
Innovative Software

Innovative Software:

Running the Rapids

By

Kenneth N. McKay

Innovative Software: Running the Rapids

By Kenneth N. McKay

This book first published 2019

Cambridge Scholars Publishing

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Copyright © 2019 by Kenneth N. McKay

All rights for this book reserved. No part of this book may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the copyright owner.

ISBN (10): 1-5275-2781-6
ISBN (13): 978-1-5275-2781-2

TABLE OF CONTENTS

Acknowledgements .. x

Part I Developing Innovative Software: A Personal View 1

Overview .. 2

Chapter One Introduction ... 6

1.1 My Journey .. 6

1.2 Your Journey ... 13

Chapter Two Zentai Development ... 14

2.1 The Rapids ... 14

2.2 Rating The Rapids ... 20

2.3 Design Pillars ... 36

Chapter Three Running The Rapids ... 39

3.1 From a Toothpick to a Decorated Living Christmas Tree 42

3.2 Agile & Extreme - An Overview ... 44

3.3 Preconditions ... 48

3.4 Bite Sized Pieces ... 51

Chapter Four Experience and Expertise ... 54

Part II Understanding the Problem & Thinking through
the Conceptual Solution ... 67

Overview .. 68

Chapter Five Understanding THE Problem .. 70

5.1 Good Questions ... 75

5.2 Questioning and Understanding .. 78

5.3 Listening Is Reading .. 85

Table of Contents vi

Chapter Six Modeling... 92

6.1 Finite State Automata .. 98

6.2 Process Mapping.. 99

6.3 Ishikawa’s Fishbone Diagrams .. 111
Chapter Seven Field Analysis – Ethnographic Methods 115

7.1 Analysis Under Hostile Fire .. 121

7.2 The Quick ‘Drive-By’ Analysis ... 129

Chapter Eight User Engagement .. 135

8.1 Styles of Engagement .. 137

8.2 Other Sources of Insight – Support and QA 144

8.3 Stakeholder Checklist .. 146

8.4 Feedback and Suggestions – Caveat Emptor 151

Chapter Nine Zentai – The Value Equation ... 155

価値- Value ... 155

9.1 The Value Framework ... 160

9.2 Life Cycles ... 165

9.3 Society or Organizational Structure ... 172

9.4 Interactions .. 175

9.5 Information .. 181

9.6 Impact, Value .. 189

9.7 Utility or Futility? .. 206

9.8 Conclusion ... 208

Chapter Ten Zentai – The Comfort Zone ... 211

安心- Comfort ... 211

10.1 Sources Of Discomfort .. 212

10.2 Increasing The Comfort Level ... 217

10.3 A Comfort Analysis ... 220

Innovative Software: Running the Rapids vii

Chapter Eleven Zentai – The Experience Factor 223

経験- Experience ... 223

11.1 Prior Experience .. 224

11.2 Experiencing .. 226

Chapter Twelve Zentai – Evolution .. 229

進化- Evolution ... 229

12.1 Environmental Evolution ... 229

12.2 Functional Evolution ... 230

Chapter Thirteen Pulling It All Together .. 235
Chapter Fourteen Universal Requirement Factors 238

14.1 The Human Element .. 239

14.2 The Synthetic Element ... 243

Chapter Fifteen Zentai Summary ... 246

Part III Architecture & Design ... 249

Overview .. 250

Chapter Sixteen Universal Designs .. 251

Chapter Seventeen The Big Picture .. 255

17.1 Good Architecture ... 261

17.2 Layered Analysis ... 264

17.3 Interface Definitions, and Protocols .. 270

Chapter Eighteen Designing For Change ... 272

18.1 Technology .. 275

18.2 The Problem .. 279

18.3 Users .. 282

Chapter Nineteen Stability & Robustness .. 287

19.1 Levels I through V – Infrastructure Stuff! 288

19.2 Levels VI through VII – Your Stuff! ... 294

Chapter Twenty Tempus/Temporis .. 299

20.1 Work Flow – Taxonomy/Design Example 301

Table of Contents viii

Chapter Twenty-one Task Oriented Design ... 309

Chapter Twenty-two Design Sufficiency ... 312

Part IV Class VI – Shooting The Rapids .. 319

Overview .. 320

Chapter Twenty-three Management ... 321

23.1 The Management Challenge .. 321

23.2 Good Management .. 325

23.3 Strategic, Tactical, and Operational ... 327

23.4 Management Skill & Training ... 329

Chapter Twenty-four Risk Management .. 334

24.1 Risk Analysis ... 334

24.2 Development .. 337

24.3 Operational Considerations ... 338

24.4 Risk Identification ... 339

Chapter Twenty-five Project Management ... 343

25.1 Early Phases Of Project Management 345

25.2 Detailed Functionality and Planning .. 349

25.3 Budgets and Plans .. 350

25.4 Degrees of Certainty .. 353

25.5 Slack and Project Elasticity ... 354

25.6 Critical Paths.. 356

25.7 Resource Flexibility ... 358

25.8 Multiple Plans .. 360

25.9 Dancing With The Devil .. 362

Chapter Twenty-six Planning vs. The Plan .. 370

Chapter Twenty-seven Aversion Dynamics ... 381

Chapter Twenty-eight Reliance On Technology 385

Chapter Twenty-nine User Interface Principles...................................... 389

Chapter Thirty The Toothpick .. 392

Innovative Software: Running the Rapids ix

Chapter Thirty-one Factoring ... 396

Chapter Thirty-two Coding .. 401

Chapter Thirty-three Testing .. 408

Chapter Thirty-four Toolsmithing .. 413

34.1 Passive Tools ... 415

34.2 Active Tools .. 418

Chapter Thirty-five Documentation ... 420

Chapter Thirty-six Client and Developer Build Cycles 426

Chapter Thirty-seven At The Helm .. 433

Chapter Thirty-eight Operational Control & Tracking 435

38.1 Tasks – Who Does What ... 436

38.2 Detailed Plan Contents – Start of Week 437

38.3 Weekly Updates and Reflection .. 438

38.4 Monthly Level Details ... 439

Chapter Thirty-nine Team Design .. 441

Chapter Forty Mission Critical Systems ... 452

Chapter Forty-one Final Thoughts ... 459

References .. 461

ACKNOWLEDGEMENTS

There are many people who have inspired or provided feedback on
material used in this book. I will likely have forgotten some and wish to
apologize in advance.

Some of the writing in the text has its origin in other pieces I have
written or co-written with co-authors such as Gary Black and Vincent
Wiers. Some of the material is from courses I have taught. Some of the
writing is extracted or inspired from research work I have done with
undergraduate and graduate students. I worked with Jennifer Jewer on risk
management ideas for software project management, and Cathy May on
ideas for innovative software project management. And, then there were
Louise Liu, David Tse, Sylvia Ng, and Hao Xin. They worked with me as
I initially formalized my value framework for a course I taught and by
working with them, the framework benefited. I have also enjoyed many
system design and architecture discussions with Quinn Turner. I have
learned many things from many people.

While I have re-interpreted and re-crafted previous writings, it is
possible that some bits will bear some resemblance to scattered text I have
crafted or co-crafted before. Some of the Agile overview and Ethnographic
Methods sections come to mind. My previous publication from ten years
ago and now out of print called Software Development On Adrenalin
forms the backbone of this text.

Several individuals are named within the text - people who radically
altered my thinking and affected my IT skill sets: Brian Coleman, Romney
White, and David Pryke.

Others who have contributed to the quality and content of this text,
directly or indirectly include: Will Gough, Carol Hulls and the Hulls
family (Mike, Carey, Maggie), Chelsea Marr, Patrick Matlock, and Alan
George. Special thanks actually to Will and the Hulls. Will patiently read
and read, gave valuable feedback, and helped with the mechanics of
making it pretty. The Hulls family provided good challenges and pointers
on what to fix!

PART I

DEVELOPING INNOVATIVE SOFTWARE:
A PERSONAL VIEW

OVERVIEW

Innovative software? Why a book dedicated to innovative software since
all software is innovative to some degree? Answer: because the degree
matters. Innovativeness relates to changes in the status quo. There is
always something new afoot in the who, what, where, when, why, and
how. I have never seen a software project where there was not something
‘different’.

If there are few changes in the status quo, the degree of innovativeness
is relatively low. Think of kayaking or rafting in your backyard. Hard to
get hurt. You have to try hard to mess it up. So, if your software project is
reasonably safe with few risks, this book is not for you. There are known
practices, design patterns, and the path forward can be tackled by the less
experienced. You can find many other books and resources on the web
that will help you. You can stop reading.

However, if there are many changes in the status quo that impact
almost all of the who, what, where, when, why, and how dimensions, the
degree of innovativeness can be high and is akin to running the extreme
white-water rapids; the ones where all assumptions are challenged. You
need a different game plan if you want to come out of the other end in one
piece. You will need a different level of training and a different skill set.
Compared to calm water, you will need a different type of kayak or raft
and your shore crew will not be the same as your backyard adventure. This
book is for the software projects which start to get risky and which require
a different approach and strategy.

This text is about rapid software development that is highly innovative
and potentially risky; causing the release of adrenalin and the rush that is
associated with risk and the unexpected. Truly innovative software is like
running extreme white-water rapids in a kayak or raft, not knowing what
lies ahead. If you are looking at this overview, either you are in the middle
of a run or thinking about doing one. Running the rapids, going into the
unknown and surviving, possibly thriving, is possible if you go prepared
and understand unknowns and what they imply.

Innovative Software: Running the Rapids 3

Developing software that has not been created before is inherently
different from re-implementing software, enhancing software, or copying
software. The more new the software is to both developer and end user,
the higher the risk and more different the journey will be. Most software
projects that involve innovative software end up over budget, behind
schedule, and with dissatisfied stakeholders on the first go around. This
book is about improving the odds! The concepts in this book have been
used repeatedly over the last five decades on dozens of projects and they
have resulted in most (not all) projects being done on time, on budget, and
with very happy users. About 1/2 of the book is about design and user
requirements, 1/2 is about project management and execution.

Isn’t innovative enough? Why do I include rapid in the game plan?
Familiar with the one-week build plans associated with Agile? That is too
slow in my opinion. I prefer to 5x this – daily build sequences for 90% of
the build. This is really rapid development. Doing something rapidly
implies a kind of velocity. And, velocity implies speed and direction. To
keep people’s interest (on both sides – development and user), it is
important to have quick build cycles where there is something demo-able
at the end of each cycle. You build in smaller pieces so that the cost of
refactoring and code correction is controlled. You build in smaller pieces
to also avoid the personal attachment some programmers develop with
their code – it is easier to change code that you do not have much invested
in. Smaller delivered chunks imply everything is speeded up.

One day build cycles – final design, code, debug, integrate, system test
– tag and bag it. Daily. As someone commented, instead of milestones,
you will be thinking inchpebbles – lots of small deliverables. There are
many benefits. You never know when you have to show someone
something and I believe it is best to be prepared. I also have a short
attention span and like to fix or change things as soon as possible after
they are coded. I have also found that users have a short attention span and
like the daily build cycles. The direction aspect of velocity reflects the
choice of activities and deliverables per build cycle. The toothpick
strategy described in this book sets the initial direction and guiding light.
As you build out the tree from a mere toothpick, combining the toothpicks
to make a trunk, then adding the limbs and leaves, you have to do it in a
balanced way. So, the direction is say 10-20% on each subsystem, perhaps
a bit more, but you grow the systems together, discovering how the tree
should be shaped in a natural, organic fashion influenced by internal and
external forces.

Overview 4

Large build cycles, such as a week, invest way too much effort in
something only to find out that changes should have been made along the
way. I believe that highly innovative projects are best developed using a
high-velocity philosophy – high speed with strategic direction. The
developed code must also be nimble and adaptable, but high-velocity
addresses a different characteristic of the build experience. The daily build
strategy creates a nice balance of stress and tension with daily
accomplishments that helps focus the development team’s energy.

If you think you are doing innovative software, and it is going along
fantastically well on all fronts, but you are not experiencing adrenalin
rushes occasionally, it might not be as innovative as you think it is! I do
not think that it is possible with truly innovative software to anticipate
everything and manage everything in a predictive, calm fashion. This book
will help avoid some of the bad rushes and provide the occasional good
rush, but there will still be lots of excitement when living on the edge.

This book is also about the feeling that comes from delivering software
that the user values and wants to use. Software that the user will fight to
keep using! It is a great feeling when the user actually values your code.
When this has happened to me, it also feels like an adrenalin rush. When
both adrenalin rushes occur – doing something successful that is
innovative and that users value – it is a really good feeling and I have been
fortunate throughout my career to experience both rushes repeatedly; the
rush while creating and the later rush that comes from usage.

I have named this process of concurrently developing high value,
innovative software at breakneck speed Zentai Development. Zentai
Development refers to a holistic, unified way of viewing software
functionality and usability combined with a high-velocity version of
Agile/Extreme. In Japanese, Zentai (全体) means the whole, the entirety.
One aspect of the Zentai Development method is a what and the other
aspect is a how. It is possible to use the what ideas with or without the how
ideas and vice versa. Sometimes they are both appropriate and this book
describes this situation: what they are, and how to use them together to get
the dual rushes of adrenalin. When all of the variables align, the software
form, function, and journey are innovative, unique and special. This is not
a magical incantation though and there are many risks and possible rough
spots, as not all people or processes can fit or operate in this fashion. Not
all projects are suitable candidates either. It will push people’s comfort
zones and challenge assumptions. Good for some. Not so good for others.

Innovative Software: Running the Rapids 5

Part I introduces you to the basics of the above and the philosophy
behind the text. This is somewhat short and can actually be skipped if you
want when you first dive into the book.

Part II is perhaps the most important part of the book: because if you
do not get this bit right, you might as well close up shop now. It is the part
of the process where experts tell you that you ‘need to know enough’ –
you need to know enough about the problem and what the big, high value
deliverables need to be to address the problem. This is the one part of the
book you should not skip!

Part III has some potentially useful ideas for design and architecture
when you are doing something new. This is like icing on the cake and can
be totally ignored if you want. I think it has useful stuff, but that is my
opinion. It is for people interested in system design and how the big pieces
fit together.

Part IV is probably useful to the majority of readers. It is about project
management and execution – when you are running the rapids. I would
read this after Part II.

CHAPTER ONE

INTRODUCTION

1.1 My Journey

You can skip this section if you wish. It is about my general attitude and
approach to developing software.

This particular book is the result of approximately fifty years of
programming and development that has involved a wide variety of
systems. It will not tell you everything you need to know about software
development. Other software engineering books I recommend are Hunt
and Thomas (2000), Glass (1997, 2003), Brooks (1995), McConnell
(1996), McCarthy (1995), Jackson (1975), and Orlicky (1969). I suggest
that you check out each of these and reflect upon what the authors are
trying to get across. They are full of good suggestions and commonsense
ideas. They are oldies and goldies. There are also many other good blogs
and books if you surf a bit. My own objective is to complement these
other sources and provide additional insights.

Who am I to write such a book in the first place? What are my credentials?
I do not write witty, sarcastic blogs, issue on-line pronouncements, or write
about best practice, nor do I have a vast community of followers who hang
onto every word I utter. I do not do self-promotion on the software
engineering topic, and I try to avoid extrapolating off limited experiences.
All I have done is design and code systems for five decades, starting in
1968. Over the years I have designed and programmed dozens of systems
and software solutions ranging from operating systems and relational
databases to accounting and veterinarian systems, and probably 150’ish
end user applications based on custom toolkits I have created; sometimes
as a team member, sometimes as a single developer. I have programmed
an average of approximately 20,000 lines of code per year for more than
forty of those years, and multiple times as much as 60-70,000 lines of
code over a six-month period. Probably close to 2m lines of code in my
career using a wide variety of languages and systems from drivers to
applications. I have kept myself busy creating code, not pontificating

Introduction 7

about it. I still code at 65. I am a geek, a code freak and have written lots
of code. In this time, I have failed twice to deliver a project on time, on
budget. No one is perfect. I like to build systems people fight to keep
using and who find value from my designs and code. The proof is in the
delivered systems and not in speculation and wild claims. I have had
extended relationships with most of the systems I have been involved with,
and I have been able to see how users have used the systems and to also see
how the designs and code fared over time. I prefer to have demonstrations of
skill, not could have, should have, would have, or will do.

I am not good at many things. You never want to hear my attempts at
music of any form. My kindergarten teacher thought my skills were so
poor that she noted “difficulty tone matching and in rhythms”. Seriously!
How bad must you be to have this explicitly noted on your report card? In
kindergarten? Nor would you like to see me dance, play sports, or attempt
many other feats. And, my backyard shed went together in a scene from a
comedy skit. However, I do seem to be above average at software and
software related activities.

During these many years I have evolved a specific style and approach.
There are better programmers and there are better designers. There is
always someone better. It is also good to work with better, smarter people,
and I have been lucky to have worked with a number who have provided
many lessons. I do not know if different is better, but it seems that I think
and do things differently. I have been told this many times. Perhaps. Since
I am not someone else, it is hard for me to judge others’ thought processes.

Zentai Development is my attempt at describing the method behind my
madness. Zentai Development appears to be a way to consistently
understand what is needed in an innovative setting, and then quickly craft
the code that provides a unique, high value user experience that is
obtained in very short order. The resulting software has demonstrated high
quality, has been used for long periods of time with evolutionary changes,
and has surpassed almost all cost and time expectations. More than one
system has grown from a 10k proof of concept to 300-500k first release.
The trick is understanding the problem space, and then designing a system
that respects and reflects the target situation – and not forcing a solution
onto a problem.

I am now probably reaching the end of my programming career,
perhaps another five years at the keyboard. In the last decade I have done
quite a bit of sustained coding on three projects, over 500k lines of

Chapter One 8

finished code and it has allowed me to reflect once again on what I do and
how I do it. Instead of a book written by someone with a few years of
experience thinking that they are an expert and are capable of providing
guidance on all matters concerning software, this is written by an old guy
who has written a lot of code, who does not think of himself as an expert,
and who has specialized in making mistakes and learning from them.

Although I have touched a bit on some of the ideas in my academic
papers, I have not directly approached software development as an author.
I have always doubted my skill and ability, but in reflecting back over my
career, it is hard for me to say that my repeated successes were accidental.
They were not Herculean efforts with each being done via all-nighters and
my face buried in the keyboard. They were done time and time again using
a specific style and rhythm. I had a life most of the time. I hate egos and I
hate people who go about talking about what they have done blah-blah.
Especially those people who take one or two projects and extrapolates
wildly to all kinds of software and projects. However, I also hate people
who do not share with others any potential nuggets of wisdom that will
help people following along behind. So, damned if I do, damned if I don’t.
I have felt uncomfortable writing most of the sections of this book.

Perhaps a few of my ideas have value and can be leveraged by others
who can deliver better software products to the users with even more
efficiency and effectiveness. I also do not expect anyone to pick up the
whole lot and be able to do what I do. I am me and you are you. And, if
you are older and have been immersed in one way for many years, it may
be hard to adopt the ideas in this book. Perhaps you should write a book
too? The more wisdom and experiences we can share, the better off things
might be.

The ideas here are strictly another set of ideas to consider and you
should have many in your arsenal. There is no single thing to do for
achieving success, you need many tools. I also do not know all of the
causal relationships between the ideas. Sorry. I have also learned that most
of the ideas in this book are not likely to be appreciated or understood by
junior or inexperienced developers, or by software developers who are
more technicians or assemblers than they are developers. Nor by people
who have never been challenged by trying to create truly innovative
software. Nothing I can do about that either.

I hope you are not the type that will read this book and say “that just
can’t work”, “that cannot be done”, or “I cannot do that”. This type of

Introduction 9

attitude is self-defeating and sad. Over the years I have worked with
positive, open minded individuals, and others who are closed minded and
who insist on a narrow view; open to any way as long as it is their way.
For effective software development in a number of areas, you need to be
open and willing to adapt and change. I often give people a chance to
show me their way first and see how it goes. Give them the benefit of
doubt. If the results are close enough, we will both be happy and I will
have learned something new along the way. If there is a large gap in
results that cannot be dealt with, I will not be happy and if I am
accountable for the project, I will have to do an intervention and re-anchor
the project and process: my way. You start off working with people, then
go around them, and finally you might have to go through them, possibly
removing them from the project.

There is a risk with reading any book like this. You cannot be a
perfectionist or be 100% literal in interpreting the methods and ideas you
read. I have never done two projects exactly the same way. Remember,
this is a book about doing software that you have not been done before.
The implication is that there will be new requirements, new solutions, new
methods, new technology, and new problems to solve.

For high-velocity development you need to be open and willing to
experiment, lead with your chin, and develop fast responses. You cannot
be literal, pedantic, rigid, or a perfectionist if you are going to apply the
ideas you will read here. Over the years I have had supervisors, peers, and
subordinates say that these ideas do not work, cannot work, and could not
have worked. Not possible! Crazy ideas. No so crazy and not so
impossible. They do, can, and have worked; repeatedly. However, they
have to be interpreted in the context of the project you are doing and the
team you have.

If there is one key to my whole approach, it is one underlying
assumption. I try to always remember that:

I never know the right or one-and-only way to do something.

I always doubt. I always question. What I am more confident about are
wrong ways. I know many wrong ways, some of which are less wrong
than others. I am an expert on wrong. I have learned the wrong ways by
making many mistakes in my career. Luckily, most of my mistakes do not
get seen or experienced by the users. I seem to learn best by making
mistakes, by willing to admit that I can and do make mistakes, and then by

Chapter One 10

trying my hardest to learn from the mistakes and not repeat them. In some
sad, sick way, I think I actually like to experience mistakes and fail. I
embrace failures. You learn so much by failing and when you fail and
think about the failure and dissect it, you learn more about whatever you
are trying to do, and more of the subtle bits or hidden causes of failure.
This brings me happiness. This is the discovery element! Creating highly
innovative software is a voyage of discovery and it feels great when you
finally get to the destination.

In the software project context, this means that I am willing to make
mistakes with code and then re-write the code as necessary, when
necessary; you need to know when something is at the end of its life and
when it should be buried. As an undergraduate student in 1974, I wrote the
worst code I have ever seen; fragile and really ugly. It was terrible.

That piece of bad code provided me one of the best lessons in my
software career. The functionality was great and the users were very happy,
but the code was horrendous in terms of robustness, and maintainability. It
was like a plate of cooked pasta. Real spaghetti code. I learned a lot from
that first, major programming experience. It was my first assembler
program, about 5k lines of code, and have tried to avoid the same mistakes
ever since. I had to maintain that piece of code for over two and a half
years, and every day I checked with the operations group: “Did it run last
night?” If not, I would skip algebra, calculus or statistics to fix the
software. I was not asked by my supervisor to take such accountability, I
just thought it was the professional thing to do. I built the fragile system
and I was responsible. In hindsight, I should have built better software and
skipped fewer classes. I buried the code in 1976 by replacing the code
with a much better software program; better user functionality and better
robustness. Code designed to be robust and reliable. I learned many things
because of that experience and I used the lessons in subsequent software.
How good were the lessons? I have been told that the replacement code
was still being used in 2001. Several of the other programs I worked on or
created in the mid-1970s also had long deployments. Some were running a
decade or two later.

I used the lessons again when leading a team in the early to mid-1980s.
A couple of years ago, I was told that the basic ideas, architecture, and
even some of the code developed in 1981-4 were still being used – thirty
years later. I have used the same basic concepts throughout my career. I
learned how to make good code the old-fashioned way; by writing lots of
code, making mistakes and learning from them.

Introduction 11

If you only take three things away from this book, here are my three
most important points to share. They are my humility principles:

 Assume that you really do not know the requirements and what you
think you know about the problem is partial, and possibly wrong.

 Assume that your design is faulty and that pieces will have to be
ditched in a hurry and replaced.

 Assume that your code is buggy and that you are NOT a code ninja.

Notice how these assumptions are aligned with my key underlying
assumption of not knowing what is right! If you apply these three humility
assumptions, I believe that you will then do requirements analysis in a
certain way, that you will then design and build architectures in a certain
way, and that you will then code in a certain way. The end result will be
resilient, flexible, and sympathetic to the user’s changing requirements,
and be very robust. If you assume and act like you are an expert, your
projects will likely stink and will possibly have a short shelf life. If you
assume and act like you are NOT a hotshot, the projects are probably
going to be far better than you imagined they could be.

And, be proud of your mistakes if you have learned from them and
have controlled the damage the mistakes caused. Here is a phrase from a
fortune cookie:

How can you have a beautiful ending without making beautiful
mistakes?

I think that this is very true for software. You can indeed have
beautiful mistakes and they can contribute positively to a system. But not
all mistakes are created equal. There are good mistakes that help get you
to the beautiful endings, and there are mistakes with zero value. I often
describe the task of management as constantly solving problems; some big,
some small. This is what an analyst also does; constantly solving problems
and just like a manager, must develop good problem-solving skills. A
good manager will solve a problem once. If the manager keeps solving the
same problem, being a manager might not be the best career for that
induhvidual. A repeated mistake is not a good mistake. A good architect
and designer should also solve a problem once, or at least remember how
to solve the problem when encountering it again, perhaps in a different
context, going by a different name.

Chapter One 12

This book is not really about the methods and ideas for software
engineering. There is probably not a new or unique idea to be found in this
book. Good programming that is full of commonsense has been done since
the beginning of automation and most ideas are built on other existing
ideas. Some of the suggestions I will make about how to look at mission
critical problems or identify what characteristics to manage via interfaces
are inspired by Babbage’s 1832 masterpiece on manufacturing. Nothing
really new in terms of the individual ideas. What I am describing is how
all of the ideas in the book can be used together.

At the end of the day, it is very much about what the final software
provides the users! It does not matter to me how good the software is with
respect to technical savvy and exotic features, or if the programmer had
fun building the software if the user cannot or will not use it. I do not care
about what can be tweeted about or shared on social media. I do not care
what others think about my code or my designs. I do not worry if others
will make fun of my design or code. They do not matter. The user’s value
comes first. The users matter. Not other geeks or my reputation within the
geek world. I write simple code because I think simple code is best. I can
write fancy code and use obtuse functions and exotic libraries, but I find
that these esoteric approaches rarely actually help the users. The users are
the most important part of software development. They need software that
delivers value, is robust, is maintainable, and can evolve over time.

This is a book about creating software that people want to use. I think
it is about creating good software. What is good software?

Here is a brief summary of what could be called good or ideal software
characteristics:

1. Software should be reliable and available when a user wants to use
it.

2. Software should always focus on the user’s goals and objectives.

3. Software should respect the user’s time and effort, avoiding
unnecessary data entry, unnecessary navigation, and unnecessary
re-entry of data.

4. Software should recognize the user’s knowledge, experience and
adjust the level of guidance and help accordingly.

Introduction 13

5. Software should match the semantics of the task and problem,
using the language of the user community.

6. Software should be generally self-supportive, without the need for
‘outside the system’ spreadsheets, documents, and databases.

7. Software should be intuitive and require minimum documentation,
training, and instruction.

8. Software should naturally fit the user and not force the user to
unnaturally fit the software.

1.2 Your Journey

This section is intentionally left blank – for you to write about your own
experiences and your own learning experiences. Use crayon, pen or pencil.

CHAPTER TWO

ZENTAI DEVELOPMENT

2.1 The Rapids

The terms high-velocity and the white-water analogy of running-the-
rapids are used in this text for several reasons. I use them because they
best capture what the process feels like and looks like from a few meters
away when I am creating really innovative software at high speed. It does
not look like a Waterfall process and it also does not look like Agile. The
software process at times looks ill-formed, chaotic, sometimes looks like it
is full of hand waving, and it seems like nothing is firm. This is not a bad
interpretation. And there is no scrum-master in the traditional sense – best
to think of someone careening down the rapids in a raft, sitting at the rear,
guiding the raft’s journey.

When working in a very rapid way at high-velocity you are inevitably
working with partial information solving partial problems arriving at
partial solutions. This is what is going to happen in the extremely
innovative projects. The more innovative – the more partials! The high-
speed projects I am describing in this book feel like hurtling down the
rapids, twisting and turning, hanging on at
times for survival, careening around
boulders, surviving whirlpools, and without
knowing exactly what is around the bend. If
you do not understand the analogy, surf:
“running class vi rapids”. We are talking
white water and lots of it.

Lots! See the water. Feel the force of
the water? At the extreme level of software
development, your job is to run the rapids
and survive. Zentai Development gives you
the tools and insights necessary to survive.

Zentai Development 15

In these situations, you are relying on the team and the team’s ability
to react quickly to whatever situation is thrown in front of you. At times,
you need to know how to solve problems from first principles. For the
type of software addressed in this book, you cannot rely on the web,
surfing for the answer and then assembling the solution via copy and paste.
You need to know how to program, really program and not rely on
googling skills. Truly innovative software does not get done by cutting
and pasting. So, I like running-the-rapids for a few reasons. Since there
are nice rating schemes for white-water rapids, I will use that analogy
throughout the book.

The running-the-rapids I describe in this text could be considered an
agile and extreme version of Agile/Extreme; when you cannot find
solutions online, find best practices, or just assemble solutions. These
types of developments are not as common as they once were, but if you
are pushing the limits, you might find yourself with one of these. I do not
know of any software rating scheme that can be used for categorizing
software projects with respect to agility requirements. The types of
projects I typically do could be described using the international white-
water classification scheme (American Whitewater – www.awa.org):

 Class VI: Extreme and Exploratory. These runs have almost
never been attempted and often exemplify the extremes of
difficulty, unpredictability and danger. The consequences of errors
are very severe and rescue may be impossible. For teams of experts
only, at favorable water levels, after close personal inspection and
taking all precautions. After a Class VI rapids has been run many
times, its rating may be changed to an appropriate Class 5.x rating.

Although there are exceptions, most of the cases and stories I have
heard about Agile/Extreme being successfully used for read more like
Class I or II:

 Class I: Easy. Fast moving water with riffles and small waves.
Few obstructions, all obvious and easily missed with little training.
Risk to swimmers is slight; self-rescue is easy.

 Class II: Novice. Straightforward rapids with wide, clear channels
which are evident without scouting. Occasional maneuvering may
be required, but rocks and medium-sized waves are easily missed
by trained paddlers. Swimmers are seldom injured and group

Chapter Two 16

assistance, while helpful, is seldom needed. Rapids that are at the
upper end of this difficulty range are designated “Class II+”.

Agile/Extreme concepts can be used at all levels, but it is my view that
the processes and concepts need to be adapted to the type of rapids being
run. This will be talked more about in the project management chapter.
Since I will occasionally refer to the white-water analogy, here are the
remaining classes:

 Class III: Intermediate. Rapids with moderate, irregular waves
which may be difficult to avoid and which can swamp an open
canoe. Complex maneuvers in fast current and good boat control in
tight passages or around ledges are often required; large waves or
strainers may be present but are easily avoided. Strong eddies and
powerful current effects can be found, particularly on large-volume
rivers. Scouting is advisable for inexperienced parties. Injuries
while swimming are rare; self-rescue is usually easy but group
assistance may be required to avoid long swims. Rapids that are at
the lower or upper end of this difficulty range are designated
“Class III-” or “Class III+” respectively.

 Class IV: Advanced. Intense, powerful but predictable rapids
requiring precise boat handling in turbulent water. Depending on
the character of the river, it may feature large, unavoidable waves
and holes or constricted passages demanding fast maneuvers under
pressure. A fast, reliable eddy turn may be needed to initiate
maneuvers, scout rapids, or rest. Rapids may require “must” moves
above dangerous hazards. Scouting may be necessary the first time
down. Risk of injury to swimmers is moderate to high, and water
conditions may make self-rescue difficult. Group assistance for
rescue is often essential but requires practiced skills. A strong
Eskimo roll is highly recommended. Rapids that are at the lower or
upper end of this difficulty range are designated “Class IV-” or
“Class IV+” respectively.

 Class V: Expert. Extremely long, obstructed, or very violent
rapids which expose a paddler to added risk. Drops may contain
large, unavoidable waves and holes or steep, congested chutes with
complex, demanding routes. Rapids may continue for long
distances between pools, demanding a high level of fitness. What
eddies exist may be small, turbulent, or difficult to reach. At the
high end of the scale, several of these factors may be combined.

Zentai Development 17

Scouting is recommended but may be difficult. Swims are
dangerous, and rescue is often difficult even for experts. A very
reliable Eskimo roll, proper equipment, extensive experience, and
practiced rescue skills are essential. Because of the large range of
difficulty that exists beyond Class IV, Class 5 is an open-ended,
multiple-level scale designated by class 5.0, 5.1, 5.2, etc... each of
these levels is an order of magnitude more difficult than the last.
Example: increasing difficulty from Class 5.0 to Class 5.1 is a
similar order of magnitude as increasing from Class IV to Class 5.0.

The basic forms of Agile/Extreme have certain benefits in some
situations when compared to the traditional Waterfall methods and are
agile, flexible, and adaptive in ways that the formal Waterfall methods are
not. However, it is possible to make Agile/Extreme too formal, too reliant
on artifacts, buzzwords, and prescribed how-to-do-it methodologies. The
prescribed methods might be necessary, but they are not sufficient. In
addition, when a method becomes too standard and too formal, it has the
possibility of losing any agility and flexibility it once had. There are no
standards or ‘only way’ or normative prescriptions with Zentai
Development. None. Not possible for innovative development. There are
consistent principles and concepts, but the realization and instantiation of
the process is likely to be different each and every time! If you go into a
Class V or VI rapids with a firm plan that you are fanatically attached to,
you will discover the hard way what extreme and exploratory really means.

I have worked with flexible developers and I have worked with
developers who were very pedantic (i.e., rigid, black and white thinkers
who are excessively rule or text book driven). People who take things
literally and are pedantic will have lots of problems with this book and the
way I develop software. It is like diesel fuel and fire. Key lesson I have
learned: do not mix the two. I have had to occasionally, on some jobs you
just have to accept who and what you are given, and the result has not
been pretty and I have had to rely on Plan B. Plan A was just not going to
work. The mismatched individuals might be fine on some types of
developments but are not well suited for the extreme variety.

To recap, I use the phrase running-the-rapids to capture the feeling of
kayaking or rafting down white water. As you are running the rapids, you
are moving towards something that cannot be initially seen. Structure and
key elements take form, features appear, final tweaking is performed, and
the software takes shape. There is a flourish of movement and it looks
chaotic and that it will never work, but something different is happening.

Chapter Two 18

In the hands of an experienced craftsman, beauty in form and function will
result. The project does not look like anything for a while and suddenly
the form can be recognized, but the path is not straight and linear, the
piece is reworked, and re-crafted. You cannot fight the software, you have
to flow with it, feel it.

You hear the same types of analogies with white water kayaking; not
fighting the river, feeling the river, understanding the river and going with
the river’s flow. Software can be created the same way, with the same
benefits and the same risks. Sometimes you will hit a rock while kayaking
or capsize because of the current. Sometimes the code works and
sometimes it does not and you have to refactor a small bit or do major
surgery. Nothing is perfect, no one is right 100% of the time. Almost
everything is a compromise as well, with various trade-offs between effort,
costs, value, comfort, experience, and evolution.

What is all of this discussion about kayaking and white water leading
up to? Well, I have been wondering if something similar to the six white
water classes could be described for Agile/Extreme software development:

 Class I: Easy. Obvious requirements, many examples, and existing
toolkits. Almost all ideas and features are commonly known, with
simple customization being done. Few problems, all obvious and
easily missed with a little training. Risk to programmers and users
is slight; self-rescue is easy.

 Class II: Novice. Straightforward development with occasional
backtracking and recovery. Majority of functionality is well known
and understood. Almost all problems can be missed by trained
programmers, and individual programmer recovery is most
common. Developers and users usually come out of the process
unscathed.

 Class III: Intermediate. Development with moderate, irregular
patterns of challenges which may be difficult to avoid and which
can delay or cause an over budget situation. Complex maneuvers
are often required to get the functionality right and to complete the
build. Increased requirements effort is required in advance for
inexperienced developers. Delays and problems can be recovered,
but often require a group effort involving additional developers.

Zentai Development 19

 Class IV: Advanced. Intense, powerful development effort as the
requirements and process is turbulent and unstable. Many
requirements become revealed as the project proceeds. Precise
reactive refactoring and redevelopment needed during the
development to keep daily builds going. There may be extended
periods without daily builds as the refactoring and redeveloping
may require additional requirements analysis and prototype
development to test ideas. Risk is moderate to budgets and time
expectations. Additional personnel might be needed at various
points. Some tool work might be needed to adjust the toolkit’s
suitability to the tasks at hand. The work might be done in two
stages; a fuller toothpick before full development is authorized.

 Class V: Expert. Extremely long, challenging developments with
many unstable requirements that will not be revealed till the last
minute during the development. Extended periods of tool crafting
during development and re-jigging the system as major functions
expose themselves. There will be periods where both developers
and users doubt the wisdom of the endeavor. Developers not only
need to know how to deliver the functions, use the tools, and do
minor repairs on the tools, they will likely need the ability to build
tools from scratch. Risk is high and project failure is a strong
possibility. Initial toothpicks and fuller prototypes might be
attempted to address some of the risks, but this will not be possible
for all of the risks.

 Class VI: Extreme and Exploratory. These developments are
relatively unique and few exemplars if any exist. The requirements
are extremely fluid and appear to constantly change. The use of
technology is also pushed to the limit. Progress is extremely
unpredictable. There are many risks and the consequence of error is
severe. This is for teams of experts and all precautions must be
taken.

This book is focused on the last three classes – Class IV Advanced,
Class V Expert, and Class VI Extreme and Exploratory. These are the
categories with increasing degrees of innovativeness.

Two of the checklists we will introduce next in Section 2.2 can help
you size your development to one of the categories. You are definitely in
Class VI if the user situation is going to be extremely complex and full of
end user innovation, and you are also pushing the envelope on the build

Chapter Two 20

side with newness. That is, high degrees of innovativeness in both
checklists get you to the top of the chart! Extreme New-New on a large,
critical project will make it VI. The first checklist in the next section, on
the team, will give you a read for how ready you are for such a ride. Your
team best be prepared for the task at hand.

You can potentially back down to a Class IV or V depending how
extreme the New is. A medium/high combo will likely be a V and a
medium/medium will be a IV. A low/high will also get you into the V or
VI – depending.

Plan and execute accordingly. As the degree of difficulty increases,
you will need to adapt your processes and definitely review your
assumptions and planning estimates. As the difficulty or newness
increases, the crew is different, the tools are different, the prepping is
different, the journey is different. If you ignore this, you will likely join the
list of those who have gone before and who have failed. There have been the
occasional, rare project that blissfully ploughs ahead ignoring all
commonsense and was successful not because of what they did but because
of what others did or did not do. The old phrase – easy to be perceived to be
an eagle when surrounded by turkeys – comes to mind. Successful, long
term enterprises rarely have long streaks of blind, random luck.

For a Class VI rapids, the kayak is likely to be different as the
conditions will be more severe and the kayak might have to be fixed in the
middle of the river, the kayaker will need different skills, experience and
training (might have to fix the kayak), the prepping before the run will be
different, supporting crew different, precautions different, and so on.
Kayaking on grass or in a backyard pool is not the same as experiencing a
Class VI rapids, and creating routine, familiar software is not the same as
creating innovative software.

2.2 Rating the Rapids

We want to be clear. In the truest sense of the word, innovation implies
any change in the status quo. It does not have to be a physical gizmo – it
can be policies, processes, methods, software technology, anything. The
more changes in the status quo, the more innovative the venture! A
software project can be innovative in many possible ways – it can be how
it is actually done, the project management, what tools are used, what the
users see or do, and what the users use. Always think of the who, what,
where, when, why, and how for both the doing and the what.

