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PREFACE

Magnetohydrodynamics (MHD) can be defined as the study of magnetic
properties and the behavior of electrically conducting fluids. These sorts of
magneto-fluids include, for instance, plasmas, liquid metals, salt water,
and electrolytes. The term "Magnetohydrodynamics" derives from the
words “magneto” (meaning magnetic field), “hydro” (meaning water), and
“dynamics” (as in movement). The underlying basis of MHD can be
explained in layman’s terms as follows: currents in moving conductive
fluids and magnetic fields can lead to induction currents, making the fluid
polarized. This can also alter the magnetic field itself reciprocally. To
describe MHD, Navier—Stokes equations of fluid dynamics are combined
with Maxwell’s equations of electro-magnetism. We must solve all of
them simultaneously, using analytical or numerical methods.

We can define nanofluids as fluids that include particles that are nanometers
in size. These fluids can be engineered to become colloidal suspensions of
nanoparticles in a base fluid. The nanoparticles used in nanofluids are
typically made of metals, oxides, carbides, or carbon nanotubes. Common
base fluids include water, ethylene glycol, etc. Nanofluids have novel
properties that make them potentially useful for transferring heat, for
instance through microelectronics, fuel cells, pharmaceutical processes,
hybrid-powered engines, engine cooling/vehicle thermal management,
domestic refrigerators, chillers, heat exchangers, grinding, machining, and
boiler flue gas temperature reduction. Through the use of nanofluids, the
heat transfer coefficient and thermal conductivity would be higher
compared to the base fluid.

The first chapter of this book examines the definition and applications of
magnetohydrodynamics (MHD), including MHD in heat conduction. In
the second chapter, the MHD forced convection transfer of the heat is
carried out. Here we try to study the forced convective transfer of the heat
from various nanofluids' applications numerically. The third chapter
examines the MHD mixed convective flow of nanofluids inside the
microchannel and other applications. Finally, the transportation of MHD
nanofluid free convection in different applications is studied in the last
chapter.
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Numerical and analytical methods are applied to solve the governing
nonlinear differential equations of the problems discussed. The book also
attempts to demonstrate the reliability and accuracy of these methods.
Furthermore, the impact of some physical parameters and dimensionless
numbers on the flow, velocity, and temperature profiles of nanofluids is
scrutinized.



CHAPTER 1

MAGNETOHYDRODYNAMICS:
DEFINITION AND APPLICATIONS

Abstract

Magnetohydrodynamics (MHD) can be defined as the study of the
dynamics of electrically conducting fluids. Magnetohydrodynamics
creates a relationship between the Navier-Stokes equations for fluid
dynamics and Maxwell’s equations for electromagnetism. The fundamental
basis of Magnetohydrodynamics is that magnetic fields in a conducting
and moving fluid can lead to the induction of currents which create forces
on the fluid, and which in turn can influence the magnetic field. This
chapter defines Magnetohydrodynamics and the governing equations for
MHD in convection heat transfer.

What is Magnetohydrodynamics?

The considerable influence magnetic fields exert on fluids and flows is
something that we can all see in both nature and artificial processes.
Magnetic fields can be used for stirring, pumping, levitating, and heating
liquid metals in the metallurgical industry. Even the earth’s magnetic field,
which protects the surface of our planet from harmful radiation, is generated
by the motion of the earth’s core, which is liquid. Furthermore, the sun’s
rotating magnetic fields create sunspots and solar flares (sudden explosions
of energy) and galactic magnetic fields affect the formation of stars from
interstellar gas clouds. Henceforth, the word Magnetohydrodynamics
(MHD) is used for all of these phenomena. Here, the magnetic field, which
is denoted as B, can be coupled with the velocity field, shown as U, under
the condition that a conducting, non-magnetic fluid such as a liquid metal,
a hot ionized gas (plasma) or a strong electrolyte is applied. The complex
interaction between the currents generated by the magnetic field and the
moving fluid causes forces to act on the fluid itself, resulting in the
magnetic field alteration.
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The governing equations

The main aim of this section is to extract the governing equations of MHD
based on the information provided. First of all, we will consider a non-
magnetic fluid that is conducting and Newtonian, and has uniform
kinematic viscosity (fluids with a v = const., and incompressible flow). We
use the following equations based on the works of Davidson (2001) and
Moreau (1990) as the reduced Maxwell’s equations:

VxB = ul, V.J=0 (1.1)

1.2

VxE:—a—B, V.B=0 (-2
ot

With Ohm’s law and the Laplace force:
J=0o(E+uxB), F=JxB (1.3)

Combining the above equations, we derive a transportation equation for B

OB (1.4)

—=V><(u ><B)+2AB
ot

where A = (ou) ! is the magnetic diffusivity.

On the other hand, the Navier-Stokes equations for incompressible flow
can be derived from the motion equations as follows:

(1.5)
a—u+(u.V)—UAu LRV
ot p p
Vu=0

Substituting the Lorentz force (1.3) for f, we have:
(1.6)
a—u+(u.V)—UAu +le :lJ xB,
ot p p
Vu=0
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where v = uy/p is the kinematic viscosity.

To determine MHD, another form of the Navier-Stokes equations can be
introduced. Let w = I x u denote the vorticity field. Using the vector
identity Mu?/2) = (u - V) u + u *x (V x u) and neglecting the other forces f,
we can restate the first equation as:

g—“w(uz /2)~u x—vAu +lvp =0

t P

(1.7)

Since the curl of a gradient of a scalar function is zero, we can switch the
order of the differential operators and take the curl of Eq. (1.7) to simplify
it in the following form:

8_0) (1.8)

5 =V (ux@)+0vAu

Eq. (1.8) is defined as the vorticity equation.

MHD in convection

Thus far, we have created a coupling between electromagnetism and fluid
dynamics equations. The rest of this chapter is devoted to further
examining half of the coupling. For practical applications, we neglect the
NSE and take the velocity field u as prescribed. It is of great importance to
mention that comparing Egs. (1.4) and (1.8) is totally incorrect and does
not produce reliable results since the relationship between u and ® is
completely different than that of u and B. Due to the same differential
operators existing in the governing equations, we have analogous results
for MHD and classical vortex dynamics.

For the induction equation, consider V- u = 0 and use equation I X (u x
B) = (B - Mu — (u- P)B, which leads to the following expression:

%—er(u.v)B =(B.V)u+AAB

(1.9)

The terms on the left side of the above equation show the total derivative
of B, denoted by Dg/ D:. (u - V)B, that represents the changes occurring in
the magnetic field. These changes are created by fluid particles that enter
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or leave a tiny volume. If the velocity field u is parallel to the direction of
the greatest change in B, it can be considered important. In Eq. (1.8), the
creation process of the field can be seen on the first side of the equation. It
is shown by stretching the field lines. If the flow and the magnetic field are
perpendicular to each other, then it is zero, but near the stagnation points,
this term is maximized. Diffusion of the magnetic field can be shown in
the second term of the right side of Eq. (1.9), which demonstrates the
transportation of the magnetic field via diffusion observed in different
phenomena, such as heat.

Convection of the magnetic field

Here, A is considered to be so small that it can be neglected (A = 0). In this
case, there is no diffusion, so the induction equation is introduced as
follows:

1.10
a—B=V><(u><B) (110
Ot

This is identical to the vorticity equation for inviscid fluids. Therefore, two
important results of Vortex theory - Helmholtz’s first law of
thermodynamics and Kelvin’s theorem - have their analogies in MHD and
can be merged to form Alfvén’s theorem.

Alfvén’s Theorem

1. The fluid elements lying on a magnetic field line at some initial instant
continue to lie on that line for all time, i.e., the field lines are frozen into
the fluid.

2. The magnetic flux that links any loop moving with the fluid is constant.
In other words:

d i p o o (1.11)
i nds =

S(t) denotes a surface bounded by a closed curve C(?). To satisfy A = 0,
we need large magnetic Reynolds numbers. Of course, in astrophysics, the
magnetic Reynolds numbers can exceed values of ~ 108 because of the
enormous length scales that usually happen. Sunspots are an excellent
example of the frozen-in behavior of magnetic field lines in astrophysics.
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To understand their mechanics, we must study the structure of the sun. In
the first place, we must consider its surface: the sun’s surface is not
uniformly bright and it has a granular structure due to the convective
turbulence on its outer layer.

Surface of sun

A Flux tube

Convection zone o
Radiation zone

Fig. 1.1. Schematic representation of the formation of sunspots

The outer layer, called the convective layer, has an average thickness of
2x105 [km]. This layer consists of convection cells, constituting a pattern
that is evolving gradually. When the hotter and brighter cells rise to the
surface, colder and darker cells sink back into the interior, forming the
granular pattern of the sun’s surface. This happens with a velocity of
almost 1[km/s], which leads to an estimate of the (magnetic) Reynolds
numbers, i.e., Re ~ 10'! and Rem ~ 108, that are very large. The average
magnetic field of the sun is also a few Gauss [Gs], which is very near to
the earth’s one (1[Gs] = 10 [T] = 10* [V s/m2]). Due to the highly
magnetic Reynolds number, the magnetic field likely freezes in the fluid.
As a result of the existing differential rotation, the magnetic field is
stretched and intensified, and ultimately this causes the field strength to
rise in horizontal flux tubes. Considering the Lorentz force points radially
outward from these tubes, the pressure and density inside these tubes are
less than the pressure and density of the surroundings, leading to a
buoyancy force. When the thickness of the tubes is very thick, this force is
so strong that it can partially destabilize the convection, so these parts tend
to drift towards the surface. It has been seen that occasionally flux tubes
with a diameter of ~ 10* [km] emerge through the surface into the sun's
atmosphere. Sunspots are the areas inside of which the flux tube leaves
and re-enters the surface of the sun (A and B in Fig. 1.1). The magnetic
field in the flux tubes has a very high field strength (~ 3000[Gs]), so it can
cool the surface in these areas by suppressing fluid motion and convection.
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Conclusion

Magnetohydrodynamics studies the dynamics of electrically conducting
fluids and relates the Navier-Stokes equations for fluid dynamics and
Maxwell’s equations for electromagnetism to each other. The main point
in this chapter is that the influence of magnetic fields on conductive fluids
leads to fluid motion which causes force induction on the fluid that can
affect the magnetic field. This chapter introduces the fundamentals of
Magnetohydrodynamics, including the governing equations for MHD in
convection heat transfer.
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