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I.  

INTRODUCTION 
 
 
 
The use of new optical fiber devices in the telecommunication sector 

has seen an important development in the last few years. Among them, 
Fiber Bragg Gratings (FBG) based devices represent an attractive and 
cheap alternative for applications such as multichannel filtering, 
multichannel optical add/drop multiplexing, multichannel dispersion 
compensation and multi wave length laser sources. 

The fiber Bragg grating is a periodic variation of the refractive index 
along the propagation direction in the core of the fiber. It can be fabricated 
by exposing the core of the optical fiber to UV radiations. This induces the 
refractive index change along the core of the fiber. 

The coupled mode theory is most widely used to analyze light 
propagation in a weakly coupled waveguide medium. The fiber Bragg 
grating is a weakly coupled waveguide structure [1]. The coupled mode 
equations that describe the light propagation in the grating can be obtained 
by using the coupled mode theory. There are no analytical solutions for 
these coupled mode equations as yet. Numerical methods must be used to 
solve these equations. 

The transfer matrix method and the direct numerical integration 
method have been used to calculate the solution of the coupled-mode 
equations. Several techniques have been used to fabricate the fiber Bragg 
gratings: the phase mask technique, the point-by-point technique and the 
interferometric technique [2]. 

Uniform Bragg gratings cannot satisfy the demand of some kind of 
applications alone. New types of grating are being manufactured and 
studied by researchers. The chirped, apodized and sampled Bragg gratings 
are some examples of modified gratings that will be studied and simulated 
in this work. 



I.  2

Controlling, combining and routing light are the three main uses of 
fiber Bragg gratings in optical communications. For combining the light, 
fiber Bragg gratings can be used to combine different wavelengths on a 
single optical fiber [3]. This feature of fiber Bragg gratings can be used in 
wavelength division multiplexing (WDM) systems. Different wavelengths 
can be added or dropped in a WDM system by using the route feature of 
the fiber Bragg grating [4]. 

At the end of this document, some channels densification techniques 
will be presented in a case of mono canal and multi channel gratings, these 
channels can be shifted to desired wavelengths by applying temperature 
and strain constraints.  



II.  

THEORY AND FUNDAMENTALS  
OF FIBER BRAGG GRATINGS 

 
 
 

II.1 Introduction 

In 1978, at the Canadian Communications Research Center (CRC), 
Ottawa, Ontario, Canada [5], K.O. Hill et al first demonstrated the 
refractive index changes in a germano-silica optical fiber by launching a 
beam of intense light into a fiber. In 1989, a new writing technology for 
fiber Bragg gratings, the ultraviolet (UV) light side-written technology, 
was demonstrated by Meltz et al [6]. Since then, much research has been 
done to improve the quality and durability of fiber Bragg gratings. Fiber 
gratings are the keys to modern optical fiber communications and sensor 
systems. The commercial products of fiber Bragg gratings have been 
available since early 1995. 

 

Fig  (1). Refractive index change of the fiber Bragg grating [1] 
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A fiber Bragg grating is a periodic perturbation structure of the 
refractive index in a waveguide. Fiber gratings can be manufactured by 
exposing the core of a single mode communication fiber to a periodic 
pattern of intense UV light. The exposure induces a permanent refractive 
index change in the core of the fiber. This fixed index modulation depends 
on the exposure pattern [II.1]. Figure (1) shows the periodic change in the 
refractive index of the fiber core. This short length optical fiber with the 
refractive index modulation is called a fiber Bragg grating. 

The Refractive index modulation can be represented by [7] 

      









 z
2

cosz,y,xnz,y,xnz,y,xn


    (1) 

where  z,y,xn


 is the average refractive index of the core,  z,y,xn  

is the modulation of the refractive index, and Λ is the Bragg period. 

A small amount of incident light is reflected at each periodic refractive 
index change. The entire reflected light waves are combined into one large 
reflection at a particular wavelength when the strongest mode coupling 
occurs. This is referred to as the Bragg condition (2), and the wavelength 
at which this reflection occurs is called the Bragg wavelength. Only those 
wavelengths that satisfy the Bragg condition are affected and strongly 
reflected. The reflectivity of the input light reaches a peak at the Bragg 
wavelength. The Bragg grating is essentially transparent for an incident 
light at wavelengths other than the Bragg wavelength where phase 
matching of the incident and reflected beams occurs [P.1]. The Bragg 
wavelength λB is given by [P.2], as follows: 

 effB n2                           (2)  
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Fig  (2). Diagram illustrating the properties of the fiber Bragg grating [1] 

where effn  is the effective refractive index and Λ is the grating period. 

This is the condition for the Bragg resonance. From equation (2), we can 
see that the Bragg wavelength depends on the refractive index and the 
grating period. 

Long gratings with a small refractive index excursion have a high peak 
reflectance and a narrow bandwidth, as can be seen on Fig (2). 

The fiber Bragg grating has the advantages of a simple structure, a low 
insertion loss, a high wavelength selectivity, a polarization insensitivity 
and a full compatibility with general single mode communication optical 
fibers. Uniform Bragg gratings are basically a reflectance filters. 
According to an application, they can have bandwidths of less than 0.1nm. 
It is also possible to make a wide bandwidth filter that is tens of 
nanometres wide. Reflectivity at the Bragg wavelength can also be 
designed to be as low as 1% or greater than 99.9%. Fiber grating 
characteristics such as photosensitization, apodization, dispersion, 
bandwidth control, temperature constraint, strain responses, thermal 
compensation and reliability issues have been used in optical 
communications and sensor systems [8]. 
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II.2 Coupled mode theory 

In general, we are interested in the spectral response of the Bragg 
grating. The characteristics of the fiber Bragg grating spectrum can be 
understood and modelled by several approaches. The most widely used 
theory is the coupled mode theory [9],10]. The coupled-mode theory is a 
suitable tool to describe the propagation of the optical waves in a 
waveguide with a slowly varying index along the length of the waveguide. 
Fiber Bragg gratings have this type of structure. The basic idea of the 
coupled-mode theory is that the electrical field of the waveguide with a 
perturbation can be represented by a linear combination of the modes of 
the field distribution without perturbations [P.2]. 

The modal fields of the fiber can be represented by [II.1] 

     ziexpy,xez,y,xE jjj       j=1,2,3,….    (3) 

where  y,xe j  is the amplitude of the transverse electric field of the jth 

propagation mode and ± represents the propagation direction, and ßj is 
called the propagation constant or eigenvalue of the jth mode. Generally, 
each mode has a unique value of ßj. In this work, we implicitly assume a 
time dependence exp(-iwt) for the fields where w is the angular frequency. 
The propagation of the light along the optical waveguides in the fiber can 
be described by the Maxwell’s equations. Propagation modes are the 
solutions of the source-free Maxwell equation [9]. 

In terms of the coupled-mode theory, the transverse component of the 
electric field at the position z in the perturbed fiber can be described by a 
linear superposition of the ideal guided modes of the unperturbed fiber, 
which can be written as [P.2] 

       
j

jjt t,z,y,xEt,z,y,xEt,z,y,xE


        (4) 

Be substituting the modal field equation (3) into (4), the electric field 

 t,z,y,xEt


 can be written as [II.1] 

              iwtexpy,xeziexpzAziexpzAt,z,y,xE jt
j

jjjjt   
 (5) 
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where  zA j
 + and  zA j


  are slowly varying amplitudes of the jth 

forward and backward travelling waves respectively; ßj is the propagation 

constant; and  y,xejt


 is the transverse mode field. This electric field 

distribution  t,z,y,xEt


 can be solved by modal methods. 

 t,z,y,xEt


 is one of the solutions of Maxwell’s equation. 

The index of the grating is z-dependent along the fiber. The refractive 

index  z,y,xn  in equation (1) can be rewritten as [P.1] 

       





 



 zz
2

cosznnnznz,y,xn 00       (6) 

where the average refractive index n  is represented as 00 nn   , and 

0n >> 0n  ; 0n  is the refractive index of the core without the 

perturbation; 0n  is the average index modulation (DC change);  zn  

is the small amplitude of the index modulation (AC change);  z  is the 

phase of the grating; and   is the Bragg period. 

The electric field distribution in the grating,  tzyxEt ,,,


 satisfies the 

scalar wave propagation equation. This follows from a simplification of 
the Maxwell’s equations under the weak propagation approximation, and 
is given by [1] 

     0,,,,, 2222  tzyxEzyxnk tt


        (7) 

where 

2

k  is the free space propagation constant, and λ is the free 

space wavelength. 

The electric field  tzyxEt ,,,


 and the refractive index  z,y,xn  are 

substituted into the wave propagation equation (7) to yield the following 
coupled-mode equations [II.1] 
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m
nm

z
mn

t
mnm

m
nm

z
mn

t
mnm

n ziexpKKAiziexpKKAi
dz

dA    (8) 

           


m
nm

z
mn

t
mnm

m
nm

z
mn

t
mnm

n ziKKAiziKKAi
dz

dA  expexp     (9) 

where  zK t
mn is the transverse coupling coefficient between modes n and 

m ,  zK t
mn is given by [10] 

       


 yxeyxezyxdxdy
w

zK mtmt
t
mn ,,,,

4
*       (10) 

where   is the perturbation to the permittivity. Under the weak 

waveguide approximation     ( 0n >> 0n ), nn2  . In general, 
z
mnK << t

mnK for fiber modes, and this coefficient is thus usually 

neglected. 
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II.3 Applications of fiber Bragg grating 

Table I. Applications of fiber Bragg gratings  

                                                            Fiber grating sensors 

                                       Temperature, strain and pressure sensors [11] [12] 
                                        Distributed fiber Bragg grating sensor systems [13] 
                                                                   Fiber lasers 

                                                Fiber grating semiconductor lasers  [14] 
                                     Stabilization of external cavity semiconductor lasers [15] 
                                                       Erbium-doped fiber lasers [16] 

                                                       Fiber optical commnications  

                                                         Dispersion compensation [17] 
                                            Wavelength division multiplexed networks [18] 
                                       Gain flattening for erbium-doped fiber amplifiers [19] 
                                                           Add/Drop multiplexers [20] 
                                                                   Comb filters [21] 
                                                            Interference reflectors [13] 
                                                               Pulse compression [22] 
                                                              Wavelength tuning [23] 
                                                               Raman amplifiers [24] 
                                                        Chirped pulse amplification  [25] 

 
There are a number of applications of fiber gratings in lasers, 

communications and sensors. For example, fiber Bragg gratings can be 
used as a multiplexer and a demultiplexer in wavelength division 
multiplexed systems, and as a dispersion compensator in communication 
systems (see table I). 

Fiber Bragg gratings have a low insertion loss, a low polarization-
dependent loss and an excellent spectral response profile. This makes them 
suitable for the applications of fiber optical sensors [10]. 

They can be used for the manufacturing of the fiber lasers on the 
device manufacturing [1].  

II.4 Modeling of fiber Bragg grating 

In most fiber gratings, the induced index change is approximately 
uniform across the core, and there are no propagation modes outside the 
core of the fiber. In terms of this supposition, the cladding modes in the 
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fiber are neglected in this simulation program. If we neglect the cladding 
modes, the electric field of the grating can be simplified only to the 
superposition of the forward and backward fundamental mode in the core. 
The electric field distribution (4) along the core of the fiber can be 
expressed in terms of two counter-propagating modes under the two-mode 
approximation [9]. 

            y,xeziexpzAziexpzAt,z,y,xE tjjjj     (11) 

where A+ (z) and A- (z) are slowly varying amplitudes of the forward and 
backward travelling waves along the core of the fiber, respectively. The 
term E(x, y, z) from equation (4) can be substituted into coupled-mode 
equations (8) and (9). The coupled-mode equations can be simplified into 
two modes, which are described as [9] 

         zSzikzRzˆi
dz

zdR
          (12) 

         zS*zikzSzˆi
dz

zdS
           (13) 

where     













 

 

2
ziexpzAzR and     














 

 

2
ziexpzAzS  [26]; 

 zR  is the forward mode and  zS  is the reverse mode, and they 

represent slowly varying mode envelope functions. ̂  is a general “DC” 

self-coupling coefficient [10], and  zk  is the “AC” coupling coefficient 

[10], also called the local grating length [27]. 

           The simplified coupled-mode equations (12) and (13) are used in 
the simulation of the spectral response of the Bragg grating. The coupling 

coefficient  zk   and the local detuning  ẑ are two important 

parameters in the coupled mode equations (12) and (13). They are 
fundamental parameters in the calculation of the spectral response of the 
fiber Bragg gratings. The notations of these two parameters are different, 
depending on the different authors in the literature. 

The general “DC” self-coupling coefficient ̂  can be represented by [1] 
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dz

d

2

1
n

2
eff







     (14) 

Where 
dz

d

2

1 
 is describing a possible chirp of the grating period, and   

is the grating phase [10]. The detuning  can be represented by [P1] 



  

                     D         (15) 

                     









D
effn


 11

2  

where  effD n2  is the design wavelength for the Bragg reflectance 

and  effn  is the refractive index change. 

The coupling coefficient  zk  can be represented by [P1] 

   vzgnzk eff



     (16) 

where  zg
 is the apodization function and v  is fringe visibility. 

There is no input signal that is incident from the right-hand side of the 
grating S(+L/2)=0 , and there is some known signal that is incident from 
the left side of the grating R(-L/2)=1 (fig (3)). Depending on these two 
boundary conditions, the initial condition of the grating can be written as 
in equations (17) and (18). The reflection and transmission coefficients of 
the grating can be derived from the initial conditions and the coupled-
mode equations. 
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Fig  (3). The initial condition and calculation of the grating response to input field 
[1] 

Left side : 
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Right side : 
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      (18) 

The amplitude of the reflection coefficient  can be written as 



















2

L
R

2

L
S

         (19) 

The power reflection coefficient r (reflectivity) can be written by 
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2r         (20) 

II.5 Uniform Bragg grating 

The phase matching and the coupling coefficient are constant in the 
case of uniform Bragg gratings. Equations (12) and (13) are first-order 
ordinary differential equations with constant coefficients. There are 
analytical solutions for equations (2) and (3). The analytical solutions of 
the coupled-mode equations can be found with the boundary conditions 
from equations (17) and (18). 

As the chirp 
dz

d
is zero, the local detuning ̂  is described as: 

effn
2





     (21) 

The solution of the complex reflection and transmission coefficients can 
be expressed by [29] 

     LLi

L
zik

zA
BBB

B





coshsinh

2
sinh

















 


      (22) 

     LcoshLsinhi

2

L
zsinhi

2

L
zcosh

zA
BBB

BBB

















 














 






   (23) 

where B  is described by  [29] 

 2222    kkB      (24) 

 2222    kkiB      (25) 
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The reflected spectrum can be obtained and described by [29] 

   
   LcoshLsinh

Lsinhk
r

B
22

BB
22

B
22




        (26) 

The phase of the reflected light with respect to the incident light can be 
obtained from equations (22) and (23), and is described by [28] 

   



 



  Lcothtan B
B1
        (27) 

At the Bragg wavelength, ̂  = 0 , the grating has the peak reflectivity 

maxr , which is [28] 

   Lktanhrr 2
Dmax         (28) 

It is evident from equation (28) that the reflectivity of Bragg gratings is 
close to 1 when the modulation of the index and the grating length are 
increased. 

The group time delay and the dispersion of the grating can be obtained 

from the phase information    of the reflection coefficient [P1].  

The delay time p  ( in ps) for the reflected light in a grating is defined 

as follows [P1] 











d

d

c2dw

d 2

p          (29) 

The dispersion pd  (in ps/nm) can be defined as [P1] 
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2

p
2

2p

2

p
22

pp
p

dw

dc2
d

d

d

c2

2

d

d
d


























     (30) 

II.6 The transfer Matrix method for the  
Bragg grating simulation 

The transfer matrix method was first used by Yamada [30] to analyze 
optical waveguides. This method can also be used to analyze the fiber 
Bragg problem. The coupled-mode equations (12) and (13) can be solved 
by the transfer matrix method for both uniform and non-uniform gratings. 
Figure (2.4(a)) is the basic ideal structure that the transfer matrix  

 

Fig  (4). The principle diagram of the transfer matrix method (a) uniform grating 
(b) non-uniform grating [1] 

method uses to solve for a uniform Bragg grating. The refractive index 
excursion and the period remain constant. For this case, the 2 x 2 transfer 
matrix is identical for each period of the grating. The total transfer matrix 
is obtained by multiplying the individual transfer matrices. 

A non-uniform fiber Bragg grating can be divided into many uniform 
sections along the fiber. The incident lightwave propagates through each 
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uniform section i that is described by a transfer matrix Fi . For the 
structure of the fiber Bragg grating, the matrix Fi can be described as [10] 

     

     




































dzsinh
ˆ

idzcoshdzsinh
ˆ

i

dzsinh
k

idzsinh
ˆ

idzcosh
F
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BB
B

B
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B

i

      (31) 

where k is described by the equation (16), ̂  is described by the equation 

(14) and B  is described by equations (24) and (25). 

The entire grating can be represented by [1] 
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II.7 Chirped fiber Bragg gratings 

II.7.1 The principle of a chirped Bragg grating 

A chirped Bragg grating is a grating that has a varying grating period. 
There are two variables that can be changed to obtain a chirped grating 
from the equation (2): one is to change the Bragg period; another is to 
change the refractive index along the propagation direction of the fiber 
[P1]. 

 

Fig (5). A linear chirped Bragg grating [1] 

Figure (5) shows a linear chirped Bragg grating. In this case, the period 
of the grating varies linearly with the position. This makes the grating 
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reflects different wavelengths (or frequencies) at different points along its 
length [1]. 

Chirped Bragg gratings can also be modeled by the coupled-mode 
theory. The refractive index of the chirped Bragg grating can be expressed 
by [10] 

        












 
z

0

d2
z2

cosz,y,xnz,y,xnz,y,xn


      (33) 

where   is the Bragg period and    describes the instantaneous phase 

of the chirped grating. There are no analytical solutions for the coupled-
mode equations of chirped gratings. Numerical methods must be used to 
solve the equations. 

The period is changed along the z -direction, so that the Bragg 

wavelength B  of any point is different in the Bragg grating. 

Changing the refractive index n  along the z -direction has the same 
effect as changing the period along the z -direction. This means that the 
optical period is changed even though the physical period of the grating is 
fixed. So, these two variables can be merged, and described by one 
variable. 

The phase term 
dz

d

2

1 
in equation (14) is related to a physical or an optical 

period change, it can be written as [P3] [P1] 

 zdz

d

2

1 physical
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where  z  is the physical period, it can be written as [P3] 

  g0 cz             (37) 

0  is the initial physical period and gc  is the grating chirp parameter. 

 effn  is the effective refractive index, 
db

d D is a rate of a change of the 

design wavelength with the position in the grating (chirp variable) , F is 
the chirp parameter and L is the grating length. 

Both the chirp variable 
db

d D and the chirp parameter F can be used to 

solve the coupled mode equations of the linear chirped grating.  

The parameter  ib  represents the refractive index chirp distribution at 

each section of the grating, it can be written as [P4] 

   1icib 1g  , i=1….N      (38) 

b, initialized to zero at the first section, increases by the chirp 1gc  until it 

reaches the maximum refractive index change chirp at the end of the 
Bragg grating, while N is the number of sections. 

In order to make an equivalence between the physical period chirp gc  , 

the refractive index chirp 1gc  and the chirp variable 
db

d D , we have 

synthesized the optical period chirp (refractive index chirp 1gc and the 

chirp variable ) from the physical period chirp ( gc ). 
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Table II. Bragg gratings parameters used for simulation  

Grating 
parameters 

Figure (6) Figure (7) Figure (8) Figure (9) 

Grating length 
(L (cm)) 

 
0.7 

 
0.5 

1 
0.7 
0.5 

 
0.7 

Refracrive index 
change (δn) 

 
0.0004 

 
0.0004 

 
0.0004 

0.0002 
0.0004 
0.0006 

Effective index 
refraction 

(neff) 

 
1.447 

 
1.447 

 
1.447 

 
1.447 

Bragg 
wavelength 
(λD (μm)) 

 
1.550 

 
1.550 

 
1.550 

 
1.550 

Chirp variable 
(dλD/db(nm/cm)) 

-1 
+1 

-1 
-2 
-4 

 
-1 

 
-1 

Maximum 
refractive index 

chirp 
(b(i)) 

0.7 0.7 0.7 0.7 

Number of 
sections 

(N) 

150 150 150 150 

 

We assume that the initial physical period  0  is 535.6 nm and the 

physical chirp gc  is 0.0335 nm, the reconstructed refractive index chirp 

1gc  and the chirp variable 
db

d D values are 0.0337 and -1.3821 nm/cm, 

respectively. 

II.7.2 The simulation results of the spectral response 

Linear chirped Bragg gratings can be simulated by the simulation 
program developed in this work. We can use this simulation to optimize 
the design of the chirped Bragg gratings. Table II summarizes the Bragg 
grating parameters used in these simulations.  
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II.7.2.1 Linear chirped gratings with different chirp variables 

The first simulation of linear chirped gratings is presented for two 
gratings with the same parameters. Only the sign of the chirp variable 
dλD/dz is reversed. 

Figure (6) contains the simulation results of the reflectance with a 
changed chirp variable dλD/dz. The refractive index δn and the grating 

length L are fixed. If 
db

d D is positive, the period of the linear chirped 

grating increases along the propagation direction. On the other hand, if 

db

d D is negative, the period of the linear chirped grating reduces along the 

propagation direction. In the simulation program, the value of 
db

d D  can 

be positive or negative. In the plot of Fig (6), we can see that the spectral 
responses of these two linear chirped gratings are shifted from the 
designed Bragg wavelength.  

 

Fig (6). The reflectivity spectrum of two chirped gratings, with an equal chirp with 
different signs [P1] 
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If 
db

d D  is negative, the centre wavelength of the grating moves to the left 

hand side (shorter λ). If 
db

d D  is positive, the centre wavelength of the 

grating moves to the right hand side (longer λ). Both of them have the 
same 3 dB bandwidth.  

Figure (7) shows that the 3dB bandwidth of the reflectance spectrum is 

increased when the value of the chirp variable 
db

d D  is increased, whereas 

the reflectance is reduced. This is not what we expected intuitively. So we 
can see that the increased bandwidth results in the reduced reflectance at 
the same time. Figure (7) shows also that the centre wavelength is shifted 
with different values of the chirp variable. This feature can be utilized in 
sensor systems [II.1]. 

II.7.2.2 Linear chirped gratings with different lengths 

Figure (8) shows the reflectance spectrum of linear chirped gratings 
with different lengths where the chirp variable dλD/dz is the same. 

In Figure (8), we used the same value of the chirp variable 
db

d D in the 

simulation. The maximum reflectance is almost the same whereas the 
length of the chirped grating is increased. The bandwidth increase is 
proportional to the length. 
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(a) 

Fig (7). The reflectivity spectrum of two chirped gratings, with different values of 
the chirp variable [P4] 
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Fig (8). The reflectivity spectrum of three chirped gratings, with different lengths 
[P1] 

II.7.2.3 Linear chirped gratings with different refractive index change 

Figure (9) shows the reflectance spectrum of linear chirped gratings 
with different values of the refractive index change δn. 
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Fig (9). The reflectivity spectrum of three chirped grating with different refractive 
index change [P1] 

The reflectance is increased with increasing δn values. At the same 
time, the 3dB bandwidth of the reflectance is increased slightly. In this 

simulation, the value of the chirp variable 
db

d D is kept constant. The 

increase in the index value δn is limited by the fabrication technology used 
for the grating. The index change δn can only be changed in certain 
limited range. A flat reflectance spectrum can also be obtained by 
increasing the length of the grating as shown in fig (8). 

II.7.2.4 The Relationship between the centre wavelength and the 
chirped grating coefficients 

The centre wavelength is an important variable in the chirped Bragg 
grating. It is dependent on the chirp parameter or the chirp variable, the 
refractive index change and the grating length. The simulation results will 
show the relationship between the centre wavelength and the chirped 
grating coefficient. 
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