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1 Preface

Mathematics are the Equations of Mathematical Physics. They are
based on numbers and mental constructs which we feel to be satisfy-
ing and helpful in our endeavour to survive in relation with the world,
nature and humans (Planck). The equations are the tools of Theoret-
ical Physics. Both Mathematics and Physics have each their own halo
of pseudo-science, a lot of nonsense which goes under the same name
as the main scientific core. This is so, because both these sciences are
successful and nobody can say what they are in fact. As if they came
as strange living beings from an alien, superior world (God’s world?).

Wigner would have said, approximately: "The miracle of the appro-
priateness of the language of mathematics for the formulation of the
laws of physics is a wonderful gift which we neither understand nor
deserve"; many believe it is God’s gift. But nothing could impose
itself upon us, and we would not have accepted such a wonderful gift,
without understanding it; except for one thing: our own subjectivity.
Mathematics and Physics are our own subjectivity; the difference is
made by the quality of our subjectivity. The objectivity is the sub-
jectivity of the "great" men.

Mathematics, as well as Physics, contains a few things which impose
themselves upon our mind with necessity, with force, authority, and
beauty; or, perhaps, simply, we just recognize them as being quite fa-
miliar to us. We do not know, in fact, what they are, nor where they
come from. It is in the human soul the perversion to assert our arro-
gance in matters which we do not understand. Out of this perversion,
an immense body of useless, fake, ungracious and, ultimately, perni-
cious things arise, which go, falsely, under the name of Mathematics
or Physics. The most important thing in Mathematics and Physics is
to be lucky enough to avoid the nonsense, the monstrous, pathological
constructions which bring pain (Landau); such constructions are not
even wrong (Pauli). I chose here the basic elements of Mathematics
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1 Preface

which I felt are healthy. I have never seen a textbook on Mathematics
which was not long, though titles like Methods, Introduction, Course,
etc, seem to be meant to convey that only important things were in-
cluded; nothing more misleading. Mathematics or Physics authors,
for their great majority, seem to not compare themselves at all with
mathematicians or physicists. I hope this booklet is different, at least
by its brevity.

Mathematics has been made by numerous people along many years.
I give here a list:

Isaac Newton (1642-1727), Gottfried Wilhelm Leibniz (1646-1714),
Jacob Bernoulli (1654-1705), Johann Bernoulli (1667-1748), Brook
Taylor (1685-1731), Nicolas Bernoulli (1687-1759), Daniel Bernoulli
(1700-1782), Leonhard Euler (1707-1783), Jean le Rond d’Alembert
(1717-1783), Joseph-Louis Lagrange (1736-1813), Pierre-Simon Laplace
(1749-1827), Adrien-Marie Legendre (1752-1833), Jean Baptiste Joseph
Fourier (1768-1830), Carl Friedrich Gauss (1777-1855), Simeon De-
nis Poisson (1781-1840), Friedrich Bessel (1784-1846), Augustin-Louis
Cauchy (1789-1857), George Green (1793-1841), Niels Henrik Abel
(1802-1829), Carl Gustav Jacob Jacobi (1804-1851), William Rowan
Hamilton (1805-1865), Johann Lejeune Dirichlet (1805-1859), Karl
Weierstrass (1815-1897), George Stokes (1819-1903), Arthur Cayley
(1821-1895), Hermann von Helmholtz (1821-1894), Leopold Kronecker
(1823-1891), Gustav Kirchhoff (1824-1887), William Thomson (Lord
Kelvin) (1824-1907), Georg Friedrich Bernhard Riemann (1826-1866),
James Clerk Maxwell (1831-1879), Josiah Willard Gibbs (1839-1903),
John William Strutt (Lord Rayleigh) (1842-1919), Jean-Gaston Dar-
boux (1842-1917), Ferdinand Georg Frobenius (1849-1917), Oliver
Heaviside (1850-1925), Henri Poincare (1854-1912), David Hilbert
(1862-1943), Erik Ivar Fredholm (1866-1927), Henri Lebesgue (1875-
1941), Peter Debye (1884-1966), Erwin Schrodinger (1887-1961).

They have been decisively aided in their endeavour by many others
who remained anonimous.

I include here a list of a few basic books of Mathematics:

E. T. Whittaker and G. N. Watson, A Course of Modern Analy-
sis, Cambridge Univ. Press, Cambridge (1927); G. N. Watson, The-
ory of Bessel Functions, Cambridge Univ. Press, Cambridge (1922);
H. Bateman, Partial Differential Equations of Mathematical Physics,
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1 Preface

Cambridge, NY (1932); R. Courant and D. Hilbert, Methods of Math-
ematical Physics, vols. 1, 2, Springer, Berlin (1937); A. Sommerfeld,
Partielle Differentialgleichungen der Physik, Vorlesungen uber Theo-
retische Physik, 3tte Band, Akademische Verlagsgesellschaft, Leipzig
(1947); P. M. Morse and H. Feshbach, Methods of Theoretical Physics,
vols. 1, 2, McGraw-Hill, NY (1953); A. N. Tikhonov and A. A.
Samarskii, Equations of Mathematical Physics, Dover, NY (1963);
V. S. Vladimirov, Equations of Mathematical Physics, Dekker, NY
(1971); M. Abramowitz and I. A. Stegun, eds., Handbook of Math-
ematical Functions, Nat. Bur. Standards, Washington (1964); I. S.
Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,
eds. A. Jeffrey and D. Zwillinger, 6th ed., Academic Press, NY (2000).

The present booklet includes a Chapter on Introductory Elements
and Chapters on Differential Equations, Harmonic Oscillator, Laplace,
Poisson and Wave Equations, Vector Wave Equations, Quasi-Classical
Approximation and Ordinary Differential Equations. More about
Complex Variable, Perturbations and Variational Calculus, Integral
Equations, or Probabilities, Differential Geometry and Group Theory
are specific to various disciplines in Theoretical Physics. Very useful
are particular examples of solved problems of Mathematical Physics,
which might be included in the present book.
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2 Introductory Elements

2.1 Linear Algebra

2.1.1 Vectors

A set x = (x1, x2, ...xn) of n real numbers, called components, is
called an n-dimensional vector. We can add vectors, with usual rules,
the null (zero) vector being 0 = (0, 0, ...0); we can multiply vectors
by scalars λ, µ, etc, and get linear combinations of the form λx +
µy; we say that vectors form a vectorial space (with n dimensions),
and we can represent vectors as geometrical segments of straight lines
pointing from the origin 0 to the point of rectangular coordinates
xi, i = 1...n, taken along the corresponding axes. This construction
implies a reference frame, and we can rotate vectors (or the reference
frame); the scalars remain unchanged under such rotations.

We define an inner (or scalar) product by xy = xiyi (repeating indices
being summed), and see that x2 = xx = x2i is the Pythagora’s theorem

with x =
√
x2 the length of the vector; it is also called the norm of the

vector x, denoted also by |x|. (The product of a vector by a scalar is
an "external" product). The scalar product defines the cosine of the
angle α made by two vectors, xy = xy cosα, which can be seen easily
by rotating the vectors such as to superpose one of them along an axis.
If xy = 0 the (non-vanishing) vectors x, y are orthogonal. We have
the Schwarz inequality xy ≤ xy, since, for instance, (λx + y)2 ≥ 0
as a trinomial in λ. We define the basis vectors ei = (0, 0, ...1, ...0),
with 1 on the i − th position and 0 in all the other places, and can
write x = xiei. The basis vectors are orthogonal, eiej = δij , and even
orthonormal since ei = 1 for any i; they are unit vectors; δij = 1 for
i = j and δij = 0 for i 6= j is the Kronecker’s symbol. These vectors
are said to form a canonical basis. The products xei/x = xi/x define

5



2 Introductory Elements

the direction cosines of the angles made by vector x with respect to
the references axes.

If the non-vanishing vectors are such that λ1x1 +λ2x2 + ...λmxm = 0
implies all λi = 0, we say that these vectors x1,...m are linear indepen-
dent; the basis vectors ei, i = 1, ...n, are linear independent. The basis
vectors ei and any other (non-vanishing) vector x are linear depen-
dent, because x can be written as a linear combination of the basis.
This latter statement, concerning the representation of any vector x

by the basis vectors is also called the completeness statement; the
orthogonal basis of the n vectors ei constructed above is complete.
Any set of independent vectors v1, v2, v3,... can be orthogonalized
(or even orthonormalized) by the Schmidt procedure (Erhard Schmidt
(1876-1959)): v1,v2+λv1, v3+µv1+νv2, etc; requiring the orthogo-
nalization (or orthonormalization) we can find the scalars λ, µ, ν, etc
in these combinations.

The construction of vectors described above can be generalized in
multiple ways; for instance, including complex numbers, or functions,
etc, with a suitable definition of the scalar (inner) product. Functions
are represented as linear combinations of infinitely many orthogonal
functions; the scalar product of two functions f and g can be defined
as the integral of the product f∗g.

2.1.2 Matrices

A (square) matrix A = (aij), i, j = 1, 2, ...n is a set of numbers aij ,
called elements, arranged in rows and columns,

A =




a11 a12 ... a1n
a21 a22 ... a2n
...
an1 an2 ... ann


 , (2.1)

which appears in the system of linear equations

Ax = y , aijxj = yi ; (2.2)

it defines a linear transformation, since A(λx1 + µx2) = λAx1 +
µAx2 = λy1 + µy2. The inversion of the matrix A gives the solu-
tion x of the system of equations (2.1), and it is written formally

6



2 Introductory Elements

as x = A−1y; we can define summation and multiplication of the
matrices, the latter by

aijbjk = cij , AB = C , (2.3)

which implies the multiplication of the rows of A by the columns of B.
We can see that the multiplication of matrices is not commutative. We
can also define the multiplication of a matrix by a scalar, which implies
the multiplication by that scalar of all the elements of the matrix.
The inverse A−1 is that matrix with the property A−1A = AA−1 = 1,
where the unit matrix 1 has unity for all its diagonal elements and
zero for all the others, 1ij = δij .

The solution of the system of equations (2.2) and, implicitly, the in-
verse matrix A−1 are obtained by elementary calculations, which usu-
ally involve determinants. The generalization of such calculations is
called the fundamental theorem of linear systems of equations. For
y 6= 0 (inhomogeneous system of equations) it may happen that not
all of the n equations (2.2) are independent; suppose that only r ≤ n
are independent, the remaining n − r equations being obtained from
the independent ones by multiplication by scalars and addition; they
are linear combinations of the others; then, n − r unknowns are free
parameters and the system is solved by the r-determinant; r is called
the rank of the matrix A (or of the system) and the system is said
to be undetermined. We can see that the solution is given by the
non-vanishing determinant of the highest order (rank), since if a de-
terminant has one or more lines (or columns) which are linear com-
binations of the others (i.e. they are not independent), then it is
vanishing. We can see that the matrix A is inversible, i.e. there exists
the inverse A−1, if and only if detA 6= 0. If y = 0 (homogeneous
system), the solution of the system of equations (2.2) is, in general,
x = 0, unless the determinant of the matrix A is vanishing (detA = 0);
in that case, one or more equations are dependent on the others, a
corresponding number of unknowns are free (undetermined), and the
system is solved again by the remaining non-vanishing determinant of
the highest order.

In general, the elements of a matrix A may be complex numbers.
A∗ = (a∗ij) is the conjugate matrix, A

′

= (a
′

ij) = (aji) is called the
transposed matrix, or the transpose of A, A+ = (a∗ji) is called the

7



2 Introductory Elements

adjoint matrix, or the adjoint of A; if A = A+, the matrix is said to be
hermitian, if A = A

′

, the matrix is symmetric, if a real matrix is such
that AA

′

= A
′

A = 1, it is called orthogonal, if a matrix is such that
AA+ = A+A = 1, the matrix is said to be unitary. The inverse matrix
is obtained as A

−1

= (aij)/detA, where aij is the co-factor of aij : we
take the transpose, compute the determinant obtained by removing
the i − th line and the j − th column in this matrix, multiply this
determinant by (−1)i+j and get the co-factor. The absolute value of
the determinant of a unitary matrix is equal to unity, the determinant
of an orthogonal matrix is equal to ±1.

2.1.3 Quadratic forms. Diagonalization

A quadratic form is the scalar product of x by Ax = y, denoted
now by (x, Ax) = xy = aijxixj ; if x is a complex vector, the def-
inition is (x, Ax) = x∗y = aijx

∗
i xj ; the scalar product in this case

reads (x,y) = x∗y = x∗i yi; we note that (x,y)∗ = (y,x); obviously,

(x, Ax) = (A
′

x,x) or (x, Ax) = (A+x,x), where A
′

is the transpose
and A+ is the adjoint of A. Similarly, a bilinear form is defined as
(y, Ax) = aijyixj , with similar properties. If the matrix is symmetric
or hermitian, the forms are said to be symmetric or hermitian, respec-
tively. We can represent the vectors by columns of their components,
then the vector on the left in the scalar product is a row, and the
scalar product obeys the multiplication rule of matrices (i.e. rows by
columns).

In the system of equations

Ax = λx , (2.4)

x is called an eigenvector and the scalar λ is called an eigenvalue
(or characteristic value) of the matrix A. The system can be solved
providing det(A−λ·1) = 0, where 1 denotes the unit matrix. This is an
algebraic equation of order n in λ, called the characteristic equation,
which, in general, has n (complex) solutions for λ, some of them
multiple; the multiple eigenvalues are called degenerate eigenvalues.
The set of eigenvalues is called the spectrum of A. Therefore, there
are n eigenvectors and n eigenvalues, so that we can write

Ae(i) = λie
(i) (2.5)

8



2 Introductory Elements

for the i− th eigenvector e(i); and we can take the bilinear form

(e(j), Ae(i)) = (A+e(j), e(i)) = λi(e
(j), e(i)) . (2.6)

Now, suppose that A = A+ is hermitian; then

(A+e(j), e(i)) = (Ae(j), e(i)) = λ∗j (e
(j), e(i)) (2.7)

and from equations (2.6) and (2.7) we get

0 = (λi − λ∗j )(e
(j), e(i)) (2.8)

by subtraction; therefore, for i = j we can see that the eigenvalues are
real, while for i 6= j we can see that the eigenvectors are orthogonal;
we can take them orthonormal, (e(j), e(i)) = δij , or, by components,

e
(j)∗
k e

(i)
k = δij ; (2.9)

we define the matrix Cij = e
(j)
i , i.e. we arrange the eigenvectors as

columns in a matrix; the orthogonality equation (2.9) reads

C∗
kjCki = δij , (2.10)

or (C+)jkCki = δij , i.e.
C+C = 1 , (2.11)

which means that the matrix C is a unitary matrix, since C+ = C−1;
and we have also CC+ = 1. Equation (2.6) becomes

e
(j)∗
k akle

(i)
l = λiδij , C

∗
kjaklCli = λiδij ,

(C+)jkaklCli = λiδij , C
+AC = (λiδij) = Ã ;

(2.12)

we can see that the hermitian matrix A (A+ = A) can be brought to

the diagonal form denoted Ã (with eigenvalues λi on the diagonal) by
a linear, unitary transformation C (C+ = C−1), formed by the or-
thogonal eigenvectors arranged in columns. Usually, the eigenvectors
corresponding to a multiple eigenvalue can be orthogonalized, so we
have the diagonalizing matrix C. It is said in general that a matrix
A is brought to its diagonal form by a linear transformation C which

9



2 Introductory Elements

transforms the equation Ax = λx into ACe = λCe, through x = Ce,
i.e. C−1ACe = Ãe = λe; for hermitian matrices A the transforma-
tion is unitary, C−1 = C+; for symmetric matrices A (real matrices),
the transformation C is orthogonal; in this case C−1 = C+ = C

′

,
where C

′

is the transpose of C.

The existence of the unitary matrix C, Cij = e
(j)
i , formed by eigen-

vectors has far-reaching consequences. From the orthogonality of

these vectors e
(i)∗
k e

(j)
k = δij we deduce the unitarity of the matrix C,

C∗
kiCkj = (C+)ikCkj = δij , C

+C = 1; as well as CC+CC+ = CC+,
which implies CC+ = 1. More important, since the eigenvectors are
orthonormal, we can take them as canonical basis vectors, so that
they satisfy

e
(k)∗
i e

(k)
j = δij , (2.13)

which means C∗
ikCjk = (C+)kiCjk = Cjk(C

+)ki = δij , i.e. CC+ = 1
(for complex canonical unit vectors we should use i instead of 1).
Then, the components of any vector x can be written as

xi = δijxj = e
(i)∗
k e

(j)
k xj = Cikyk , yk = Ckixi ; (2.14)

this means that any component xi can be written as an expansion of
components yj , and, conversely, these components yi can be written as
an expansion of components xi; this is due to the existence of the or-

thogonality relations e
(i)∗
k e

(j)
k = δij and e

(k)∗
i e

(k)
j = δij . We note that

the above equations can also be read as expansions in eigenvectors,
and this possibility is also provided by the orthogonality relations.
These orthogonality relations between the eigenvectors make possi-
ble the completeness relations, because they ensure the expansions
described above.

The vectors are usually generalized to functions, say ϕn(x), where
n may be discrete or continuous and both x and n may be multi-
component; the scalar product is defined by the integral

´

dxϕ∗
n(x)ϕm(x).

Sometimes the scalar product may include a weight function. The
matrices are usually generalized to operators, either differential or in-
tegral, or various other forms (if function ϕ is viewed as a variable, the
result of the application of an operator on it is called a functional); we
write symbolically Oϕ for the action of an operator O on the function
ϕ. The problem of eigenvectors (eigenfunctions) and eigenvalues read

10
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Oϕ = λϕ. If there is a set of eigenvectors ϕn (usually infinite), which
are orthonormal, then we can establish completeness (orthogonality)
relations like (ϕn, ϕm) = δnm and ϕ∗

n(x)ϕn(y) = δ(x − y) (possibly
with a weight function); in these conditions we can have expansions
like f = fnϕn(x), fn = (ϕn, f). It is worth noting that the role of the
labels i, j for the matrices is played here by the labels n and x.

For a symmetric matrix A we have, for a given eigenvalue λ and the
corresponding eigenvector x,

Ax = λx , aijxj = λxi , (2.15)

or the quadratic form

(x, Ax) = aijxixj = λx2i = λx2 . (2.16)

We can see that the effect of A on one of its eigenvectors x is to multi-
ply this vector by the corresponding eigenvalue λ (without changing its
direction, i.e. without rotating it). Now, we can take the variation of
equation (2.16) with respect to xi, and get aijxj = λxi, which means
that the difference aijxixj −λx2, i.e. the difference (x, Ax)−λ(x,x),
has an extremal, vanishing value for the eigenvector x; it follows that
the surface defined by the quadratic form aijxixj = const for various
x is tangent to the sphere defined locally by λx2, i.e. defined in the
vicinity of the eigenvector x. If the (symmetric) matrix A is brought
to its diagonal form by the (orthogonal) matrix C, it follows that the
quadratic form (x, Ax) for a general x becomes

(x, Ax) = aijxixj = CikaijCjlykyl =

= (C
′

)kiaijCjlykyl = (Ã)klykyl = λky
2
k

(2.17)

through the transformation x = Cy; it is said that the quadratic form
is brought to its principal, or normal, axes, which are defined by the
eigenvectors; they define the symmetry axes of the quadratic surface
corresponding to the quadratic form (of course, the surface may be
degenerate); the transformation C is equivalent with a change of basis,
from the original basis in which the vector x is expressed to the basis
formed by the eigenvectors, where the vector x becomes the vector y.
A quadratic form is said to be positive definite if it is positive for any

11
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vector x; for this it should have all the eigenvalues positive. Finally
we note that a rotation about an axis is an orthogonal transformation,
its determinant being equal to unity; the orthogonal transformations
preserve the length of the vectors, x2i = CijCikyjyk = (C

′

)jiCikyjyk =
y2j .

Since (A−λi ·1)e(i) = 0, then (A−λ1 ·1)(A−λ2 ·1)...(A−λn ·1)x = 0
has solution x = αie

(i), with arbitrary scalars αi; this means (A−λ1 ·
1)(A − λ2 · 1)...(A − λn · 1) = 0, which is the characteristic equation
f(λ) = det(A−λ · 1) = (λ−λ1)(λ−λ2)...(λ−λn) = 0 written for the
matrix A, f(A) = 0; a matrix satisfies its own characteristic equation,
a result which is called the Hamilton-Cayley theorem.

2.1.4 Bessel inequality

Let x be a vector and ciei a linear combination, the coefficients ci
being given by the scalar products ci = (ei,x) of x with the orthonor-
malized (basis) vectors ei; then, since

|x− ciei|2 = (x− ciei,x− ciei) =

= |x|2 − c∗i (ei,x)− ci(x, ei) + |ci|2 = |x|2 − |ci|2 ≥ 0 ,

(2.18)

we have the Bessel inequality

|x|2 − |ci|2 ≥ 0 ; (2.19)

the equality is called Parseval’s equality (Marc-Antoine Parseval (1755-
1836)), or, sometimes, the completeness relation, since, in this case,
x can be written as

x = ciei ; (2.20)

we have an expansion of x in a series of ei and ci are the expansion
coefficients; the series |ci|2 is convergent. In general, ciei is said to
approximate x "in the mean", since the equality (2.20) follows by

minimizing the "mean square error" |x− ciei|2 with respect to the
vectors ei or the coefficients ci.

12
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2.2 Integral Equations

2.2.1 Fredholm equations

Let K(x, y) be a function, called a kernel, f(x) a given function and
ϕ(x) an unknown function; the equation

f(x) = ϕ(x) − λ

ˆ

dyK(x, y)ϕ(y) (2.21)

is called an integral equation of the second kind (or Fredholm equa-
tion); the integration is performed over a fundamental domain a <
x, y < b; in general, it is convenient to have continuous (and real)
functions and finite integrals (non-singular kernels); obviously, the
transformation is linear; λ is called the parameter of the equation;
equation (2.21) is inhomogeneous; the equation

ϕ(x) = λ

ˆ

dyK(x, y)ϕ(y) (2.22)

is homogeneous. Obviously, there is a close resemblance to the alge-
bra of coupled linear equations; the integral in the equations written
above is also called an integral transform (a linear transformation).
The parameter λ can be viewed as an eigenvalue parameter (in fact, its
reciprocal); the homogeneous equation (2.22) looks like an eigenvalue
equation, whose independent eigenvectors (eigenfunctions) could, in
principle, be taken as being normalized and especially orthonormal-
ized; defining the scalar product of two functions f and g by

(f, g) =

ˆ

dxf(x)g(x) . (2.23)

For two eigenfunctions ϕ1,2 and a symmetrical kernel we get immedi-
ately

(λ−1
1 − λ−1

2 )(ϕ1, ϕ2) = 0 , (2.24)

whence we can see that the eigenfunctions corresponding to distinct
eigenvalues are orthogonal.

The equation

f(x) =

ˆ

dyK(x, y)ϕ(y) (2.25)

13
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is called a linear integral equation of the first kind; its solution amounts
to an inversion of the kernel; actually, the equation can be viewed as
an integral transform (e.g., Fourier, Laplace, etc); so that the un-
known function is obtained by the inverse transform. Generalization
to hermitian kernels are worthwhile.

2.2.2 Degenerate kernels

Any kernel can have, in principle, an expansion in a set of orthonormal
functions, so it can be written as

K(x, y) = αi(x)βi(y) ; (2.26)

it is called a separable kernel; the integral equation becomes

f(x) = ϕ(x) − λαi(x)

ˆ

dyβi(y)ϕ(y) , (2.27)

or
´

dxβi(x)f(x) =
´

dxβi(x)ϕ(x)−

−λ
´

dxβi(x)αj(x)
´

dyβj(y)ϕ(y) ;
(2.28)

denoting

fi =
´

dxβi(x)f(x) , ϕi =
´

dxβi(x)ϕ(x) ,

Kij =
´

dxβi(x)αj(x) =
´

dxdyK(x, y)βi(x)βj(y) ,
(2.29)

we get a system of linear equations

fi = ϕi − λKijϕj , (2.30)

which, in general, is infinitely dimensional. The solution is estab-
lished (at least in principle) by successive approximations of finite
dimensions. This is Fredholm’s theory of integral equations.

Let us assume that ϕi are the orthonormal eigenfunctions of the kernel
(which is symmetric), with eigenvalues λi:

λi

ˆ

dyK(x, y)ϕi(y) = ϕi(x) ; (2.31)

14
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and let us assume the expansions

f(x) = fiϕi(x) , ϕ(x) = ciϕi(x) ,

fi = (ϕi, f) =
´

dxϕi(x)f(x) , ci =
´

dxϕi(x)ϕ(x) ;
(2.32)

the integral equation gives

ci =
λi

λi − λ
fi (2.33)

and the solution can be represented as

ϕ(x) = ciϕi(x) = f(x) +
λ

λi − λ
fiϕi(x) ; (2.34)

this representation is called the resolvent of the integral equation and
the series is called the Neumann series. By iterating the integral
equation we get a new kernel which can be written as

K(x, y) = K(x, y) + λ

ˆ

dzK(x, z)K(z, y) , (2.35)

which implies a Neumann series.

2.2.3 Volterra equation

The equation

f(x) = ϕ(x)− λ

ˆ x

a

dyK(x, y)ϕ(y) (2.36)

is called a Volterra-type equation (Vito Volterra (1860-1940)); usually,
transforming it into a differential equation by taking the derivatives is
useful in getting the solution. An example is Abel’s integral equation

f(x) =

ˆ x

0

dy
ϕ(y)√
x− y

, (2.37)

whose solution is

ϕ(x) =
1

π

ˆ x

0

dy
f

′

(y)√
x− y

(2.38)

(for f(0) = 0).
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2.3 Calculus of Variations

2.3.1 Extrema points

A function f(x, y, ...) of real variables has an extremal value at x0, y0, ...
given by

fx(x0, y0, ...) = fy(x0, y0, ...) = ... = 0 , (2.39)

where fx = ∂f/∂x, fy = ∂f/∂y, etc; if there are constraints like
g1(x, y, ...) = 0, g2(x, y, ...) = 0, ... then the extremal value is attained
at x0, y0, ... given by

Fx(x0, y0, ...) = Fy(x0, y0, ...) = ... = 0 ,

∂F
∂λ1

= ∂F
∂λ2

= ... = 0 ,
(2.40)

where

F (x, y, ...) = f(x, y, ...)− λ1g(x, y, ...)− λ2g2(x, y, ...)− ... (2.41)

is called the Lagrange functional and λ1,2,... are called Lagrange’s
multipliers. The points x0, y0, ... are called the extrema points, or the
stationary points. The question as to whether an extrema is a point
of maximum, minimum or inflexion (saddle point) depends on the
examination of the quadratic form obtained by a series expansion of
the function in the vicinity of the extrema (involving the second-order
derivatives).

2.3.2 Variational problems

The length of a curve given by y = y(x) is
√
dx2 + dy2 =

√
1 + y′2dx;

the problem can be to determine the curve with the shortest distance
between two points, i.e. looking for the minimum value of

ˆ x2

x1

dx
√
1 + y′2 (2.42)
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for various functions y(x); nullifying the variation leads to

δ
´ x2

x1
dx
√

1 + y′2 =
´ x2

x1
dx y

′

√
1+y′2

δ(y
′

) =

= y
′

√
1+y′2

δy

∣∣∣∣
x2

x1

−
´ x2

x1
dx d

dx

(
y
′

√
1+y′2

)
δy = 0 ,

(2.43)

or

d

dx

(
y

′

√
1 + y′2

)
=

y
′′

√
1 + y′2

− y
′2

(1 + y′2)3/2
y

′′

= 0 , (2.44)

since we require the variations δy at the ends x1,2 of the interval to

vanish; from equation (2.44) we get y
′′

= 0, i.e. y = ax+ b, where a,
b are constants, i.e. the curve should be a straight line; as expected.

The element of area of a surface given by z = z(x, y) is obtained by

√
dx2 + z2xdx

2
√
dy2 + z2ydy

2 =
√
1 + z2x + z2ydxdy ; (2.45)

the length of a line arc on a surface given by parametric equations
x = x(u, v), y = y(u, v), z = z(u, v) is

√
e+ 2fv′ + gv′2du, where

e = x2u + y2u + z2u, f = xuxv + yuyv + zuzv and g = x2v + y2v + z2v; we
can ask about the shortest distance on such a surface, i.e. a geodesic,
which amounts to get the minimum of the integral

l =

ˆ u2

u1

du
√
e+ 2fv′ + gv′2 (2.46)

with respect to the function v(u) which indeed defines a line. The
shortest time along a path y = y(x) is given by the minimum of the
integral

t =

ˆ x2

x1

√
1 + y′2

v(x, y)
dx , (2.47)

where v is the velocity (Fermat principle; Pierre Fermat (1601(7)-
1665)); if a body falls freely in the gravitational field at the surface
of the Earth, along the distance y it acquires the velocity

√
2gy; the
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corresponding curve is called a brachistochrone; a curve y = y
′

(x)
gives a surface of revolution

2π

ˆ x2

x1

dxy
√

1 + y′2 ; (2.48)

we can ask about its minimum value; and so on. Such integrals
which include unknown functions are called functionals. Series ex-
pansions for the unknown functions, or, in general, sequences approx-
imating the unknown functions can be useful in treating extremal
problems. The problem can be generalized to several unknown func-
tions. The equations resulting by taking the variations are called the
Euler-Lagrange equations.

2.4 Fourier Transform

2.4.1 Delta function

The δ-function is defined as

δ(x) =
1

2π

ˆ

dk · eikx , δ(k) = 1

2π

ˆ

dx · eikx, (2.49)

for real x and k. We can check that δ(0) = ∞ and δ(x 6= 0) = 0. For
the latter, we have

ˆ +L

−L

dkeikx−µ|k| =
eiLx−µL − 1

ix− µ
+

1− e−iLx−µL

ix+ µ
→ 0 (2.50)

for L→ ∞, µ → 0+ and x 6= 0. In addition,
ˆ

dxδ(x) = 1 , (2.51)

since
´

dx
´ +L

−L
dkeikx−µ|k| =

´

dx
(

1
ix+µ − 1

ix−µ

)
=

=
´

dx 2µ
x2+µ2 =

´

dx 2
x2+1 =

= 2 arctanx|x=+∞
x=−∞ = 2π .

(2.52)
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We note the convergence factor e−µ|k| in equation (2.50), the order of
the limits L→ ∞, µ→ 0+ and the independence of integral (2.52) of
the factor µ.

The properties δ(0) = ∞, δ(x 6= 0) = 0 and
´

dxδ(x) = 1 define the
δ-function. We can check that

lim
µ→0

1

π

µ

x2 + µ2
= δ(x) (2.53)

and

lim
L→∞

1

π

sinLx

x
= δ(x) , (2.54)

by using the integrals given above. In particular
ˆ

dx
sinx

x
= π (2.55)

and

lim
∆→0

1√
π∆

e−
x2

∆ = δ(x) . (2.56)

Fourier and Cauchy made an implicit use of the δ-function, which was
recognized around 1930 by Dirac, on the occasion of the Quantum
Mechanics (Paul Dirac (1902-1984)). Note that

δ(x) =
1

2π

ˆ

dk cos kx (2.57)

by equation (2.49), since sin kx is an odd function and cancels out the
integral.

Since δ(x) is highly peaked on x = 0, we may take the integral
ˆ

dxδ(x)f(x) (2.58)

about x = 0, for any function f(x), which gives obviously
ˆ

dxδ(x)f(x) = f(0)

ˆ

dxδ(x) = f(0) ; (2.59)

similarly we have

f(x) =

ˆ

dx′f(x′)δ(x − x′) . (2.60)

In this sense δ is also called a distribution, i.e. a functional which
associates a number to a function.
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2.4.2 Fourier transform

From equations (2.49) and (2.60) we can write

f(x) =
1

2π

ˆ

dkeikx
[
ˆ

dx′f(x′)e−ikx′

]
, (2.61)

or

f(x) =
1

2π

ˆ

dkeikxg(k) , g(k) =

ˆ

dxf(x)e−ikx ; (2.62)

g(k) is called the Fourier transform of f(x) and f(x) is called the
Fourier transform of g(k); it is also said that f(x) and g(k) are ex-
panded as Fourier integrals (in trigonometric functions eikx); equation
(2.61) is called the completeness equation, while equation (2.49) writ-
ten as

δ(x− x′) =
1

2π

ˆ

dkeik(x−x′) (2.63)

is called the orthogonality (or orthonormality) equation of the trigono-
metric functions; integrals like

´

f∗g are scalar products for vectors
f and g, which are said to form a Hilbert space because they have a
scalar product.

The δ-function and the Fourier transform can directly be extended to
several dimensions by, for instance,

δ(r) = δ(x)δ(y)δ(z) , δ(r) = 1
(2π)3

´

dkeikr ,

f(r) = 1
(2π)3

´

dkeikrg(k) , g(k) =
´

drf(r)e−ikr ,
(2.64)

where kr = kxx+ kyy + kzz.

The Fourier integral has an interesting minimum (extremal) property;
indeed, if we look for the minimum value of the integral

ˆ

dx

∣∣∣∣f(x)−
1

2π

ˆ

dkg(k)eikx
∣∣∣∣
2

, (2.65)

then we must set the variation of this integral with respect to the
coefficients g(k) equal to zero, i.e.

ˆ

dx

[
f(x)− 1

2π

ˆ

dkg(k)eikx
]
e−ik′x = 0 ; (2.66)
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