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INTRODUCTION 
 
 
 
The Chernobyl accident has been exploited to strangle the worldwide 
development of atomic energy (Jaworowski 2010); but it was necessary 
for a certain period: nuclear technologies should have been prevented from 
spreading to overpopulated countries governed by unstable regimes, 
swarming with actual and potential terrorists. Today, there are no 
thinkable alternatives to nuclear energy: non-renewable fossil fuels will 
become more expensive, contributing to excessive population growth in 
fossil fuel producing countries and poverty elsewhere. The worldwide 
introduction of the nuclear power is a necessity, but it will be possible only 
after a concentration of authority in a powerful international executive. It 
will enable construction of nuclear power plants in optimally suitable 
places, regardless of national borders, considering all socio-political, 
geological and other conditions.  

The overpopulation leads to poverty, overcrowding, pollution of air and 
water, etc. Ecological damage and depletion of non-renewable resources 
are proportional to the population size. Humankind can choose to check 
population growth by reducing the birth rate - instead of raising the death 
rate by means of wars, famine, and epidemics, as it was usual throughout 
the history. The ongoing industrial development of the previously 
underdeveloped countries is precarious because environment protection 
measures are observed less rigorously there and, most importantly, 
because of the large scale of this process, proportional to the population 
size. The exhaustion of fossil fuel resources and contamination of the 
environment provide another argument in favour of the nuclear energy: the 
cleanest, safest and practically inexhaustible means to meet the global 
energy needs (Jaworowski 2010). Producers of the fossil fuels are 
obviously interested in overestimation of biological effects of low-dose 
low-rate exposures to ionizing radiation to strangle the development of 
nuclear energy and maintain high prices for the fossil fuels (Jargin 2015). 

The main purpose of this book was to analyse and to expose biases and 
hidden conflicts of interest in numerous scientific and supposed-to-be 
scientific publications overestimating medico-biological consequences of 
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low-dose radiation thus causing harm to research, practice and economics 
(Jargin 2018).  
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CHAPTER ONE 

HORMESIS AND RADIATION SAFETY NORMS 
 
 
 

Summary 

Hormesis describes processes, where cells or organisms exhibit a biphasic 
response to increasing doses of a substance or condition; typically, low-
dose exposures induce a beneficial response, while higher doses cause 
toxicity (Mattson and Calabrese 2010). Hormesis can be generally 
explained by evolutionary adaptation to the current level of a factor 
present in the natural environment or to some average from the past. This 
pertains also to ionizing radiation as the natural background has been 
decreasing during the time of life existence on the Earth. The DNA 
damage and repair are normally in a dynamic balance. The conservative 
nature of the DNA repair suggests that cells may have retained some 
capability to repair the damage from higher radiation levels than those 
existing today. According to this concept, the harm caused by a 
radioactive contamination would tend to zero with a dose rate tending to a 
wide range level of the natural radiation background. Existing evidence in 
favour of hormesis is substantial, experimental data being partly at 
variance with epidemiological studies. Potential bias, systematic errors and 
motives to exaggerate risks from the low-dose low-rate ionizing radiation 
are discussed here. In conclusion, current radiation safety norms are 
exceedingly restrictive and should be revised on the basis of scientific 
evidence. The elevation of limits must be accompanied by measures 
guaranteeing their observance.  

Background 

This chapter summarizes preceding articles on medico-biological effects 
of low-dose radiation coming to the conclusion that current radiation 
safety norms are exceedingly restrictive and should be revised to become 
more realistic and workable. The main goal is to emphasize the bias 
widespread in the epidemiological research on responses to radiation 
releases, which contributed to policy implementations perpetuating the use 
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of the linear no-threshold theory (LNT) as the basis of radiation safety 
regulations. Current radiation safety norms are based on the LNT: 
extrapolations of a dose-response relationship down to low doses, where 
such relationships are unproven and can become inverse due to hormesis 
(Jaworowski 2010a, Prekeges 2003, Jolly and Meyer 2009, Cui et al. 
2017, Mattson and Calabrese 2010, Sanders 2017). According to the 
current regulations, an equivalent effective dose to individual members of 
the public should not exceed 1 mSv/year. The dose limits for exposed 
workers are 100 mSv in a consecutive 5-year period, with a maximum of 
50 mSv in any single year. For comparison, worldwide annual exposures 
to natural radiation sources are generally expected to be in the range 1-10 
mSv; the estimated global average is 2.4 mSv (UNSCEAR 2000).  

Recent assessments of the data on survivors of atomic explosions in 
Hiroshima and Nagasaki (A-bomb survivors) do not support the LNT and 
are consistent with hormesis (Doss 2016). For solid cancers and 
leukaemia, significant dose-response relationships were found among the 
A-bomb survivors exposed to ≤500 mSv but not ≤ 200 mSv (Little and 
Muirhead 1996, 1998, Heidenreich et al. 1997). The artificial neural 
network methods, applied to the data on A-bomb survivors, indicated the 
presence of thresholds around 200 mSv varying with organs (Sasaki et al. 
2014, Sacks et al. 2016). The value 200 mSv has been mentioned in some 
reviews as a level, below which the cancer risk elevation is unproven 
(Heidenreich et al. 1997, González 2004). According to UNSCEAR 
(2010), a significant elevation was observed at doses ≥100-200 mGy. 
Among others, the underestimation of practical thresholds may result from 
biased epidemiological research.  

The author agrees with Mark P. Little (2016) that potentially biased 
studies and those of questionable reliability “should therefore probably not 
be used for epidemiologic analysis, in particular for the Russian worker 
studies considered here (Ivanov et al. 2006, Kashcheev et al. 2016, 
Azizova et al. 2015a, Moseeva et al. 2014).” This recommendation may be 
extended onto some other studies discussed in this book. Moreover, the 
UNSCEAR evaluation of the low-dose radiation data seems to be prone to 
bias e.g. the overestimation of Chernobyl consequences; more details are 
in the next section. Today, when the literature is so abundant, research 
quality, bias and conflicts of interest must be taken into account defining 
inclusion criteria of studies into reviews. 
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Chernobyl accident 

Using the LNT, the Chernobyl accident (hereafter accident) was predicted 
to result in a considerable increase in radiation-induced cancer. In fact, 
there has been no cancer increase proven to be a consequence of the 
radiation exposure except for the thyroid carcinoma in people exposed at a 
young age (UNSCEAR 2008, Raabe 2011, Anspaugh et al. 1988). 
Although the appearance of radiogenic thyroid cancers after the accident 
cannot be excluded, their number has been largely overestimated due to 
the following mechanisms. Prior to the accident, the registered incidence 
of paediatric thyroid malignancy was lower in the former Soviet Union 
(SU) compared to other developed countries apparently due to differences 
in diagnostic quality and coverage of the population by medical 
examinations (Lushnikov et al. 2006, Jargin 2017). Intensive screening in 
the contaminated territories after the accident detected not only small 
tumours but also advanced neglected ones accumulated in the population, 
misclassified as aggressive radiogenic cancers. Moreover, there was a 
pressure to be registered as Chernobyl victims to get access to benefits and 
health care provisions (Bay and Oughton 2005). It can be reasonably 
assumed that some patients from non-contaminated areas were registered 
as Chernobyl victims on the basis of wrong information. There was no 
regular screening outside the contaminated areas, so that such cases must 
have been averagely more advanced. These phenomena were confirmed by 
the fact that the “first wave” thyroid cancers after the accident were 
averagely larger and less differentiated than those diagnosed after 10 years 
and later (Williams et al. 2004, Nikiforov and Gnepp 1994), when the pool 
of neglected cancers was gradually exhausted by the screening while the 
registration reliability was improved. Admixture of old neglected cases 
explains the fact that Chernobyl-associated thyroid cancers tended to 
behave in an aggressive fashion. The following citation is illustrative: 
“The tumours were randomly selected (successive cases) from the 
laboratories of Kiev and Valencia... [The cancers were] clearly more 
aggressive in the Ukrainian population in comparison with the Valencian 
cases” (Romanenko et al. 2007). There is an explanation: averagely earlier 
cancer detection in Western Europe.  

The misclassification of neglected advanced cases as aggressive 
radiogenic cancers gave rise to the concept that the tumours supposed to 
be radiogenic, at least those from the “first wave” after the accident, were 
more aggressive than sporadic ones (Williams et al. 2004, Zablotska et al. 
2015, Fridman et al. 2015, Iakovleva et al. 2008). This had consequences 
for the practice: although approaches varied, the surgical treatment of 
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supposedly radiogenic cases was recommended to be “more radical” 
(Rumiantsev 2009). After 1998-1999, the surgery in some institutions 
switched to a more aggressive approach (Iakovleva et al. 2008, Demidchik 
et al. 2006).  

The following was recommended for Chernobyl-related paediatric thyroid 
carcinoma: “Radical thyroid surgery including total thyroidectomy combined 
with neck dissection followed by radioiodine ablation” (Demidchik et al. 
2007) or external radiotherapy (40 Gy) (Mamchich and Pogorelov 1992). 
Some experts regarded subtotal thyroidectomy to be “oncologically not 
justified” and advocated total thyroidectomy with prophylactic neck 
dissection (Rumiantsev 2009, Demidchik et al. 1996, Demidchik and 
Kontratovich 2003, Lushnikov et al. 2003). Lesser resections were 
regarded to be “only acceptable in exceptional cases of very small solitary 
intrathyroidal carcinomas without evidence of neck lymph node 
involvement on surgical revision” (Demidchik et al. 2006).  

It was written in a recent instructive publication that bilateral neck 
dissection must be performed in all thyroid cancer cases independently of 
the tumour size, histology and lymph node status (Demidchik and 
Shelkovich 2016). This approach is at variance with a more conservative 
treatment of papillary thyroid carcinoma applied also in the settings of a 
nuclear accident (Sugitani 2017). The sources (Segal et al. 1997, La 
Quaglia et al. 1988) were misquoted by Demidchik and Kontratovich 
(2003) advocating total thyroidectomy with bilateral neck dissection for all 
cases of paediatric thyroid cancer. The sources (Danese et al. 1997, Arici 
et al. 2002, Giuffrida et al. 2002) were cited in support of the statement: 
“The most prevailing opinion calls for total thyroidectomy regardless of 
tumour size and histopathology” (Demidchik et al. 2006). In fact, subtotal 
thyroidectomy was used or recommended in these studies, in some of them 
along with the total thyroidectomy (Danese et al. 1997, Arici et al. 2002, 
Giuffrida et al. 2002).  

Note that many thyroid patients were young females potentially concerned 
with the cosmetic aspect. Moreover, the total thyroidectomy with neck 
dissection is associated with complications such as hypoparathyroidism 
and recurrent laryngeal nerve palsy (Demidchik et al. 1996, Bohrer et al. 
2005, Henry et al. 1998, Rybakov et al. 2000). In this connection, the high 
suicide rate noticed among patients with Chernobyl-related thyroid cancer 
(Contis and Foley 2015, Fridman et al. 2014) might be explained as a 
consequence of decreased quality of life after the excessively radical 
surgery. Admittedly, other experts pointed out that ‘‘radiation history does 
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not appear to significantly affect long-term treatment results, provided an 
appropriate, not principally different from that for sporadic thyroid cancer 
treatment and follow-up had been performed’’ (Saenko et al. 2017).  

Mechanisms of false-positivity have been discussed previously; among 
others, the misinterpretation of nuclear pleomorphism as a malignancy 
criterion of thyroid nodules occurred in the former SU of the 1990s (Jargin 
2016). If a thyroid nodule is found by the screening, a fine-needle 
aspiration is usually performed. The thyroid cytology is accompanied by 
some percentage of inconclusive results, when histological examination is 
indicated. In the former SU of the 1990s, this percentage was relatively 
high due to the insufficient experience with paediatric material, suboptimal 
quality of specimens, shortage of modern literature etc. The surgical 
specimen is sent to a pathologist, who may be sometimes prone, after the 
in toto removal of the nodule, to confirm malignancy even in case of 
uncertainty (Jargin 2016). The fine-needle aspiration cytology was 
introduced into practice later than ultrasonography, which contributed to 
the overdiagnosis of malignancy especially during the 1990s.  

The following citations from a Russian-language professional publication 
are illustrative: “Practically all nodular thyroid lesions, independently of 
their size, were regarded at that time in children as potentially malignant 
tumours, requiring an urgent surgical operation” or “Aggressiveness of 
surgeons contributed to the shortening of the minimal latency period” 
(Lushnikov et al. 2006). Note that the term “latency period” is unsuitable 
if the cause-effect relationship is unproven; in the above context the 
latency should be understood as the time between the radiation exposure 
and surgery.  

Radio- and cancerophobia contributed to the overdiagnosis of cancer. The 
number of detected nodules was additionally increased due to the iodine 
deficiency in the contaminated territories with the enhanced incidence of 
goitre and nodular lesions found by the screening providing more 
opportunities for the false-positive diagnoses. Frozen sections were 
sometimes used, which is suboptimal for histological diagnostics of 
thyroid nodules. 

The facts discussed in this section seem to be camouflaged in the 
UNSCEAR reports. As mentioned above, the registered incidence of 
thyroid cancer in children and adolescents prior to the accident had been 
lower in the former SU than in other developed countries i.e. there was a 
pool of neglected cases. This is not clearly perceptible from UNSCEAR 
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reports because the increased incidence 4-5 years after the accident was 
compared not with the pre-accident data but with those from the first years 
after the accident, when the registered incidence already started to increase 
(UNSCEAR 2008). Health checkups were started in the contaminated 
areas of Russia in 1986, while the risk of TC in children was known. 
Similar actions were conducted in Belarus and Ukraine. In Ukraine, the 
local cancer registry was established in 1987 in the radio-contaminated 
areas, which probably contributed to a better cancer detection and hence to 
the increase in the registered incidence. 

Another example: the number of registered thyroid cancers in Ukraine 
prior to the accident as per UNSCEAR (2008) is higher than 
corresponding data published by IARC (Parkin et al. 1999): 39 cases for 
the period 1982-1985 vs. 25 cases for 1981-1985. These higher figures 
were published with references to “communications to the UNSCEAR 
Secretariat” (UNSCEAR 2008) and the paper by Tronko et al. (2002). 
However, this article could be found neither in online databases, nor on the 
website of the International Journal of Radiation Medicine (edited in 
Kiev): http://www.physiciansofchernobyl.org.ua/magazine/eng/index.html 
(accessed 22 May 2018), nor in libraries. According to the personal 
communication from the UNSCEAR Secretariat (22 October 2013), the 
UNSCEAR was provided with hard copies of this paper. Apparently, the 
paper by Tronko et al. (2002) has never been accessible to the 
international scientific community. The biased attitude within UNSCEAR 
may be conveyed by certain experts pushing through a prescribed notion. 

East Urals Radioactive Trace 

A tendency to exaggerate causal relationships between radiation and some 
diseases in the Techa river and Mayak facility cohorts, usually discussed 
in the context of the East Urals Radioactive Trace (EURT), has been 
noticed recently (Jargin 2014). In earlier papers no increase in cancer 
incidence was reported at doses ≤520 mSv or among all studied workers of 
the Mayak facility. Existence of a threshold was held possible, the keynote 
being the absence of significant radiation-related abnormalities in the 
EURT cohorts (Buldakov et al. 1990, Okladnikova et al. 2000, Tokarskaya 
et al. 2002, Kostyuchenko and Krestinina 1994). It was noticed that 
excessive absolute risk of leukaemia had been 3.5 times lower in the 
Techa river cohort than among A-bomb survivors i.e. the risk from acute 
exposure was higher than that from protracted ones (Akleev et al. 2001, 
2004). Later on, the attitude has apparently changed. The same researchers 
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pointed out a similar level of cancer risk in the EURT cohorts and among 
A-bomb survivors (Akleev and Krestinina 2010, Krestinina et al. 2013a, 
Ostroumova et al. 2008). An unofficial directive could have been behind 
this metamorphosis; potential motives are discussed in Chapter 11. 
Moreover, increased risks of non-malignant diseases - cardiovascular, 
respiratory, digestive - have been reported by the same and other scientists 
in the EURT and Chernobyl cohorts (Ivanov et al. 2006, Kashcheev et al. 
2016, Azizova et al. 2010a, 2011, 2013, 2014a-c, 2015a,b, Moseeva et al. 
2012, 2014, Krestinina et al. 2013b, Yablokov 2009a). For example, the 
incidence of cerebrovascular disease was significantly elevated among 
Mayak workers with a total external dose ≥0.1 Gy protracted over years 
(Simonetto et al. 2015). This is indicative of a bias, in particular, of dose-
dependent self-selection, noticed also by other researchers in radiation-
exposed cohorts (McGeoghegan et al. 2008, Zablotska et al. 2013). It can 
be reasonably assumed that individuals with higher dose estimates were on 
average more interested in medical examinations. In the health care system 
of the former SU, thoroughness of medical examination has often 
depended on a patient’s initiative. According to a personal communication 
(2014) with the EURT expert Ludmila Krestinina, members of the EURT 
cohorts were preoccupied with monetary compensations. Most probably, 
individuals with higher dose estimates or those residing in more 
contaminated areas were more insistent at examinations, visited medical 
institutions more frequently, being at the same time given more attention. 
As a result of the screening effect, observation bias, dose-dependent 
selection and self-selection, diagnostics would be a priori more efficient in 
patients with higher doses, especially of diseases without local symptoms 
such as leukaemia; therefore, epidemiological studies alone e.g. (Little et 
al. 2018) do not prove causality for low doses. 

Besides, a recall bias can cause a systematic error in case-control studies: 
cases would recollect facts related to the exposure better than controls, 
thus contributing to an overestimation of doses among the cases. For 
example, a study that compared self‐reported questionnaires with medical 
reports in patients with thyroid cancer and controls indicated that the 
patients were nearly twice as likely as controls to report x-ray exposures 
even though the medical records demonstrated the exposures to be 
comparable (Jorgensen 2013).  

UNSCEAR (2010) could not draw any conclusions about direct causal 
relationships between doses ≤1-2 Gy and excess incidence of cardiovascular 
as well as other non-malignant diseases, while physiological mechanisms 
are unclear. The above figure ≤1-2 Gy seems to be an underestimation due 
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to systematic errors in the epidemiological research. There is some 
cardiovascular risk associated with high-dose high-rate exposures; for 
example, patients treated by radiotherapy at doses ≥40 Gy to parts of the 
heart may develop heart disease later in life. Some sources discuss also 
lower doses (NAS 2006, Baselet et al. 2016, Darby et al. 2010), which are 
still much higher than averages in the Chernobyl and EURT cohorts. The 
doses associated with cardiovascular damage in animals have also been 
higher than those in the above-named cohorts (UNSCEAR 1962, Schultz-
Hector 1992). The mean total dose to male Mayak workers in a study 
reporting an increase in cerebrovascular diseases was 0.91 Gy protracted 
over years (Moseeva et al. 2012); over 90% of the Techa river cohort in a 
study of circulatory conditions received doses ≤0.1 Gy (Krestinina et al. 
2013b). A relationship of atherosclerosis and cerebrovascular diseases 
with radiation was reported in Mayak workers exposed to external 
irradiation at total doses ≥0.5 Gy and/or to internal α-radiation from 
incorporated plutonium at liver doses ≥0.025 Gy protracted over years 
(Azizova et al. 2010a, 2014a). The excess relative risk (ERR) for 
cerebrovascular diseases among Mayak facility workers was reported to be 
even higher than that in A-bomb survivors (Moseeva et al. 2012), where 
the self-selection bias could have been active as well. It is known that 
correlations do not necessarily prove causality being caused by bias or 
irrelevant factors. The cause-effect relationships for non-cancer outcomes 
for the low dose levels are improbable a priori. Demonstration of 
relationships between low-dose low-rate exposures and non-neoplastic 
diseases cast doubt on the analogous relationships with cancer found in 
epidemiological studies by the same and other researchers using similar 
methods (Azizova et al. 2010b, Krestinina et al. 2007, 2013a, Sokolnikov 
et al. 2008, 2015, Ivanov et al. 2004, Yablokov 2009b). 

Hormesis and radiation safety norms 

Hormesis describes processes, where a cell or organism exhibits a biphasic 
response to increasing doses of a substance or condition; typically, low-
dose exposures induce a beneficial response, while higher doses cause 
toxicity (Mattson and Calabrese 2010). Among hormetic factors are 
various substances and chemical elements, vitamins, light, ultraviolet, 
ionizing radiation and products of water radiolysis, as well as different 
kinds of stress (Kaludercic et al. 2014, Le Bourg and Rattan 2014). For 
factors that are present in the natural environment, hormesis can be 
explained by an adaptation to a current environmental level or some 
average from the past. This pertains also to ionizing radiation. The LNT is 
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based on the concept that cells are altered by ionizing radiation: the more 
tracks pass through cell nuclei, the higher would be the risk of malignant 
transformation. This concept does not take into account that DNA damage 
and repair are normally in a dynamic equilibrium. The natural background 
radiation has been decreasing over the time of life existence on the Earth. 
The conservative nature of the DNA repair suggests that cells may have 
retained some capability to repair damage from higher radiation levels 
than those existing today (Karam and Leslie 1999).  

The evolutionary adaptation to ionizing radiation was explained by the 
increased synthesis of DNA repair enzymes, activated endogenous 
radioprotective mechanisms, achieved e.g. by accumulation of sulfhydryl 
compounds and antimutagens, as well as an increase of the reserve of off-
cycle cells (Burlakova et al. 2016). Hormesis is assumed to work on the 
molecular (stimulating DNA repair) and cellular levels; corresponding 
studies were reviewed by Jolly and Meyer (2009), Jaworowski (2010a), 
Mattson and Calabrese (2010). Eukaryotic cells display an adaptive 
response that enhances their radio-resistance after a low-dose priming 
irradiation (Marples and Skov 1996). So, the repair of DNA damage is 
enhanced in cells irradiated with a priming dose of 0.25 Gy followed by 2 
Gy compared with those irradiated with 2 Gy only (Le et al. 1998). Doses 
50-75 mGy significantly enhanced proliferation of cultured cells via 
activation of signaling pathways (Liang et al. 2011). Furthermore, the 
bystander effect (a biological response of a cell resulting from an event in 
a nearby cell) may play a role in radiobiological responses to low dose 
irradiation. A review by Mitchel (2004) concluded that below 100 mGy, 
the bystander effect reduced rather than increased the risk of radiation-
induced damage and hence of genetic instability. Details of these 
mechanisms are beyond the scope of this book.  

Existing evidence in favour of hormesis is substantial (Scott 2008, 
Baldwin and Grantham 2015, Calabrese 2015, Alavi et al. 2016), which 
means that experimental data are partly at variance with epidemiological 
studies. Among others, there is evidence in favour of hormetic effects of 
low-dose radiation such as activation of DNA repair and apoptosis, 
suppression of inflammation and protection from inflammatory diseases, 
stimulation of anticancer and other immunity. There is experimental 
evidence that low-dose exposure slows ageing and prolongs life (Scott 
2014). Admittedly, not all experiments supported hormesis e.g. showing 
life lengthening of exposed mice (Tanaka et al. 2003). Other studies did 
report life lengthening under similar conditions (Caratero et al. 1998).  
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In animals, doses associated with carcinogenesis have been higher than 
those in the Chernobyl and EURT cohorts, amounting to hundreds or 
thousands mGy (UNSCEAR 1986, 2000, Mitchel 2009, Moskalev 1983, 
Braga-Tanaka 2018). It should be mentioned that radiation hormesis was 
demonstrated also for synergistic interactions. For example, residential 
radon and some professional exposures may protect against lung cancer in 
smokers; in the Mayak facility cohort, radiation hormesis apparently 
protected not only against spontaneous lung cancer but also against that 
associated with the cigarette smoking (Sanders and Scott 2006). In vitro, 
eukaryotic cells show adaptive responses enhancing their radioresistance 
after a low-dose priming irradiation (Jolly and Meyer 2009, Klammer et 
al. 2012, Ojima et al. 2011, Nenoi et al. 2015); the mechanisms are outside 
the scope of this book.  

For such ancient biological phenomena as hormesis and DNA repair, the 
data may be generalized across species (Baldwin and Grantham 2015, 
Calabrese 2015). Further research could quantify radiosensitivity of 
different animal species thus enabling more precise extrapolations to 
humans (Higley et al. 2012).  

The benefit from a moderate exposure to ionizing radiation was reported 
in A-bomb survivors (Luckey 2008), although these data might be not free 
from bias due to a better monitoring of the survivors. Occupational 
exposures were reported to be associated with better health (Prekeges 
2003, Jolly and Meyer 2009), which at least in part can be explained by 
the healthy worker effect. Cancer mortality was found to be lower in high-
elevation areas, where the natural radiation background is enhanced due to 
a higher intensity of the cosmic radiation (UNSCEAR 2010, Prekeges 
2003, Hart 2010). There are many places in the world where the dose rate 
from natural background radiation is 10-100 times higher than the average 
e.g. 260 mGy/year in Ramsar, Iran; yet no higher incidence of cancer or 
other radiation-related diseases has been found in such areas (Sacks et al. 
2016). Those living in Mississippi receive ~2 mGy per year from natural 
radiation, while those living in Colorado receive ~8 mGy per year. 
Nevertheless, epidemiological studies demonstrated that the cancer rate 
mortality in Colorado is 30% less than in Mississippi after correcting for 
confounding factors (Sanders 2017). The screening effect and increasing 
attention of people to their own health may result one day in an increase of 
the registered cancer incidence in areas with high natural radiation 
background, which would prove no causal relationship. The most 
promising way to gather reliable information on low dose effects would be 
large-scale animal experiments. However, the integrity of all participants 
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is needed for that. A mixture of reliable und unreliable studies assessed 
together remains a problem of reviews and meta-analyses. Large-scale 
experiments must be made possibly inexpensive. In our opinion it is 
unnecessary to examine each mouse, perform necropsies (Little 2018, 
Tran and Little 2017) etc. It would suffice to maintain in equal conditions 
large murine populations - unexposed and exposed to different dose rates - 
and to register the average life duration. Such an experiment, being simple 
and relatively inexpensive, would objectively characterize the dose-
response pattern and hormesis.  

Conclusion 

Summarizing the above and previously published arguments (Jargin 2011, 
2016, 2017), the harm caused by radioactive contamination would tend to 
zero with a dose rate tending to a wide range level of the natural radiation 
background. Within a certain range, the dose-effect relationship may 
become inverse due to hormesis. A graph, plotted on the basis of 
experimental data, with a sagging of the dose-effect curve below the 
background cancer risk within the range 0.1-700 mGy (Fig. 7-1), was 
presented in the review by Mitchel (2009). Low doses should be analysed 
separately from higher doses (Rozhdestvenskii 2008, 2011) to prevent 
unfounded LNT-based prognostications e.g. of millions of victims from 
nuclear accidents (Bertell 2006). 

With regard to radiation safety regulations, a new approach is needed - to 
determine the threshold dose using large-scale animal experiments and 
establish regulations to ensure that doses are kept well below the threshold 
level (Doss 2016). In our opinion, current radiation safety norms are 
exceedingly restrictive and should be revised to become more realistic and 
practical. An elevation of limits must be accompanied by measures 
guaranteeing their observance, and by openness of dosimetric data. No 
contraindications have been found to an elevation of the total doses to 
individual members of the public up to 5 mSv/year (Jargin 2018). The 
dose rate would thus remain within the range of the natural background. 
Considering that development of nuclear technologies is needed to meet 
the global energy needs (Jaworowski 2010b), a doubling of limits for 
professional exposures should be considered as well. Strictly observed 
realistic safety norms will bring more benefit for the public health than 
excessive restrictions that might be neglected in conditions of disrespect 
for laws and regulations. Note that disregard of written instructions was 
among the causes of the Chernobyl accident (Beliaev 2006, Semenov 
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1995). The worldwide development of nuclear technologies will be 
possible only after a concentration of authority in the most developed parts 
of the world, the science-informed harmonization of global radiation 
regulatory standards and globalized control of the nuclear industry.  
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