
intersections of elements of this field. It turns out that for any field F0

of observable events there is a minimum σ-field containing F0. This
minimum σ-field is denoted by F . The field F , as well as the field F0,
may also contain unobservable events.

One of the main results is that there is only a unique extension
of the function P0{A}, which is defined for all sets A ∈ F0, to the
function P{A}, which is defined for all sets A ∈ F : if A ∈ F0, then
P{A} = P0{A}. The function P{A} possesses all properties of the
function P0{A}. In particular, 0 ≤ P{A} ≤ 1 for any A ∈ F and if
A = A1 + A2 +. . . , where all Ai ∈ F and AiAj = ∅ for i 6= j, then
P{A} = P{A1}+ P{A2}+ . . . .

The space Ω of points ω, the σ-field F of sets from Ω, and the
probability P{A} defined for sets A from F form the probabilistic
space (Ω,F , P ). Sets from F are called measurable.

2. Let X = X(ω) be a function defined for all ω. If for any
x∈ (−∞,∞) the set {ω : X(ω)<x} is an element of σ-field F , then
we say that function X is measurable and we call this function a
random value.

If X=X(ω) is a random value, then the probability F (x) = P{ω :
X(ω)<x} (or briefly F (x)=P{X<x}) represents the nondecreasing
function of the variable x. It is easy to prove that this function is con-
tinuous at the left, lim

x→−∞
F (x) = 0, and lim

x→∞
F (x) = 1. The function

F (x) is called a distribution function of the random value X.

If function f(x) exists such that

F (x) =

x∫
−∞

f(t)dt,

then f(x) is called a distribution density of random value X. For a
system of random values X1, . . . , Xn, a function of joint distribution
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of these random values is defined as

F (x1, . . . , xn) = P{ω : X1(ω) < x1, . . . , Xn(ω) < xn}.

The density of joint distribution of these random values (if this density
exists) is defined as a function f(x1, . . . , xn) such that

F (x1, . . . , xn) =

x1∫
−∞

. . .

xn∫
−∞

f(t1, . . . , tn)dt1 . . . , dtn.

Let (Ω,F , P ) be some probabilistic space and T be a set of values
from the parameter t. The function X(t, ω), where t∈T and ω∈Ω, is
called a random process on a probabilistic space (Ω,F , P ) if the fol-
lowing condition is satisfied: for each fixed t= t̃ from T , the X(t̃, ω) is
some random value on this probabilistic space (Ω,F , P ). The records
X(t) or Xt instead of X(t, ω) are used for a brief designation of this
random process.

Let X(t) be a random process. For each fixed t = t1, the random
value X(t1)=X(t1, ω) has the distribution function F (x1, t1)=P{ω :
X(t1, ω)<x1}. Let t1, . . . , tn be any finite set of values t. The random
values X(t1), . . . , X(tn) have the function of joint distribution

F (x1, . . . , xn; t1, . . . , tn) = P{ω : X(t1, ω) < x1, . . . , X(tn, ω) < xn}.

The family of all such joint distributions for n= 1, 2, . . . and for all
possible values tj ∈ T , where j=1, 2, . . . , n, is called a family of finite-
dimensional distributions of the process X(t). As it will become clear
from further sections, many properties of random processes are defined
by the properties of their finite-dimensional distributions.

Two random processes X(t), t ∈ T , and Y (t), t ∈ T , are called
equivalent if for each fixed t∈ T the random values X(t) and Y (t) are
equivalent random values, i.e., P{ω : X(t, ω)=Y (t, ω)} = 1. It is easy
to prove that families of finite-dimensional distributions for equivalent
processes coincide.

From the definition of the random process, it follows that X(t, ω)
becomes a function of variable t∈T for every fixed elementary event ω.
In other words, a nonrandom function of the variable t corresponds
to each possible outcome of the experiment. Each such function x(t)
is called a realization or a trajectory or a sample function of pro-
cess X(t).
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1.3 Mathematical Expectation, Variance,
and Correlation Function of a Random Process

Let X = X(ω) be a discrete random value defined on a probabilis-
tic space (Ω,F , P ). Possible values of X are given by countable (finite
or infinite) numerical sequence x1, x2, . . . . We will assume that a set
Ai ∈ F is formed by those and only those ω for the X(ω) = xi. If the
series

∑
i

xiP{Ai} converges absolutely, then its sum is called a math-

ematical expectation of random value X and is denoted by M{X}:

M{X} =
∑
i

xiP{Ai}.

If X is a continuous random value having a distribution density f(x),
then by definition

M{X} =

∞∫
−∞

xf(x)dx

given that this integral converges absolutely. In the case of divergence
of this integral (or in the case of divergence of the above series if X
is a discrete random value), we say that the corresponding random
value has no mathematical expectation.

By definition, the mathematical expectation of random pro-
cess X(t) is a nonrandom function

m(t) = M{X(t)}.

The right part of this equality is a mathematical expectation of the
random value X(t). We interpret this random value as the random
process cross-section corresponding to the argument t.

By definition, the variance of random process X(t) is a nonran-
dom function

D(t) = M{(X(t)−m(t))2}.

For each fixed t, the number D(t) gives the variance of random
value X(t).

Random values X1, . . . , Xn are called independent if

F (x1, . . . , xn) = F1(x1) . . . Fn(xn)

or (if f(x1, . . . , xn) exists)

f(x1, . . . , xn) = f1(x1) . . . fn(xn),
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where Fi(x) is a distribution function of random value Xi, i=1, . . . , n,
and fi(x) is a distribution density of random value Xi, i= 1, . . . , n.
To characterize a degree of dependence between various process cross-
sections, i.e., between random values X(t1) and X(t2), we define a
nonrandom function of two variables as

K(t1, t2) = M{(X(t1)−m(t1))(X(t2)−m(t2))}.

This function is called a correlation function of the random pro-
cess X(t). If we introduce a centered random process as

◦
X (t) = X(t)−m(t),

then we obtain

K(t1, t2) = M{
◦
X (t1)

◦
X (t2)}.

Notice that K(t, t) = D(t).
Suppose D(t) 6=0 ∀t ∈ T . Then we can introduce the function

k(t1, t2) =
K(t1, t2)

σ(t1)σ(t2)
,

where σ(t1)=
√
D(t1) and σ(t2)=

√
D(t2) are so-called mean square

deviations. The function k(t1, t2) is called a normalized correlation
function of the random process X(t). A convenience from the intro-
duction of k(t1, t2) consists of the fact that k(t1, t2) is a nondimen-
sional quantity and |k(t1, t2)| ≤ 1 for any values t1 and t2.

It is easy to prove that k(t1, t2) = 0 if X(t1) and X(t2) are in-
dependent random values. But an independence by the process of
cross-sections X(t1) and X(t2) does not follow from the condition
k(t1, t2)=0.

Now we will consider some examples.
1. Let X(t) be a random process of following type

X(t) = U cosωt+ V sinωt,

where ω > 0 is a constant number, and U and V are two independent
random values with mathematical expectations M{U} = M{V } = 0
and variances D{U}=D{V }=D. Then for each t

m(t) = cosωtM{U}+ sinωtM{V } = 0,
so

K(t1, t2) = M{(U cosωt1 + V sinωt1)(U cosωt2 + V sinωt2)} =
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= cosωt1 cosωt2M{U2}+ sinωt1 sinωt2M{V 2}+

+ (cosωt1 sinωt2 + sinωt1 cosωt2)M{UV }.

Using the independence of U from V , we have

M{UV } = M{U} ·M{V } = 0.

Therefore,

K(t1, t2) = D cosωt1 cosωt2 +D sinωt1 sinωt2 = D cosω(t1 − t2).

2. We will now generalize the previous example. We will consider
the random process

X(t) = U cos Ωt+ V sin Ωt,

where U, V , and Ω are independent random values, M{U}=M{V }=0,
M{U2}=M{V 2}=D, and a random value Ω is characterized by a
distribution density f(ω). We find

m(t) = M{U cos Ωt}+M{V sin Ωt}.

Taking into account an independence of U from Ω and the indepen-
dence of V from Ω, we obtain

m(t) = M{U}M{cos Ωt}+M{V }M{sin Ωt} = 0.

To simplify the calculation of K(t1, t2) we note that from the pre-
vious example, it follows that the conditional correlation function
K(t1, t2|Ω = ω) is equal to

K(t1, t2|Ω = ω) = M{X(t1)X(t2)|Ω = ω} = D cosω(t1 − t2).

To find the correlation function K(t1, t2) it is necessary to multiply
this expression using an element of probability f(ω)dω and to inte-
grate all possible values of frequency ω.1 Thus,

K(t1, t2) = D

∞∫
0

f(ω) cosω(t1 − t2)dω.

1 The simplification for the calculation of K(t1, t2), of course, needs a justifica-
tion. Lowering the level of proof, we note that this simplification follows on from
the mathematical expectation properties and from the total probability formula.
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For example, if the random value Ω has the Cauchy distribution,
i.e.,

f(ω) =

{
2λ
π

1
λ2+ω2 if ω ≥ 0,

0 if ω < 0,

where λ is some positive number, then

K(t1, t2) =
2Dλ

π

∞∫
0

cosω(t1 − t2)

λ2 + ω2
dω = D exp{−λ|t1 − t2|}.

3. We will now consider one more example. Let λ be a constant
positive number, and t1, t2, . . . be a random sequence of points on axis
t such that

1) the probability Pn(T ) that a time interval duration T contains
exactly n points is equal to

Pn(T ) =
(λT )n

n!
exp{−λT}

and does not depend on the provision of this interval on a time-
base;

2) if the intervals do not intersect, the corresponding numbers of
points are independent random values.

In this case, let us say that this sequence of points t1, t2, . . . forms the
Poisson stream with a constant density λ. We suppose that a random
process X(t) is defined by its realizations as follows:

x(t) =


0 at −∞ < t < t1,
x1 at t1 ≤ t < t2,
x2 at t2 ≤ t < t3,
x3 at t3 ≤ t < t4,
and so on,

where numbers x1, x2, x3, . . . are realizations of independent random
values X1, X2, X3, . . . with zero mathematical expectations and with
identical variances D.

It is clear that M{X(t)} ≡ 0 because M{X1} = M{X2} =
=M{X3}= . . .= 0. We find the correlation function K(t, t′):

K(t, t′) = M{X(t)X(t′)} =

= M{X(t)X(t′)|A}P{A}+M{X(t)X(t′)|B}P{B},
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where the event A means that the interval (t, t′) contains at least one
of the points t1, t2, t3, . . . , and the event B means that the interval
(t, t′) does not contain points t1, t2, t3, . . . , i.e., B = Ā. Taking into
account the independence of random values X1, X2, X3, . . . , we have
M{XiXj} = M{Xi}M{Xj} = 0 for i 6= j, so

M{X(t)X(t′)|A} = 0.

If there was the event B, the value X(t) coincides with the value X(t′)
and, therefore,

M{X(t)X(t′)|B} = M{X2(t)} = D.

Since the probability P{B} is Pn(T ) when n = 0 and T = |t− t′|, we
obtain

K(t, t′) = D exp{−λ|t− t′|}.
Note that the correlation function from example 3 is equal to the

correlation function from example 2. At the same time, the realiza-
tions of random processes have a different nature in these examples:
realizations are sinusoids in example 2, and realizations are step func-
tions in example 3. Therefore, the same correlation function can cor-
respond to random processes having a various nature of realizations.

1.4 Types of Convergence in a Probabilistic Space
and Characteristics of Smoothness

in a Random Process

Several types of convergence are considered in the theory of ran-
dom processes and respectively various definitions are introduced for
a continuity and a differentiability of random processes.

Let X1, X2, . . . be a sequence of random values defined on some
probabilistic space; let X be one more random value defined on this
space. We define the following three main types of convergence of
sequence Xn, n=1, 2, . . . , to X as n→∞.

1. Convergence with probability 1 (other names are “almost ev-
erywhere convergence” and “almost sure convergence”). A sequence
of random values Xn, n = 1, 2, . . . , converges to a random value X
with probability 1 if

P{ω : lim
n→∞

Xn(ω)=X(ω)} = 1.
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This requirement is shorter when it is written down as follows:

P{Xn→X}=1, or Xn
a.e.−→X, or Xn

a.s.−→X, where reductions a.e. or
a.s. mean, respectively, almost everywhere or almost sure.

2. Convergence in the mean-square. A sequence of random values
Xn, n= 1, 2, . . . , converges to a random value X in the mean-square
if

lim
n→∞

M{(Xn −X)2} = 0.

Write Xn
m.s.−→X.

3. Convergence on probability. A sequence of random values
Xn, n=1, 2, . . . , converges to a random value X on probability if for
any given ε > 0

lim
n→∞

δn = 0, where δn = P{|Xn −X| > ε}.

Write Xn
P−→X.

A common feature of all three definitions can be formulated as
follows: for enough big n the random value Xn and the limit random
value X are close in a certain probabilistic sense.

We show that a convergence on probability is the weakest type
of convergence, i.e., both a convergence in the mean-square and a
convergence with probability 1 involve a convergence on probability.
The first of these statements follows from Chebyshev’s inequality: if
for a random value Y there exists M{|Y |k}, where k > 0, then for
any fixed ε > 0

P{|Y | ≥ ε} ≤ M{|Y |k}
εk

.

We prove this inequality, for example, when Y is a continuous random
value with a distribution density f(y). In this case,

M{|Y |k} =

∞∫
−∞

|y|kf(y)dy ≥
−ε∫
−∞

|y|kf(y)dy +

∞∫
ε

|y|kf(y)dy ≥

≥
−ε∫
−∞

εkf(y)dy +

∞∫
ε

εkf(y)dy =

= εk

 −ε∫
−∞

f(y)dy +

∞∫
ε

f(y)dy

 = εkP{|Y | ≥ ε},
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and Chebyshev’s inequality is proved. Now having put k = 2 and
Y = Xn −X, we obtain

P{|Xn −X| ≥ ε} ≤
M{(Xn −X)2}

ε2
.

Therefore, if M{(Xn − X)2} → 0 as n → ∞, then P{|Xn − X| >
>ε}→ 0 as n→∞, i.e., a convergence on probability follows from a
convergence in the mean-square.

Now we prove that a convergence with probability 1 also involves
a convergence on probability. We will choose any ε > 0 and we will
consider the event

Aε = {ω : ∃N = N(ω) ∀n ≥ N |Xn(ω)−X(ω)| < ε}.

Clearly, if a convergence of sequence of random values Xn, n=1, 2, . . . ,
to a random value X takes place with probability 1, then P{Aε} = 1.
Opposite to the event Aε, the event Aε is

Aε = {ω : ∀N ∃n ≥ N |Xn(ω)−X(ω)| ≥ ε}; P{Aε} = 0.

We will now introduce the event

Bε,N = {ω : ∃n ≥ N |Xn(ω)−X(ω)| ≥ ε}.

Then
Aε = Bε,1Bε,2Bε,3 . . . =

∞∏
k=1

Bε,k,

and
Bε,1 ⊃ Bε,2 ⊃ . . . ⊃ Bε,k ⊃ Bε,k+1 ⊃ . . . .

In this situation, obviously, the following presentation takes place:

Bε,1 = Aε +Bε,1Bε,2 +Bε,2Bε,3 + . . .+Bε,kBε,k+1 + . . . =

= Aε +

∞∑
k=1

Bε,kBε,k+1.

Since any two summands in the right part of this equality are non-joint
events, we have

P{Bε,1} = P{Aε}+

∞∑
k=1

P{Bε,kBε,k+1}.
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By definition, put SN =
N−1∑
k=1

P{Bε,kBε,k+1}. Then

P{Bε,1} = P{Aε}+ lim
N→∞

SN .

Since Bε,k+1 ⊂ Bε,k, we get

P{Bε,kBε,k+1} = P{Bε,k} − P{Bε,k+1} for every k = 1, 2, . . . .

Therefore, SN = P{Bε,1} − P{Bε,N} and

P{Bε,1} = P{Aε}+ (P{Bε,1} − lim
N→∞

P{Bε,N}).

From this it follows that

lim
N→∞

P{Bε,N} = P{Aε} = 0.

Now we introduce the event

Cε,N = {ω : |XN (ω)−X(ω)| ≥ ε}.

Then Cε,N ⊂ Bε,N and

0 ≤ P{Cε,N} ≤ P{Bε,N}.

Passing in the last double inequality to a limit as N →∞, we obtain
limN→∞ P{Cε,N} = limN→∞ P{|XN −X| ≥ ε} = 0. This completes
the proof. Thus, a convergence with probability 1 as well as conver-
gence in the mean-square involves a convergence on probability.

Various determinations of convergence in probabilistic space lead
to various understandings of the continuity and differentiability of a
random process. According to the determinations of convergence, as
well as the continuity and differentiability of a random process, it is
possible to understand it as follows: a) a continuity and a differen-
tiability with probability 1, b) a continuity and a differentiability in
the mean-square, c) a continuity and a differentiability on probability.
We give, for example, definitions of continuity and differentiability in
the mean-square (m.s.).

If a random process X(t) satisfies the condition

lim
t→t0

M{(X(t)−X(t0))2} = 0,
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then we say that X(t) is continuous in the mean-square at point t = t0.
If this condition is satisfied for all points of some interval (a, b), then
process X(t) is called continuous in the mean-square on the inter-
val (a, b).

If a random process X(t) and a random value Y satisfy the con-
dition

lim
t→t0

M

{(
X(t)−X(t0)

t− t0
− Y

)2
}

= 0,

then process X(t) is called differentiable in the mean-square at
point t0, and random value Y is called a derivative in the mean-square
of process X(t) at point t0, and in this case Y is denoted by X ′(t0).

Let K(t, u) be a correlation function of process X(t). We find the
sufficient condition of continuity in the mean-square of process X(t)
in terms of correlation function. We have

M{(X(t0 + h)−X(t0))2} = M{X(t0 + h)X(t0 + h)}−

−2M{X(t0 + h)X(t0)}+M{X(t0)X(t0)}.

Let m(t) = M{X(t)}. Since for any t′ and t′′

K(t′, t′′) = M{X(t′)X(t′′)} −m(t′)m(t′′),

we obtain

M{(X(t0 +h)−X(t0))2} = K(t0 +h, t0 +h) +m(t0 +h)m(t0 +h) −

− 2K(t0 + h, t0)− 2m(t0 + h)m(t0) +K(t0, t0) +m(t0)m(t0).

From this it follows that if m(t) is continuous at point t0 and K(t, u)
is continuous at point t=u= t0, then the process X(t) is continuous in
the mean-square at point t0. It is possible to show that this condition
is also necessary: a continuity of mathematical expectation m(t) at
point t0 and a continuity of the correlation function K(t, u) at point
t=u= t0 follow from a continuity in the mean-square of the process
X(t) at point t0.

We note that a continuity in the mean-square of process X(t)
does not mean a continuity with probability 1. For example, sam-
ple functions of process from example 3 from the previous section are
step functions and, therefore, are discontinuous functions with prob-
ability 1. Nevertheless, this process is continuous in the mean-square
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at any point because its mathematical expectation m(t) = 0 and cor-
relation function K(t, u) = D exp{−λ|t− u|} are continuous.

A necessary and sufficient condition for differentiability in the
mean-square of the process X(t) at point t0 can also be formulated
in terms of mathematical expectation m(t) and correlation function
K(t, u) of process X(t). It is possible to show that such condition is
an existence of derivatives

dm(t)

dt

∣∣∣∣
t=t0

and
∂K2(t, u)

∂t∂u

∣∣∣∣
t=u=t0

.

As well as in the case of continuity in the mean-square, an existence of
derivative in the mean-square does not mean that the sample functions
of the process are differentiated in the usual sense.

At last, we will formulate one more result. Let the random pro-
cess X(t) have a mathematical expectation m(t) and a correlation
function K(t1, t2). If the process X(t) is differentiated in the mean-
square and its derivative in the mean-square is equal to X ′(t), then
formulas

m1(t) =
dm(t)

dt
and K1(t1, t2) =

∂2K(t1, t2)

∂t1∂t2

define a mathematical expectation m1(t) and a correlation function
K1(t1, t2) of the process X ′(t). Formally this result can be obtained if
we change a sequence of performance for operations of mathematical
expectation and differentiability:

m1(t) = M{X ′(t)} = M

{
d

dt
X(t)

}
=

d

dt
M{X(t)} =

dm(t)

dt
,

K1(t1, t2) = M{(X ′(t1)−m1(t1))(X ′(t2)−m1(t2))} =

= M

{
d

dt
(X(t)−m(t))

∣∣∣∣
t=t1

d

dt
(X(t)−m(t))

∣∣∣∣
t=t2

}
=

= M

{
∂2

∂t1∂t2
(X(t1)−m(t1))(X(t2)−m(t2))

}
=

=
∂2

∂t1∂t2
M{(X(t1)−m(t1))(X(t2)−m(t2))} =

∂2K(t1, t2)

∂t1∂t2
.
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If we are interested in a mutual correlation function K01(t1, t2) of
processes X(t) and X ′(t), where by definition

K01(t1, t2) = M{(X(t1)−m(t1))(X ′(t2)−m1(t2))},

then the same formala leads to the result

K01(t1, t2) =
∂K(t1, t2)

∂t2
.

This result is also fair and can be proved mathematically.

1.5 Stationary Random Processes

In many appendices it is necessary to study functions determined
by casual factors when the behavior of these factors are more or less
constant throughout an observation period. Considering these func-
tions, x(t), as realizations of a random process, X(t), we ask what
is the definition of the process property which characterizes this sit-
uation. Such property is defined as the property of invariancy from
all the finite-dimensional distributions of process relative to shifts of
time t: i.e., when for any n an joint n-dimensional distribution of
random values

X(t1 + τ), . . . , X(tn + τ)

does not depend on τ for any finite sequence of points t1, . . . , tn. Such
a process is called a stationary procces.

Let us consider the case when densities of distributions exist. Let
f(x1, . . . , xn; t1, . . . , tn) be a density of joint distribution of random
values X(t1), . . . , X(tn), and let f(x1, . . . , xn; t1 + τ, . . . , tn + τ) be a
density of joint distribution of random values X(t1+τ), . . . , X(tn+τ).
If process X(t) is stationary, then

f(x1, . . . , xn; t1, . . . , tn) = f(x1, . . . , xn; t1 + τ, . . . , tn + τ)

for any τ . In particular, for n = 1

f(x1; t1) = f(x1; 0),

i.e., a distribution density of random value X(t1) does not depend
on t1. In this case,

m(t) = M{X(t)} = M{X(0)} = const

if a mathematical expectation of process X(t) exists.
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Furthermore, for n = 2

f(x1, x2; t1, t2) = f(x1, x2; 0, t2 − t1),

i.e., a distribution density of system of random values X(t1), X(t2)
depends only on the difference t2 − t1. Therefore, all characteris-
tics of system {X(t1), X(t2)}, in particular, the correlation function
K(t1, t2), do not separately depend on t1 and t2. These characteris-
tics are completely defined (if, of course, they exist) by the difference
t2 − t1. In particular, K(t1, t2) = K(τ), where τ = t2 − t1.

A stationary random process is also called strictly stationary, or
stationary in a narrow sense. Besides, there is the concept of station-
arity in a wide sense: a random process is called wide-sense stationary
if its mathematical expectation is constant and its correlation func-
tion depends only on the difference of arguments. For example, all
processes considered in examples from section 1.3 are known as wide-
sense stationary. As shown above, a wide-sense stationarity follows
from a strict stationarity, if both the mathematical expectation and
the correlation function of the random process exist.

We claim that the function K(τ) is even. Indeed, if K(t1, t2) =
= K(t2 − t1) = K(τ), then K(t2, t1) = K(t1 − t2) = K(−τ). It is
obvious that K(t1, t2) = K(t2, t1). Therefore, K(τ) = K(−τ). Thus
for a stationary process it is possible to write K(t1, t2) = K(τ), where
τ = |t2 − t1|.

If a random process is stationary, the conditions of continuity and
differentiability in the mean-square become simpler. A continuity in
function K(τ) at τ = 0 is required for a continuity in the mean-
square and an existence of the second derivative K ′′(0) is required
for differentiability in the mean-square. For example, the process
from example 1 of section 1.3 has the correlation function K(τ) =
= D cosωτ and this process is continuous and differentiate in the
mean-square. The processes from examples 2 and 3 have the correla-
tion function K(τ) = D exp{−λ|τ |} and these processes are continu-
ous in the mean-square, but are not differentiated in the mean-square.

Stationary random processes are encountered in practice quite
often. By means of such processes, it is possible to model, for example,
a random noise in radio sets; fluctuations of tension in a lighting
network; pitching in a ship; and fluctuations in the height of airplane
at cruising horizontal flight. As a rule, the change of phase coordinates
of any stochastic system is described by a stationary random process,
if this system functions in steady mode.
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Let us consider an example from a bank activity. We will assume
that the flow of deposits to the bank is described by the Poisson
process with a density of λ (see example 3 from section 1.3). The value
λ is the mathematical expectation of a number of deposits that arrive
during a unit interval of time. We denote by F (x) the distribution
function of the duration of the contribution. Let r be the percentage
rate on deposits. We use the formula of continuous percents: the
capital M after t units of time is equal to M exp{rt}. For simplicity,
all contributions have the same size m. We find the total capital at
moment t, if this capital is equal to zero at the initial moment t0 = 0.
For this purpose, we will consider a partition of the interval (t0, t) by
intermediate moments si:

t0 = s0 < s1 < s2 < . . . < si−1 < si < . . . < sn−1 < sn = t.

Let n be rather great and all ∆si = si − si−1 be rather small.
The average contribution made during the period [si−1, si) is equal
to mλ∆si. At the moment t this contribution will be more than
mλ∆si exp{r(t − si)} and less than mλ∆si exp{r(t − si−1)}. There
exists a point ξi ∈ (si−1, si) such that this contribution is equal to
mλ∆si exp{r(t − ξi)}. Let Xi be the capital that remained on the
account at the moment t from the contribution mλ∆si exp{r(t−ξi)},
which arrived during the interval [si−1, si). Then the total capital on
the account at the moment t is

X(t) =

n∑
i=1

Xi,

and the mathematical expectation of this capital is

M{X(t)} =

n∑
i=1

M{Xi}.

For the calculation M{Xi} at small ∆si, we consider approximately
that the entire contribution mλ∆si exp{r(t− ξi)} is made at moment
ξi and Xi is equal to mλ∆si exp{r(t− ξi)} with the probability pi or
Xi is equal to 0 with probability 1 − pi, where pi is the probability
that a duration of contribution made at moment ξi is equal to not less
than (t− ξi) time units:

pi = P{duration ≥ t− ξi} =

= 1− P{duration < t− ξi} = 1− F (t− ξi).


