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SUMMARY 
 
 
 
In the first volume of this monograph we address analytical description and 
geometric representation of the spatial anisotropy of induced optical effects 
in crystalline materials of different symmetry classes, as well as 
experimental methods and apparatus for the comprehensive study of 
electro-, piezo-, elasto- and acousto-optic phenomena in crystalline solids. 
Following experimental studies and relevant analytical calculations, we 
perform 3D analysis of the anisotropies of linear electro-optic, piezo-optic, 
elasto-optic, acoustic and acousto-optic properties of various crystalline 
materials and construct indicative or extreme surfaces describing the 
anisotropy effect. 

On this basis, a consistent technology for improving the components and 
solid-state optoelectronics devices has been developed. In particular, it 
increases the efficiency of operational characteristics of the devices for 
controlling electromagnetic radiation, e.g. light modulators, deflectors, 
sensors and filters. The resources and the efficiency of this technology are 
demonstrated on the example of electro-, piezo-, elasto- and acousto-optic 
effects, although it can also be used for the other physical effects described 
by higher-rank tensors. The prospects of the above technology for nonlinear 
optics and design of novel anisotropic crystalline nano-composites are also 
analyzed. 

The monograph would be of interest to specialists in the fields of solid-
state physics, optoelectronics, acousto-electronics and optical instrumentation. 
 



 



INTRODUCTION 
 
 
 
Crystalline solids, which represent anisotropic materials, are widely used 
in various opto- and acousto-electronic devices. The vast majority of the 
crystals known up to now have a low symmetry and belong to either 
middle or lower crystallographic categories. According to the 
characteristics associated with the influences of external electric and 
magnetic fields, mechanical stresses, acoustic waves or laser radiation on 
the optical properties, low-symmetry crystals are often the most promising 
for applications. A prominent example is optically biaxial crystals for 
nonlinear-optical frequency converters. However, fundamental studies and 
the practical utilization of such solids are hindered by significant 
anisotropy of their properties. Moreover, the latter makes it difficult even 
to determine their basic physical and operational characteristics. 

Even in the cubic crystals, of which the physical properties described 
by second-rank tensors are isotropic, the higher-order effects (e.g., electro-, 
piezo- and acousto-optic interactions) are anisotropic. As a result, the 
problems associated with the anisotropy are also typical for these, 
otherwise ‘optically isotropic’, crystalline materials. As a result, 
comprehensive study of the influence of external fields on the physical 
properties of crystalline solids characterized by higher-order tensors 
require a proper knowledge of the anisotropy of the corresponding effects. 

On the other hand, this seeming drawback of anisotropic materials can 
readily transform into a kind of advantage. Namely, study of the 
anisotropy of the physical properties of low-symmetry materials by 
constructing the indicative surfaces of angular distributions of their 
response to the external fields, and a consistent analysis of these surfaces, 
including a search for their extreme values, yield significantly increased 
efficiency of these materials for controlling laser radiation. This approach 
can develop a scientific basis of technologies aimed at improving the 
performance of solid-state optoelectronic devices, including those 
designed to control electromagnetic radiation via electro-, piezo- and 
acousto-optic effects, e.g. light modulators, deflectors, sensors and filters. 

It is also important that our OPTIMA technology, which has been 
developed in order to find the maxima of the induced optical effects, is 
intensive rather than extensive, since it requires neither the structural 
modification of already available crystalline materials nor the search for 
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completely new materials. It puts into effect some hidden resources, which 
are often inherent even in canonical and widely known materials, due to 
their anisotropy and the availability of ‘hidden’ optimal directions of 
propagation and polarization of light, as well as optimal directions of 
external fields, for which the quantitative characteristics of a crystal reach 
their maxima. This follows from our fundamental conclusion: the global 
maxima of externally induced optical effects for most anisotropic 
materials often do not coincide with the principal axes of crystallographic 
coordinate system and, sometimes, these maxima do not even lie in the 
principal planes of this coordinate system. In other words, many practical 
situations indicate that the techniques like our OPTIMA technology are 
indeed in demand. 

The present monograph describes the main ideas and approaches 
underlying the OPTIMA technology for investigating the anisotropy of 
externally induced optical effects in crystalline materials. The first volume 
of the monograph is devoted mainly to theoretical issues, in particular the 
analytical description and geometric representation of the anisotropy of 
optical or acoustic effects, and experimental techniques which have been 
adopted and improved by the authors for studying anisotropic crystalline 
materials. 

The second volume will deal with the typical results of 3D analysis of 
the spatial anisotropy of electro-, piezo-, elasto- and acousto-optic effects. 
They will refer to both commonly known model materials (LiNbO3, SiO2, 
etc.) and new promising crystals, which have been studied by the authors. 

Up to now, the relevant results have been scattered over many scientific 
and technical periodicals, and conference materials. This monograph 
represents our attempt to systematize and generalize the corresponding 
data and conclusions. 



CHAPTER 1 

ANALYTICAL DESCRIPTION OF ELECTRO-
OPTIC AND PHOTO-ELASTIC PHENOMENA  

IN ANISOTROPIC MATERIALS 
 
 
 

1.1. Linear electro-optic effect 

1.1.1. Brief review 

Linear electro-optic effect (EOE) has already found wide practical 
applications in various solid-state electronics devices [1, 2]. The interest in 
its study remains high enough [3−5], especially in relation to the rapid 
development of novel technologies and the appearance of new promising 
crystalline materials [6−8]. High-performance electro-optic crystals often 
belong to low-symmetry classes and reveal significant anisotropy. In order 
to use these crystals as working elements of various optoelectronic devices 
in an optimal manner, one has to study analytically the manifestations of 
EOE in different experiments and analyze the spatial (angular) distribution 
of the effect. This can be implemented after determining experimentally 
all nonzero components of the electro-optic tensor (i.e., electro-optic 
coefficients abbreviated hereafter to EOCs) and constructing, on this basis, 
so-called indicative surfaces (ISs) or extreme surfaces (ESs), as explained 
in Chapter 2. A ready example of this approach has been demonstrated for 
the cases of piezo-optic effect (POE) and elasto-optic effect (ElOE) in 
References [9−11]. 

Of course, the measurements of EOCs for the crystals of different 
(most often, high) symmetry classes have been performed in many 
laboratories worldwide (see, e.g., works [12, 13] and references therein). 
However, the literature has not described a general enough technique 
which would enable determining all the absolute EOCs for the crystals of 
arbitrary symmetry classes. So, the formulae that describe the changes in 
the principal refractive indices under the influence of the electric field 
have been obtained in works [12, 14]. Nonetheless, they do not consider 
the most general case of triclinic crystals. Moreover, these formulae 
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cannot be used in practice for the experimental determination of non-
principal EOCs, because they do not take the piezo-electric deformation of 
sample into account, which can become a source of gross experimental 
errors. In addition, study [14] does not consider the phenomenon of ‘sign 
dualism’ for a number of non-principal EOCs. Furthermore, the formulae 
available in Reference [14] for most of the rotary EOCs imply that the 
latter coefficients can only be determined following the field-induced 
rotations of optical indicatrix. For many practical reasons, this method 
cannot be implemented experimentally. (Note that Subsection 1.1.3 
introduces the formulae for determining the rotary EOCs, which are based 
directly on the field-induced refractive-index changes.) 

In this chapter, we provide a general theoretical analysis of the 
experimental manifestations of the linear EOE in the crystals of arbitrary 
symmetries, with the emphasis on interferometric measurements. It is 
these experiments that provide the most accurate information about the 
EOCs. They have enabled us to solve a problem that most researchers do 
not even pay much attention to. This problem is separating reliably the 
contributions of EOE and piezo-electric effect (PEE) into the electric field-
induced changes of optical path difference, i.e. separating the corresponding 
changes in the refractive indices and the changes in the thickness of crystal 
(see References [14, 15]). Subsection 1.1 describes also an interferometric 
technique employed in so-called twofold EOC measurements, which result 
in higher accuracy of all the absolute EOCs for the crystals of arbitrary 
symmetry classes [16−20]. 

1.1.2. General description of electro-optic phenomena  
in crystals 

Linear EOE, termed also the Pockels effect, is described by a linear 
change in refractive indices induced by an external electric field [14, 21]. 
Since the propagation of electromagnetic waves in crystals without 
considering spatial dispersion (see works [22, 23]) is completely described 
by the ellipsoid of refractive indices, the influence of the electric field can 
be thought of as a change in the optical indicatrix. Its equation,  

1jiij xxa ,   (1.1) 
defines a triaxial ellipsoid, with aij being the components of dielectric 
impermeability tensor (or a so-called tensor of optical polarization 
constants) and xi, xj = x1, x2, x3 denoting the coordinates which are mainly 
associated with the principal coordinate system (termed a ‘crystal–
physical’ system hereafter). 
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When a low-frequency electric field E = (Еx, Еy, Еz) is applied to a 
crystal, its optical polarization constants aij change (see References [12, 
14]) according to the relation 

... lkijklkijkij EEREra .  (1.2) 
Here ijkr  imply the components of a polar third-rank tensor symmetric in 
its first two indices, which describes the linear EOE, and ijklR  are the 
components of a polar fourth-rank tensor symmetric in its first two and last 
two indices, which describes a quadratic EOE (or a Kerr effect).  

Consider the linear EOE and the symmetry of the EOCs
 ijkr . We 

introduce well-known (see, e.g., References [24, 25]) matrix notations 
111, 222, 333, 23 (32)4, 13 (31)5 and 12 (21)6. When 
neglecting the terms of higher Ei powers in formula (1.2), one can obtain 
the relation 














































































3

2

1

636261

535251

434241

333231

232221

131211

6

5

4

3

2

1

E
E
E

rrr
rrr
rrr
rrr
rrr
rrr

a
a
a
a
a
a

.  (1.3) 

As follows from symmetry consideration, we have mkr  = 0 for the 
crystals with inversion centre [14, 26]. The form of the EOC matrix mkr

 
for the other (non-centrosymmetric) crystals can be found from the 
analysis of point symmetry, which also allows for clarifying relationships 
among particular coefficients [25]. 

Consider as an example a description of EOE in lithium niobate, 
LiNbO3, which is abbreviated to LN [13]. This crystal is optically uniaxial. 
It is described by point group 3m, for which the linear EOE is allowed by 
symmetry. The EOC matrix for the crystals of this point group has the 
following form [25]: 

 

































00
00
00

00
0
0

22

51

51

33

1322

1322

r
r

r
r
rr
rr

r k .  (1.4) 



Chapter 1 6

When the electric-field component Ey is applied, the LN crystal 
becomes optically biaxial. Then there appears an induced birefringence 
along the Z direction [14]: 

  ,22
3

yo Ernn                                     (1.5) 
where on  is the ordinary refractive index. 

Since a general relation 32
21

i

i

i
i n

n
n

a  







  holds true, one can 

arrive at the equality    jjiiji anannnn  33

2
1

 . If the field acts 

along the Z axis in the LN crystals and the light propagates perpendicular 
to this axis (e.g., along the X direction), then there are induced changes in 

the birefringence  n  and an optical phase difference  ntx  

 2 . 

They can be calculated using a classical tensor approach [14]: 

    ,
2
1

33
3

13
3

zeo Ernrnn   

  zeo
z

x Urnrn
t
t

33
3

13
3 


 .  (1.6) 

Here on  and en  imply respectively the ordinary and extraordinary 
refractive indices,   the wavelength of light, tx the thickness of the crystal 
along the direction of the light transmission, tz the crystal length along 
direction Z of the electric field, and zU  the electric voltage applied to the 
crystal along this direction. Here the field-induced birefringence is a 
correction to the natural one, oe nnn  0 . 

Consider another example. Let the electric field be applied along the Z 
axis in the crystals of symmetry group m24 . Let the light polarized along 
the Х (or Y) axis propagate along the Z axis. After passing the crystal, it 
acquires the phase difference   [14, 27]: 

  zo Ertnnt 63
322





  ,  (1.7) 

where t is the thickness of the crystal sample. The optical transmission J of 
a polarizer−crystal−analyzer system, in which the polarizer and the 
analyzer are crossed while the crystal is oriented ‘diagonally’ (i.e., the 
directions of its indicatrix axes under the field make the angle 45° with 
respect to the transmission axes of the polarizers) is determined by a 
known relation (see, e.g., Reference [15]) 
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2
sin2

0




I
IJ ,   (1.8) 

with I and I0 being respectively the emergent and incident light intensities. 
Following formulae (1.7) and (1.8), one can obtain the relationship 

63
3
0

2sin rUnJ z


    (1.9) 

for the parallel orientations of the light and the electric field.  
The electric voltage dEU zz   required to increase the optical 

transmission of the polarization system from zero (in the absence of a 
field) to unity (under the field applied) is called a half-wave voltage 
( )2/(U 63

3
0/2 rn  ). It follows from formula (1.9) that this voltage does 

not depend on the crystal size. One of the methods for determining the 
EOCs of crystals just relies on the measurement of the half-wave electric 
voltage. 

For the LN crystals (symmetry group m3 ), the half-wave voltage for 
the above case is given by 

zox drndU 22
3

2 2  .   (1.10) 
It is seen from formula (1.10) that, unlike the crystals of group m24 , the 
half-wave voltage now depends on the geometric dimensions of the 
sample. 

Another method for studying EOE is based on the measurements of 
optical birefringence induced by the external electric field [28]. This is a 
Senarmont method, which uses a polarizer−crystal−compensator−analyzer 
polarization system in which the compensator is a quarter-wave phase 
plate. In this scheme, the polarizer and the analyzer are crossed, the major 
axes of optical indicatrix of the quarter-wave plate are set to be parallel to 
the transmission axes of polarizers, and the crystal is in ‘diagonal’ 
orientation in the presence of the field. After turning off the voltage 
applied to the crystal and rotating the analyzer until a minimal light 
intensity is achieved at the output of the polarization system, a researcher 
has to detect the appropriate reading 0 of the angle-measuring mechanism 
of the analyzer. Then the voltage is switched on and one reads again the 
analyzer angle , which corresponds to the minimum intensity in the 
presence of the field. Then the field-induced birefringence can be 
determined as [14, 15] 

 
t

n

 0

 ,                                      (1.11) 

where t is the thickness of the crystal along the direction of the light 
propagation. 
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Sometimes, the ‘relative’ methods for determining the EOCs described 
above do not account for the contribution of the inverse PEE into the 
changes of optical path of a light beam. In other words, they are based, 
intentionally or not, on the approximation of invariable crystal thickness. 
In addition to the relative methods, one can also employ ‘absolute’ 
methods which are based on interferometry (see Section 3.3). The latter 
methods consider possible contributions of the inverse PEE into resulting 
electro-optic data.  

Obtaining the analytical relations that describe interaction of light with 
a crystal under the action of the electric field in the framework of these 
methods is a separate complex problem. Its solutions will be obtained and 
discussed in the next subsection. 

1.1.3. Analytical relations for the interferometric methods  
of determining electro-optic coefficients 

We illustrate how to derive analytical relations for determining EOCs on the 
example of a known interferometric method [12], which is implemented, 
e.g., using a Mach−Zehnder interferometer. A sample under test is placed 
into one of the arms of this interferometer. The optical path introduced by 
the sample is equal to ik = (ni  nр)tk, where ni and nр are the refractive 
indices of sample and environment, respectively (e.g., the equality nр = 1 is 
taken for the air), and tk  is the crystal size along direction k


 of light 

propagation.  
Let the electric field Еl be applied to the crystal. Here l


 implies the 

direction of the electric field, whereas i


 defines the direction of the 
oscillations of the light wave, i.e. its polarization. The induced change in 
optical path ikl for the light beam passing through the sample is given by 
the following formula: 

kllkikl
iil

kiikkiikl tEdntEnrtnnttn )1(
2

)1(])1[(
3

  . (1.12) 

Here the first term in the r. h. s. of formula (1.12) represents the change in 
the optical path due to the EOE, i.e. due to changing refractive index ni 
(or a corresponding change in polarization constant аi) acquired under the 

electric field (
22

3

2/3
ilil

i

i
i

nEr
a
an 
 ). The second term describes the 

inverse PEE, i.e. a change in the optical path appearing due to changing 
the sample size tk along the light propagation direction under the electric 
field Еl applied (tk = dlk Еltk). Besides, ril are the linear EOCs and dlk 
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denote the PECs. Directions i


, k


 and l


 in a practical experiment are 
mainly mutually orthogonal. Nevertheless, directions k


 and l


 can 

coincide with each other in the case of so-called longitudinal EOE. 
Electrically induced changes in the optical path would shift the 

interference pattern. For practical reasons, it is convenient to achieve the 
shift of this pattern equal to 2/ nikl   (with n = 1, 2, …) by changing 
continuously the electrical voltage applied to the sample. If n = 1, we have 
the above-mentioned ‘half-wave voltage’ Uλ/2, at which the interference 
minimum turns into the maximum or vice versa, which is easily detected 
in practice. 

To determine unambiguously the signs and the absolute values of the 
EOCs in low-symmetric crystals, the following arguments must be taken 
into account. 

1. The sign of the induced change in optical path ikl under the action 
of positive electric field +Еl must be determined by the following criterion: 
if the increase in Еl leads to increasing optical path, then ikl is positive. 

2. It is necessary to define the positive directions of axes of the crystal–
physical coordinate system in accordance with the known rules approved 
by the IRE standard [29]. The latter has been supplemented by the case of 
POE in Reference [30]. 

3. It is necessary to set unambiguously the sign of the electric field. 
Namely, the positive direction of the electric field vector must be chosen 
as a direction generally accepted in physics, i.e. from positively to 
negatively charged poles of a power supply. Then the direction of the field 
in any experimental measurements must coincide with the positive 
direction of one of the axes of the crystal–physical coordinate system. 

We emphasize that the crystallographic and crystal–physical 
coordinate axes of different effects often do not coincide with each other 
in low-symmetric crystals. Therefore, it is necessary to find out in which 
coordinate system the PEC components dlk have been determined. 
Moreover, if it is necessary, one has to convert these components to the 
crystal–physical system, of which axes represent the principal axes of the 
optical-indicatrix ellipsoid. 

To determine all the components of the EOC tensor for the crystals of 
the lowest symmetry, one needs to prepare four different samples. One 
sample of a direct cut (see Figure 1.1, sample #1) is needed for 
determining the principal coefficients (і, k, l = 1, 2, 3). Furthermore, three 
samples of 45o-cuts are needed in order to determine the remaining 
coefficients corresponding to і, k, l = 4, 5, 6. Concerning each of the 
principal crystal–physical axes, we refer the reader to samples ##2, 3 and 4 
in Figure 1.1. 
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Let us show how to specify required experimental geometries so that 
one can determine all the components of the EOC tensor for the triclinic 
crystals. A standard routine here is that, in each subsequent experiment, 
only one ‘new’ (i.e., still unknown experimentally) EOC is actual. 
Moreover, this EOC can, in principle, involve a linear combination of 
some ‘old’ ril coefficients, which have already been determined in the 
previous experiments. In this manner, one can derive progressively the 
whole EOC matrix in a number of consecutive electro-optic experiments. 

 

    

Figure 1.1. Orientations of samples needed for completing EOC matrix in the case 
of triclinic crystals [17] 

 
1. In order to determine the nine independent principal EOCs (those 

with indices i, k, l = 1, 2, 3), so-called ‘direct cuts’ of crystals are used, 
with their faces being perpendicular to the crystal–physical axes Х1, Х2 and 
Х3. To determine all these coefficients, one has to direct the field along all 
three principal directions, one after another. Therefore, it is necessary to 
make three such samples with the electrodes attached to the faces (Х2Х3), 
(Х1Х3) and (Х1Х2). Then each of the principal EOC is calculated based on 
formula (1.12): 

)1(22 33 


 
ilki

kl

ikl
iil ndn

tE
nr  .   (1.13) 

Each of these three samples can provide three principal EOCs, for which 
the directions of the electric voltage Еl coincide. 

Note that, when determining the principal EOCs for some optically 
uniaxial crystals (e.g., for those of symmetry classes 62m, 6, 32 and 3), 
formula (1.13) must be used for the case of r11 coefficient. The same is 
valid for the coefficient r22 measured for symmetry classes 6, 3m and 3. 
Indeed, there is no component of the inverse PEE involved in optical path 
change ikl for the experimental geometries that correspond to the first (і 
= 1, k = 3 and l = 1) and second (і = 2, k = 3 and l = 2) cases. This is 
because the corresponding dlk coefficients are zero in these crystals. Then 
the relation (1.13) becomes simplified: 
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,2
31

1313
111 tE

nr 
    

32

2323
222 2

tE
nr 

   . (1.14) 

2. In order to determine the rest of the EOCs (samples ##2, 3 and 4 – 
see Figure 1.1), so-called ‘45o-cut’ samples are used. In general, the 
coefficients r41, r52 and r63 can be determined on the samples for which the 
electrodes are attached to the faces perpendicular to directions Х1, Х2 and 
Х3. 

The most difficult step in solving the problem of completing the EOC 
matrices is to derive the formulae that relate the EOCs to the induced 
changes in the optical path for each of the particular geometries of the 
interferometric experiments. A well-known approach, which consists of 
the analysis of the equation for the optical indicatrix perturbed by electric 
field [14], turns out to be cumbersome in too many cases. For the purpose 
of analytical description of the most complex experimental geometries of 
electro-optics, we use a tensor method instead (see also the corresponding 
analysis in Reference [33]). 

The essence of the tensor method is as follows. When obtaining 
formulae for the EOCs, we use formula (1.12) generalized for an arbitrary 
(‘new’) coordinate system: 

klilkkl
iil

ikl tEndtEnr )1(
2

3




 . (1.15) 

Here the effective values ilr  and ild   of the tensor components are 
determined by the standard expressions for transforming third-rank tensors 
[24, 25]: 

fgqlqigifiilil rrr  , 

qgfkfkglqlkklk ddd  .                       (1.16) 
In (1.16), fgqr  and qgfd  denote the components of EOE and PEE 

tensors in the principal coordinate system, and refractive index in  is 
linked with the optical polarization constants aii by a known expression, 

222 /1/1/1  gigggigii naan  .               (1.17) 

Here ...,...,,...,, igkflq   are the direction cosines of the axes of an ‘old’ 
(i.e., crystal–physical) coordinate system with respect to the directions of 
field (l), light propagation (k) and light polarization (i). 

To determine the coefficient r41, one should use sample #2 (see Figure 
1.1) with electrodes attached to the face perpendicular to the Х1 direction. 
Then the two experimental geometries can possibly be used for 
determining r41: і = 4, k = 4  and l = 1 (we call them ‘direct conditions’) 
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and і = 4 , k = 4 and l = 1 (we call them ‘symmetric conditions’ of the 
above direct conditions). Here ‘4’ denotes a diagonal of the positive 
directions of the Х2 and Х3 axes, and direction 4  is perpendicular to axis 4. 
Note that simultaneous utilization of these direct and symmetrical 
conditions represents a basis of a so-called twofold method of EOC 
measurements (see References [17, 18]). 

It is interesting that the signs of the r41 and d14 terms in the formulae 
given below would depend on the choice of signs of the crystal–physical 
coordinate axes [29, 30]. For the above experimental conditions, the 
direction cosines for the light polarization are given by 01 i , 

222 i   and 223 i  (hereinafter the lower signs ‘+’ or ‘’ refer 
to the symmetrical conditions of the experiment). For direction k


 of the 

light propagation, we have 01 k , 222 k  and 223 k , while 
the relations 11 l , 01 l  and 01 l  hold true for direction l


 of the 

electric field. Substituting these direction cosines into formulae (1.16) and 
(1.17), we arrive at the expressions for the effective ilr , kld   and nі 
parameters: 

 41312141 2
2
1 rrrr  ,  14131214 2

1 dddd  ,  

2
3

2
24 2   nnn .   (1.18) 

After substituting formula (1.18) into (1.15) and solving it with respect to 
r41, we obtain the expressions for the EOC r41, which are valid for the 
crystals of the lowest symmetry under direct and symmetric conditions. 
These formulae are given in the first two rows of Table 1.1. 

After combining the latter formulae, one obtains a significantly simpler 
formula (T.1) (see Table 1.2) for determining the EOC r41. This formula 
does not involve the EOCs r21 and r31, as well as the PECs d12 and d13. 
This makes it possible to obtain a more accurate r41 value, by analogy with 
the method suggested in our work [11] for the POE. Therefore, the method 
of twofold measurements increases the accuracy of interferometric 
methods for determining the EOCs. 

Table 1.1 shows the expressions derived for the components r41, r52 
and r63, as well as the corresponding errors of their determination. The 
latter are calculated as a standard deviation of the mean errors for all the 
measurables ikm, El and dlk, which are included in the operating relations. 
The errors of the latter parameters have been taken to be equal to 3%, 2% 
and 3%, respectively. From the formulae of Table 1.1, one can obtain the 
relations for the EOCs r41, r52 and r63 (the corresponding relations are 
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presented in Table 1.2), as well as some convenient relations used within 
the method of twofold measurements for the other EOCs. 

 
Table 1.1. Basic relations for determining non-principal  

EOCs ril in the crystals of triclinic symmetry [17] 
 

Sample  
(see Fi-

gure 1.1) 
Working relation Calculated error 

#2 

 

    2

12

3121141312

4
3

4
14

1443
441

rrddd

nn
Et

nr






  
 

 

    2

12

3121141312

4
3

4
14

4143
441

rrddd

nn
Et

nr






  
 

9% 
 

9% 

#3 

 

    2

12

3212252321

5
3

5
25

2553
552

rrddd

nn
Et

nr






  
 

 

    2

12

3212252321

5
3

5
25

5253
552

rrddd

nn
Et

nr






  
 

9% 
 
 

9% 

#4 

 

    2

12

2313363231

6
3

6
36

3663
663

rrddd

nn
Et

nr






  
 

 

    2

12

2313363231

6
3

6
36

6363
663

rrddd

nn
Et

nr






  
 

9% 
 
 

9% 
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Table 1.2. Relations for determining non-principal EOCs for the crystals 
of triclinic symmetry with the method of twofold measurements [17] 

 
Sample  

(see Figure 
1.1) 

Working relation Formula Calculated 
error 

#2 
  144

3
4

14

414

14

1443
441

1 dnn

EtEt
nr










 







 
 (Т.1) 6% 

#3 
  255

3
5

25

525

25

2553
552

1 dnn

EtEt
nr










 







 
 (Т.2) 6% 

#4 
  366

3
6

36

636

36

3663
663

1 dnn

EtEt
nr










 







 
 (Т.3) 6% 

#2 

  
  2/

1

2

3222

3423224
3

4

44

444

44

4443
443

rr
dddnn

EtEt
nr











 







 

 

(Т.4) 10% 

  
  2/

1

2

3323

2433324
3

4

44

444

44

4443
442

rr
dddnn

EtEt
nr











 







 

 
(Т.5) 10% 

#3 
  

  2/
1

2

3313

1533315
3

5

55

555

55

5553
551

rr
dddnn

EtEt
nr











 







 

 
(Т.6) 10% 

 


