Spatial Anisotropy of Induced Optical Effects in Crystalline Materials

Spatial Anisotropy of Induced Optical Effects in Crystalline Materials

By
A. S. Andrushchak,
O. A. Buryy,
N. A. Andrushchak
and N. M. Demyanyshyn

Cambridge
Scholars
Publishing

Spatial Anisotropy of Induced Optical Effects in Crystalline Materials

By A. S. Andrushchak, O. A. Buryy, N. A. Andrushchak and N. M. Demyanyshyn

This book first published 2023

Cambridge Scholars Publishing
Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
Copyright © 2023 by A. S. Andrushchak, O. A. Buryy, N. A. Andrushchak and N. M. Demyanyshyn

All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner.

ISBN (10): 1-5275-1199-5
ISBN (13): 978-1-5275-1199-6

Contents

Abbreviations X
List of Figures and Tables xi
Summary xV
Introduction 1
Chapter 1 3
Analytical Description of Electro-Optic and Photo-Elastic Phenomena in Anisotropic Materials
1.1. Linear electro-optic effect 3
1.1.1. Brief review 3
1.1.2. General description of electro-optic phenomena in crystals 4
1.1.3. Analytical relations for the interferometric methods of determining electro-optic coefficients 8
1.2. Piezo- and elasto-optic effects 19
1.2.1. Relations for piezo-optic coefficients 19
1.2.1.1. The state-of-the-art 19
1.2.1.2. Derivation of the relations for determining piezo-optic coefficients 22
1.2.1.3. Consideration of thermodynamic conditions when determining electro-, piezo- and elastic-optic coefficients 28
1.2.2. Peculiarities of the method for determining piezo-optic coefficients in the case of non-plane-parallel crystalline samples 30
1.2.2.1. Method for eliminating the influence of wedge-shaped faces of samples 32
1.2.2.2. Practical calculation of absolute piezo-optic coefficients 33
1.2.3. Generalized rule for the signs of piezo-electric coefficients 36
1.3. Acousto-optic effect 38
1.3.1. The main concepts. Raman-Nath and Bragg diffraction regimes. Isotropic and anisotropic diffractions. Applications of acousto-optic effect 38
1.3.2. Description of acousto-optic phenomena in anisotropic solids 41
1.3.3. Basic relations for calculating acousto-optic figure of merit 43
1.3.3.1. Derivation of polarizations vectors for the light waves in optically uniaxial and biaxial crystals 43
1.3.3.2. Derivation of polarization vectors for the light waves in cubic crystals and along optic axes in optically uniaxial and biaxial crystals 45
1.3.3.3. Solving Christopher's equation. 48
1.3.3.4. Derivation of effective elastic-optic constant 49
1.3.4. Review of the other parameters of acousto-optic efficiency 49
Chapter 2 52
Description and Geometric Representation of the Spatial Anisotropy of Induced Optical Effects in Crystalline Materials
2.1. Analytical description of the anisotropy of induced optical effects in crystals 52
2.1.1. The problem of determining optimal interaction geometry 52
2.1.2. Indicative surfaces of induced optical effects. Fundamentals of the method 53
2.1.3. Extreme surfaces of induced optical effects. Fundamentals of the method 56
2.2. Geometric representation of electro-optic anisotropy in crystals 60
2.2.1. Basic relations for the longitudinal and transverse effects (orthogonal interaction geometries) 60
2.2.2. Spatial directions corresponding to the maxima of indicative surfaces 63
2.2.3. Indicative surfaces of the electro-induced change in optical path with taking inverse piezo-electric effect into account. 64
2.2.4. Indicative surfaces of electro-induced optical-path difference 68
2.2.5. Extreme surfaces as a generalized method for describing spatial anisotropy for arbitrary geometries of electro-optic interactions 69
Spatial Anisotropy of Induced Optical Effects in Crystalline Materialsvii
2.3. Geometric representation of the anisotropies of piezo-electric and elasto-optic effects in the crystals of all symmetry classes 70
2.3.1. Consideration of the peculiarities of light propagation in optically uniaxial and biaxial crystals 71
2.3.2. Indicative surfaces for piezo- and elasto-optic effects 73
2.3.3. Quantitative anisotropy parameter and software packages for geometric visualization of induced optical effects 76
2.3.4. Extreme-surface method for description of the spatial anisotropy at arbitrary geometries of piezo- and elasto-optic interactions in crystals 79
2.4. Description of the spatial anisotropy of acousto-optic interactions 80
2.4.1. Equations for indicative surfaces of acousto-optic effect 80
2.4.2. Peculiarities of geometric representation of the spatial anisotropy of acousto-optic effect as revealed with the method of extreme surfaces 86
2.5. Estimation of angular width of the maxima of indicative surfaces 90
2.5.1. General description of angular stability of the maxima of indicative surfaces 90
2.5.2. Examples of calculations and geometric representations 92
2.6. Development of OPTIMA technology for the most efficient and stable use of crystalline materials 93
2.6.1. The state-of-the-art and possible strategies 94
2.6.2. Description of OPTIMA technology for optimizing the geometry of parametric interactions in crystalline materials 95
Chapter 3 101
Experimental Methods and Apparatus for the Study of Crystalline Solids 3.1. Interferometric method for controlling surface quality of samples 101
3.1.1. Theoretical foundations of the method 102
3.1.2. Experimental setup and practical controlling methods 104
3.1.3. Approving the method on the example of $\mathrm{LiNbO}_{3}: \mathrm{MgO}$ crystals 107
3.2. Automated interferometric-rotary method for measuring refractive indices 109
3.2.1. Analysis of the methods available for determining refractive indices. 109
3.2.2. Interferometric-rotary method and experimental setup 112
3.2.2.1. Mechanism for highly precise rotation of sample, and controlling module 114
3.2.2.2. Software and signal filtering 116
3.2.2.3. Methods for finding 'zero angular position' of sample 118
3.2.3. Verification of the method, and its advantages 121
3.3. Determination of electro-optic coefficients with Michelson interferometer 122
3.3.1. Analysis of available techniques 122
3.3.2. Experimental setup based on Michelson interferometer. 124
3.4. Determination of piezo-optic coefficients 125
3.4.1. Experimental technique based on Mach-Zehnder inter- ferometer. 125
3.4.2. Compensation method for determining absolute piezo-optic coefficients 127
3.4.3. Improvement of the immersion interferometric method for determining static elastic coefficients 130
3.4.4. Polarization-optical methods. Determination of piezo-optic coefficients associated with optical-path difference 133
3.4.5. Verification of absolute piezo-optic coefficients with polarization-optical method 135
3.4.6. Conoscopic method for determining absolute piezo-optic coefficients 140
3.4.6.1. Relations for determining piezo-optic coefficients with conoscopic method 140
3.4.6.2. Experimental setup for measuring piezo-optic coefficients 144
3.4.6.3. Example of determining a rotary piezo-optic coefficient π_{61} 145
3.5. Methods for acoustic and acousto-optic study 146
3.5.1. Measurements of ultrasound velocities with the Papadakis method 146
3.5.2. Calculations of elastic and piezo-electric coefficients from Christoffel's equations 149
3.5.3. Measurements of elasto-optic coefficients and acousto- optic figure of merit for crystalline materials 150
3.5.3.1. Bragg-diffraction technique for determining acousto- optic parameters 150
3.5.3.2. Experimental acousto-optic setup 153
Conclusions 156
Appendices 160
Appendix A. Experimental geometries and phenomenological relations used for calculating absolute piezo-optic coefficients for the crystals of all symmetry classes 160
Appendix B. Equations of the indicative surfaces for piezo-electric and elasto-optic effects in the crystals of some symmetry classes 169
Appendix C. Elastic, piezo-electric and dielectric matrices for the crystals of some symmetry classes 172
References 177

AbBREVIATIONS

AOE - acousto-optic effect
EIOC - elasto-optic coefficient
EIOE - elasto-optic effect
EOC - electro-optic coefficient
EOE - electro-optic effect
ES - extreme surface
IS - indicative surface
$\mathbf{L N}$ - lithium niobate, LiNbO_{3}
PEC - piezo-electric coefficient
PEE - piezo-electric effect
POC - piezo-optic coefficient
POE - piezo-optic effect

List of Figures and TABLES

Figures

1.1 Orientations of samples needed for completing EOC matrix in the case of triclinic crystals
1.2 A scheme of estimating thickness error $\delta^{*} t_{k}: 1$ and 2 are light rays propagating under conditions $F_{m}=0$ and $F_{m} \neq 0$
1.3 Raman-Nath (a) and Bragg (b) diffraction regimes
1.4 A scheme of acousto-optic modulator
2.1 Illustration of constructing stereographic projection of IS
2.2 Orientation of vectors $\boldsymbol{k}, \boldsymbol{j}$ and \boldsymbol{r} in optically uniaxial crystals
2.3 Wave surfaces for diffracted light (L) and sound wave (S) built at $\theta=$ 66° and $\varphi=69^{\circ}$. C is a line of their intersection. The diffracted wave is extraordinary, the incident wave is ordinary (its wave surface is not shown), and the sound wave with the frequency 2 GHz is slow quasitransverse
2.4 Stereographic projection showing a region of stability of IS $d_{l m}^{\prime p}$ for the PEE in langasite crystals in case when the condition $\mathbf{E} \perp \mathbf{m}$ is satisfied and the effective PEC is not less than 90% of its maximal value (this region is shaded). The units are $10^{-12} \mathrm{~m} / \mathrm{H}$
2.5 Structure of complex methods used for the analysis of spatial anisotropy of EOE, POE and AOE in the crystals of arbitrary symmetry classes, and optimization of characteristics of electro-optic and acousto-optic cells
3.1 Schematic representation of refraction of a light beam by a crystal plate with nonparallel faces
3.2 Schematic representation of refraction of a light beam by a crystal prism
3.3 Interference scheme of non-parallel laser beams
3.4 Scheme of experimental setup for quality control of samples [184]: 1 laser, 2 - beam expander, 3,7 - light splitters, 4, 5 - rotating mirrors, 6 or 6' - a crystalline sample, 8 - screen, 9 - video camera, 10 computer monitor, and 11 - polarizer. B denotes a distance from sample to screen
3.5 Interference patterns observed with $\mathrm{LN}: \mathrm{MgO}$ crystal as a test sample before (a) and after (b) realignment of interferometer
3.6 Interference pattern for substantially wedge-shaped $\mathrm{LN}: \mathrm{MgO}$ sample
3.7 Interference patterns observed for $\mathrm{LN}: \mathrm{MgO}$ single crystals of relatively low quality (a) and samples cut from them (b)
3.8 Interference patterns and results of their processing for two high quality LN:MgO crystalline samples: (a) direct-cut sample and (b) $X / 45^{\circ}$-cut sample
3.9 Changes in optical-path difference occurring when a sample is rotated
3.10 Scheme of experimental setup based on Michelson interferometer for the measurements of refractive indices of optoelectronic elements in the visible spectral range with the interferometric-rotary method [191]: 1 - He-Ne laser, 2 - light-splitting prism, 3, 4 - mirrors, 5 - polarizer, 6 - lens, 7 - photo-detector, 8 - mechanism for rotating sample, 9 control module, 10 - personal computer, and 11 - sample under test
3.11 Changes in signal intensity on a photo-detector observed under condition of changing angular orientation of sample: the position of slit 1 (or 2) corresponds to the case when a maximum (or a minimum) of interference pattern is detected
3.12 Functional diagram of a GED
3.13 Example of interference-rotary measurements for LN crystals: dependence of relative light intensity on the angular position of sample. The rotation angle φ changes from -10° to 37°
3.14 Experimental (upper curve) and filtered (lower curve) dependences of the relative light intensity on the angular position of sample
3.15 Illustration of software-based method for finding a 'zero position' of sample
3.16 Schematic representation of interference patterns, which appears near the zero angular position of sample [192]: (a), (c) sample is shifted with respect to the position " 0 " in one direction or another, and (b) sample is right in the position " 0 "
3.17 Scheme of measurements of absolute EOCs based on Michelson interferometer [17]: BS - light splitter, M1, M2 - mirrors, P polarizer, $U_{d c}$ - high-voltage source, S - sample under test, PD -photo-diode, and Ampl - amplifier
3.18 Optical scheme used for measuring the absolute POCs of crystals, basing on Mach-Zehnder interferometer [250] (see also [19]): $\mathrm{He}-\mathrm{Ne}$ a He-Ne laser LG-207 with the wavelength $\lambda=633 \mathrm{~nm}, \mathrm{M}-$ mirrors, C - an optical-path compensator, P - a polarizer, E - a screen where a schematic interference pattern is seen, PD - a photo detector, and S - a sample subjected to uniaxial compression σ
3.19 Changing effective thickness of a compensator plate due to rotating it by some angle α
3.20 Dependence of optical-path change for a silica compensator plate (n $=1.45702$ and $d=0.3 \mathrm{~mm}$) on the rotation angle α
3.21 Dependence of the absolute error $\delta(\delta \Delta)$ on the compensation angle α
3.22 Dependence of relative error β on the compensation angle α
3.23 Immersion cell with a sample for determining static elastic coefficients [96]: 1 - window, 2 - wall, 3 - bottom, 4 - elastic gasket, 5 - sample, and 6 - liquid
3.24 Scheme of polarization-optical setup for determining the POCs of path difference: 1 - laser, 2 - mirror, 3 - lens, 4 , 7 - polarizers, 5 test sample, 6 - quarter-wave plate, 8 - condenser, 9 - slit, 10 - photodetector, 11 - micro-amperemeter, and 12 - device for rotating polarizer 7 equipped with angular reading mechanism
3.25 Schemes of crystal samples used for studying the POE in rhombic crystals: different panels correspond to the samples of (a) direct cut, (b) $45^{\circ} / X$-cut, (c) $45^{\circ} / Y$-cut, and (d) $45^{\circ} / Z$-cut
3.26 Typical conoscopic patterns observed in optically uniaxial crystals along birefringent directions (orthogonal to the optic axis)
3.27 Intersection of perturbed indicatrix by a plane perpendicular to X_{3} axis
3.28 Scheme of sample for finding the rotation of optical indicatrix with conoscopic method
3.29 Experimental setup for piezo-optic measurements using conoscopic interferometry [250]: $\mathrm{He}-\mathrm{Ne}-\mathrm{a} \mathrm{He}-\mathrm{Ne}$ laser with the light wavelength $633 \mathrm{~nm}, \mathrm{P}$ - polarizers, L - a lens, E - a screen where a conoscopic pattern is observed, PD - a photo detector, and S - a sample subjected to uniaxial compression σ
3.30 Examples of conoscopic patterns observed on CaWO_{4} crystals under increasing mechanical stress. Light dots indicate the outputs of optic axes
3.31 Block diagram of our measurements of acoustic-wave velocity with a method of superimposed reflected pulses: 1 - master generator, 2 frequency divider, 3 - pulse generator, 4 - piezo-electric transducer, 5 - investigated crystal, 6 - resonant amplifier, 7 - oscilloscope, 8 -frequency-meter, and 9 - double-pulse generator
3.32 Reflected pulse train (a) and example of pulse synchronization (b) taken from oscilloscope display in the case of transverse acoustic wave propagating through a direct-cut sample of LN crystals
3.33 Scheme of measurements of acousto-optic parameters with a DixonCohen method: (a) acoustic-wave propagation, (b) measured light
intensities, and (c) a typical pattern observed on oscilloscope: $F Q$ buffer from fused silica, T - piezo-electric transducer, C - crystalline sample, $A B$ - ultrasonic beam, I_{g} and I_{s} - intensities of diffracted rays in buffer and sample, and I_{0}^{\prime}-intensity of zero-diffraction order
3.34 Typical oscillograms obtained from a photo-detector during diffraction of light in fused silica (a) and test sample (b) within DixonCohen experiment
3.35 Block diagram of experimental setup for determining the effective PECs in solids with the method by Dixon-Cohen: 1 - laser, 2 - test sample, 3 - reference sample, 4 - photo-detector, 5 - pulse generator, 6 - high-frequency generator, 7 - piezo-electric transducer, and $8-$ oscilloscope
A. 1 Samples used for determining POCs $\pi_{i m}$ for the crystals of triclinic symmetry

Tables

1.1Basic relations for determining non-principal EOCs $r_{i l}$ in the crystals of triclinic symmetry
1.2Relations for determining non-principal EOCs for the crystals of triclinic symmetry with the method of twofold measurements
1.3Analytical relations for determining non-principal EOCs for the crystals of monoclinic and rhombic symmetry classes
1.4Analytical relations for determining non-principal EOCs $r_{i l}$ for the crystals of higher symmetry classes
1.5Additional analytical relations for determining the principal diagonal EOCs for the crystal samples of 45°-cuts
1.6Parameters of acousto-optic efficiency
2.1 Analytical relations for the ISs of effective ElOC $p_{\text {eff }}$ and acousto-optic figure of merit M_{2}, as derived for different types of diffraction in optically uniaxial crystals
A. 1 Analytical relations for determining POCs $\pi_{i m}$ for triclinic crystals with the method of twofold measurements
A.2Additional analytical relations for determining POCs $\pi_{i m}$ for the crystals of higher symmetry classes

SUMMARY

In the first volume of this monograph we address analytical description and geometric representation of the spatial anisotropy of induced optical effects in crystalline materials of different symmetry classes, as well as experimental methods and apparatus for the comprehensive study of electro-, piezo-, elasto- and acousto-optic phenomena in crystalline solids. Following experimental studies and relevant analytical calculations, we perform 3D analysis of the anisotropies of linear electro-optic, piezo-optic, elasto-optic, acoustic and acousto-optic properties of various crystalline materials and construct indicative or extreme surfaces describing the anisotropy effect.

On this basis, a consistent technology for improving the components and solid-state optoelectronics devices has been developed. In particular, it increases the efficiency of operational characteristics of the devices for controlling electromagnetic radiation, e.g. light modulators, deflectors, sensors and filters. The resources and the efficiency of this technology are demonstrated on the example of electro-, piezo-, elasto- and acousto-optic effects, although it can also be used for the other physical effects described by higher-rank tensors. The prospects of the above technology for nonlinear optics and design of novel anisotropic crystalline nano-composites are also analyzed.

The monograph would be of interest to specialists in the fields of solidstate physics, optoelectronics, acousto-electronics and optical instrumentation.

Introduction

Crystalline solids, which represent anisotropic materials, are widely used in various opto- and acousto-electronic devices. The vast majority of the crystals known up to now have a low symmetry and belong to either middle or lower crystallographic categories. According to the characteristics associated with the influences of external electric and magnetic fields, mechanical stresses, acoustic waves or laser radiation on the optical properties, low-symmetry crystals are often the most promising for applications. A prominent example is optically biaxial crystals for nonlinear-optical frequency converters. However, fundamental studies and the practical utilization of such solids are hindered by significant anisotropy of their properties. Moreover, the latter makes it difficult even to determine their basic physical and operational characteristics.

Even in the cubic crystals, of which the physical properties described by second-rank tensors are isotropic, the higher-order effects (e.g., electro-, piezo- and acousto-optic interactions) are anisotropic. As a result, the problems associated with the anisotropy are also typical for these, otherwise 'optically isotropic', crystalline materials. As a result, comprehensive study of the influence of external fields on the physical properties of crystalline solids characterized by higher-order tensors require a proper knowledge of the anisotropy of the corresponding effects.

On the other hand, this seeming drawback of anisotropic materials can readily transform into a kind of advantage. Namely, study of the anisotropy of the physical properties of low-symmetry materials by constructing the indicative surfaces of angular distributions of their response to the external fields, and a consistent analysis of these surfaces, including a search for their extreme values, yield significantly increased efficiency of these materials for controlling laser radiation. This approach can develop a scientific basis of technologies aimed at improving the performance of solid-state optoelectronic devices, including those designed to control electromagnetic radiation via electro-, piezo- and acousto-optic effects, e.g. light modulators, deflectors, sensors and filters.

It is also important that our OPTIMA technology, which has been developed in order to find the maxima of the induced optical effects, is intensive rather than extensive, since it requires neither the structural modification of already available crystalline materials nor the search for
completely new materials. It puts into effect some hidden resources, which are often inherent even in canonical and widely known materials, due to their anisotropy and the availability of 'hidden' optimal directions of propagation and polarization of light, as well as optimal directions of external fields, for which the quantitative characteristics of a crystal reach their maxima. This follows from our fundamental conclusion: the global maxima of externally induced optical effects for most anisotropic materials often do not coincide with the principal axes of crystallographic coordinate system and, sometimes, these maxima do not even lie in the principal planes of this coordinate system. In other words, many practical situations indicate that the techniques like our OPTIMA technology are indeed in demand.

The present monograph describes the main ideas and approaches underlying the OPTIMA technology for investigating the anisotropy of externally induced optical effects in crystalline materials. The first volume of the monograph is devoted mainly to theoretical issues, in particular the analytical description and geometric representation of the anisotropy of optical or acoustic effects, and experimental techniques which have been adopted and improved by the authors for studying anisotropic crystalline materials.

The second volume will deal with the typical results of 3D analysis of the spatial anisotropy of electro-, piezo-, elasto- and acousto-optic effects. They will refer to both commonly known model materials $\left(\mathrm{LiNbO}_{3}, \mathrm{SiO}_{2}\right.$, etc.) and new promising crystals, which have been studied by the authors.

Up to now, the relevant results have been scattered over many scientific and technical periodicals, and conference materials. This monograph represents our attempt to systematize and generalize the corresponding data and conclusions.

CHAPTER 1

Analytical Description of ElectroOptic and Photo-Elastic Phenomena In ANISOTROPIC MATERIALS

1.1. Linear electro-optic effect

1.1.1. Brief review

Linear electro-optic effect (EOE) has already found wide practical applications in various solid-state electronics devices [1, 2]. The interest in its study remains high enough [3-5], especially in relation to the rapid development of novel technologies and the appearance of new promising crystalline materials [6-8]. High-performance electro-optic crystals often belong to low-symmetry classes and reveal significant anisotropy. In order to use these crystals as working elements of various optoelectronic devices in an optimal manner, one has to study analytically the manifestations of EOE in different experiments and analyze the spatial (angular) distribution of the effect. This can be implemented after determining experimentally all nonzero components of the electro-optic tensor (i.e., electro-optic coefficients abbreviated hereafter to EOCs) and constructing, on this basis, so-called indicative surfaces (ISs) or extreme surfaces (ESs), as explained in Chapter 2. A ready example of this approach has been demonstrated for the cases of piezo-optic effect (POE) and elasto-optic effect (ElOE) in References [9-11].

Of course, the measurements of EOCs for the crystals of different (most often, high) symmetry classes have been performed in many laboratories worldwide (see, e.g., works [12, 13] and references therein). However, the literature has not described a general enough technique which would enable determining all the absolute EOCs for the crystals of arbitrary symmetry classes. So, the formulae that describe the changes in the principal refractive indices under the influence of the electric field have been obtained in works [12, 14]. Nonetheless, they do not consider the most general case of triclinic crystals. Moreover, these formulae
cannot be used in practice for the experimental determination of nonprincipal EOCs, because they do not take the piezo-electric deformation of sample into account, which can become a source of gross experimental errors. In addition, study [14] does not consider the phenomenon of 'sign dualism' for a number of non-principal EOCs. Furthermore, the formulae available in Reference [14] for most of the rotary EOCs imply that the latter coefficients can only be determined following the field-induced rotations of optical indicatrix. For many practical reasons, this method cannot be implemented experimentally. (Note that Subsection 1.1.3 introduces the formulae for determining the rotary EOCs, which are based directly on the field-induced refractive-index changes.)

In this chapter, we provide a general theoretical analysis of the experimental manifestations of the linear EOE in the crystals of arbitrary symmetries, with the emphasis on interferometric measurements. It is these experiments that provide the most accurate information about the EOCs. They have enabled us to solve a problem that most researchers do not even pay much attention to. This problem is separating reliably the contributions of EOE and piezo-electric effect (PEE) into the electric fieldinduced changes of optical path difference, i.e. separating the corresponding changes in the refractive indices and the changes in the thickness of crystal (see References [14, 15]). Subsection 1.1 describes also an interferometric technique employed in so-called twofold EOC measurements, which result in higher accuracy of all the absolute EOCs for the crystals of arbitrary symmetry classes [16-20].

1.1.2. General description of electro-optic phenomena in crystals

Linear EOE, termed also the Pockels effect, is described by a linear change in refractive indices induced by an external electric field [14, 21]. Since the propagation of electromagnetic waves in crystals without considering spatial dispersion (see works [22,23]) is completely described by the ellipsoid of refractive indices, the influence of the electric field can be thought of as a change in the optical indicatrix. Its equation,

$$
\begin{equation*}
a_{i j} x_{i} x_{j}=1, \tag{1.1}
\end{equation*}
$$

defines a triaxial ellipsoid, with $a_{i j}$ being the components of dielectric impermeability tensor (or a so-called tensor of optical polarization constants) and $x_{i}, x_{j}=x_{1}, x_{2}, x_{3}$ denoting the coordinates which are mainly associated with the principal coordinate system (termed a 'crystalphysical' system hereafter).

When a low-frequency electric field $\boldsymbol{E}=\left(E_{x}, E_{y}, E_{z}\right)$ is applied to a crystal, its optical polarization constants $a_{i j}$ change (see References [12, 14]) according to the relation

$$
\begin{equation*}
\Delta a_{i j}=r_{i j k} E_{k}+R_{i j k l} E_{k} E_{l}+\ldots \tag{1.2}
\end{equation*}
$$

Here $r_{i j k}$ imply the components of a polar third-rank tensor symmetric in its first two indices, which describes the linear EOE, and $R_{i j k l}$ are the components of a polar fourth-rank tensor symmetric in its first two and last two indices, which describes a quadratic EOE (or a Kerr effect).

Consider the linear EOE and the symmetry of the EOCs $r_{i j k}$. We introduce well-known (see, e.g., References [24, 25]) matrix notations $11 \rightarrow 1,22 \rightarrow 2,33 \rightarrow 3,23(32) \rightarrow 4,13(31) \rightarrow 5$ and $12(21) \rightarrow 6$. When neglecting the terms of higher E_{i} powers in formula (1.2), one can obtain the relation

$$
\left(\begin{array}{l}
\Delta a_{1} \tag{1.3}\\
\Delta a_{2} \\
\Delta a_{3} \\
\Delta a_{4} \\
\Delta a_{5} \\
\Delta a_{6}
\end{array}\right)=\left(\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33} \\
r_{41} & r_{42} & r_{43} \\
r_{51} & r_{52} & r_{53} \\
r_{61} & r_{62} & r_{63}
\end{array}\right)\left(\begin{array}{c}
E_{1} \\
E_{2} \\
E_{3}
\end{array}\right)
$$

As follows from symmetry consideration, we have $r_{m k}=0$ for the crystals with inversion centre [14, 26]. The form of the EOC matrix $r_{m k}$ for the other (non-centrosymmetric) crystals can be found from the analysis of point symmetry, which also allows for clarifying relationships among particular coefficients [25].

Consider as an example a description of EOE in lithium niobate, LiNbO_{3}, which is abbreviated to LN [13]. This crystal is optically uniaxial. It is described by point group $3 m$, for which the linear EOE is allowed by symmetry. The EOC matrix for the crystals of this point group has the following form [25]:

$$
\left(r_{\mu k}\right)=\left(\begin{array}{ccc}
0 & -r_{22} & r_{13} \tag{1.4}\\
0 & r_{22} & r_{13} \\
0 & 0 & r_{33} \\
0 & r_{51} & 0 \\
r_{51} & 0 & 0 \\
-r_{22} & 0 & 0
\end{array}\right)
$$

When the electric-field component E_{y} is applied, the LN crystal becomes optically biaxial. Then there appears an induced birefringence along the Z direction [14]:

$$
\begin{equation*}
\delta(\Delta n)=n_{o}^{3} r_{22} E_{y} \tag{1.5}
\end{equation*}
$$

where n_{o} is the ordinary refractive index.
Since a general relation $\delta a_{i}=\delta\left(\frac{1}{n_{i}^{2}}\right)=-\frac{2 \delta n_{i}}{n_{i}^{3}}$ holds true, one can arrive at the equality $\delta(\Delta n)=\delta n_{i}-\delta n_{j}=\frac{1}{2}\left(n_{i}^{3} \delta a_{i}-n_{j}^{3} \delta a_{j}\right)$. If the field acts along the Z axis in the LN crystals and the light propagates perpendicular to this axis (e.g., along the X direction), then there are induced changes in the birefringence $\delta(\Delta n)$ and an optical phase difference $\delta \varphi=\frac{2 \pi}{\lambda} t_{x} \delta(\Delta n)$. They can be calculated using a classical tensor approach [14]:

$$
\begin{align*}
\delta(\Delta n) & =\frac{1}{2}\left(n_{o}^{3} r_{13}-n_{e}^{3} r_{33}\right) E_{z}, \\
\delta \varphi & =\frac{\pi t_{x}}{\lambda t_{z}}\left(n_{o}^{3} r_{13}-n_{e}^{3} r_{33}\right) U_{z} . \tag{1.6}
\end{align*}
$$

Here n_{o} and n_{e} imply respectively the ordinary and extraordinary refractive indices, λ the wavelength of light, t_{x} the thickness of the crystal along the direction of the light transmission, t_{z} the crystal length along direction Z of the electric field, and U_{z} the electric voltage applied to the crystal along this direction. Here the field-induced birefringence is a correction to the natural one, $\Delta n_{0}=n_{e}-n_{o}$.

Consider another example. Let the electric field be applied along the Z axis in the crystals of symmetry group $\overline{4} 2 \mathrm{~m}$. Let the light polarized along the X (or Y) axis propagate along the Z axis. After passing the crystal, it acquires the phase difference $\delta \varphi$ [14, 27]:

$$
\begin{equation*}
\delta \varphi=\frac{2 \pi}{\lambda} t \delta(\Delta n)=\frac{2 \pi}{\lambda} t_{o}^{3} r_{63} E_{z}, \tag{1.7}
\end{equation*}
$$

where t is the thickness of the crystal sample. The optical transmission J of a polarizer-crystal-analyzer system, in which the polarizer and the analyzer are crossed while the crystal is oriented 'diagonally' (i.e., the directions of its indicatrix axes under the field make the angle 45° with respect to the transmission axes of the polarizers) is determined by a known relation (see, e.g., Reference [15])

$$
\begin{equation*}
J=\frac{I}{I_{0}}=\sin ^{2} \frac{\delta \varphi}{2} \tag{1.8}
\end{equation*}
$$

with I and I_{0} being respectively the emergent and incident light intensities. Following formulae (1.7) and (1.8), one can obtain the relationship

$$
\begin{equation*}
J=\sin ^{2} \frac{\pi}{\lambda} n_{0}^{3} U_{z} r_{63} \tag{1.9}
\end{equation*}
$$

for the parallel orientations of the light and the electric field.
The electric voltage $U_{z}=E_{z} d$ required to increase the optical transmission of the polarization system from zero (in the absence of a field) to unity (under the field applied) is called a half-wave voltage ($\mathrm{U}_{\lambda / 2}=\lambda /\left(2 n_{0}^{3} r_{63}\right)$). It follows from formula (1.9) that this voltage does not depend on the crystal size. One of the methods for determining the EOCs of crystals just relies on the measurement of the half-wave electric voltage.

For the LN crystals (symmetry group $3 m$), the half-wave voltage for the above case is given by

$$
\begin{equation*}
U_{\lambda / 2}=\lambda d_{x} / 2 n_{o}^{3} r_{22} d_{z} \tag{1.10}
\end{equation*}
$$

It is seen from formula (1.10) that, unlike the crystals of group $\overline{4} 2 m$, the half-wave voltage now depends on the geometric dimensions of the sample.

Another method for studying EOE is based on the measurements of optical birefringence induced by the external electric field [28]. This is a Senarmont method, which uses a polarizer-crystal-compensator-analyzer polarization system in which the compensator is a quarter-wave phase plate. In this scheme, the polarizer and the analyzer are crossed, the major axes of optical indicatrix of the quarter-wave plate are set to be parallel to the transmission axes of polarizers, and the crystal is in 'diagonal' orientation in the presence of the field. After turning off the voltage applied to the crystal and rotating the analyzer until a minimal light intensity is achieved at the output of the polarization system, a researcher has to detect the appropriate reading α_{0} of the angle-measuring mechanism of the analyzer. Then the voltage is switched on and one reads again the analyzer angle α, which corresponds to the minimum intensity in the presence of the field. Then the field-induced birefringence can be determined as $[14,15]$

$$
\begin{equation*}
\Delta n=\frac{\lambda\left(\alpha-\alpha_{0}\right)}{\pi t} \tag{1.11}
\end{equation*}
$$

where t is the thickness of the crystal along the direction of the light propagation.

Sometimes, the 'relative' methods for determining the EOCs described above do not account for the contribution of the inverse PEE into the changes of optical path of a light beam. In other words, they are based, intentionally or not, on the approximation of invariable crystal thickness. In addition to the relative methods, one can also employ 'absolute' methods which are based on interferometry (see Section 3.3). The latter methods consider possible contributions of the inverse PEE into resulting electro-optic data.

Obtaining the analytical relations that describe interaction of light with a crystal under the action of the electric field in the framework of these methods is a separate complex problem. Its solutions will be obtained and discussed in the next subsection.

1.1.3. Analytical relations for the interferometric methods of determining electro-optic coefficients

We illustrate how to derive analytical relations for determining EOCs on the example of a known interferometric method [12], which is implemented, e.g., using a Mach-Zehnder interferometer. A sample under test is placed into one of the arms of this interferometer. The optical path introduced by the sample is equal to $\Delta_{i k}=\left(n_{i}-n_{p}\right) t_{k}$, where n_{i} and n_{p} are the refractive indices of sample and environment, respectively (e.g., the equality $n_{p}=1$ is taken for the air), and t_{k} is the crystal size along direction \vec{k} of light propagation.

Let the electric field E_{l} be applied to the crystal. Here \vec{l} implies the direction of the electric field, whereas \vec{i} defines the direction of the oscillations of the light wave, i.e. its polarization. The induced change in optical path $\Delta_{i k l}$ for the light beam passing through the sample is given by the following formula:

$$
\begin{equation*}
\delta \Delta_{i k l}=\delta\left[\left(n_{i}-1\right) t_{k}\right]=t_{k} \delta n_{i}+\left(n_{i}-1\right) \delta t_{k}=-\frac{r_{i l} n_{i}^{3}}{2} E_{l} t_{k}+\left(n_{i}-1\right) d_{l k} E_{l} t_{k} \tag{1.12}
\end{equation*}
$$

Here the first term in the r. h. s. of formula (1.12) represents the change in the optical path due to the EOE, i.e. due to changing refractive index δn_{i} (or a corresponding change in polarization constant δa_{i}) acquired under the electric field $\left(\delta n_{i}=-\frac{\delta a_{i}}{2 a_{i}^{3 / 2}}=-\frac{r_{i l} E_{l} n_{i}^{3}}{2}\right)$. The second term describes the inverse PEE, i.e. a change in the optical path appearing due to changing the sample size t_{k} along the light propagation direction under the electric field E_{l} applied $\left(\delta t_{k}=d_{l k} E_{l} t_{k}\right)$. Besides, $r_{i l}$ are the linear EOCs and $d_{l k}$
denote the PECs. Directions \vec{i}, \vec{k} and \vec{l} in a practical experiment are mainly mutually orthogonal. Nevertheless, directions \vec{k} and \vec{l} can coincide with each other in the case of so-called longitudinal EOE.

Electrically induced changes in the optical path would shift the interference pattern. For practical reasons, it is convenient to achieve the shift of this pattern equal to $\delta \Delta_{i k l}=n \lambda / 2$ (with $n=1,2, \ldots$) by changing continuously the electrical voltage applied to the sample. If $n=1$, we have the above-mentioned 'half-wave voltage' $U_{\lambda / 2}$, at which the interference minimum turns into the maximum or vice versa, which is easily detected in practice.

To determine unambiguously the signs and the absolute values of the EOCs in low-symmetric crystals, the following arguments must be taken into account.

1. The sign of the induced change in optical path $\delta \Delta_{i k l}$ under the action of positive electric field $+E_{l}$ must be determined by the following criterion: if the increase in E_{l} leads to increasing optical path, then $\delta \Delta_{i k l}$ is positive.
2. It is necessary to define the positive directions of axes of the crystalphysical coordinate system in accordance with the known rules approved by the IRE standard [29]. The latter has been supplemented by the case of POE in Reference [30].
3. It is necessary to set unambiguously the sign of the electric field. Namely, the positive direction of the electric field vector must be chosen as a direction generally accepted in physics, i.e. from positively to negatively charged poles of a power supply. Then the direction of the field in any experimental measurements must coincide with the positive direction of one of the axes of the crystal-physical coordinate system.

We emphasize that the crystallographic and crystal-physical coordinate axes of different effects often do not coincide with each other in low-symmetric crystals. Therefore, it is necessary to find out in which coordinate system the PEC components $d_{l k}$ have been determined. Moreover, if it is necessary, one has to convert these components to the crystal-physical system, of which axes represent the principal axes of the optical-indicatrix ellipsoid.

To determine all the components of the EOC tensor for the crystals of the lowest symmetry, one needs to prepare four different samples. One sample of a direct cut (see Figure 1.1, sample \#1) is needed for determining the principal coefficients ($i, k, l=1,2,3$). Furthermore, three samples of 45°-cuts are needed in order to determine the remaining coefficients corresponding to $i, k, l=4,5,6$. Concerning each of the principal crystal-physical axes, we refer the reader to samples \#\#2, 3 and 4 in Figure 1.1.

Let us show how to specify required experimental geometries so that one can determine all the components of the EOC tensor for the triclinic crystals. A standard routine here is that, in each subsequent experiment, only one 'new' (i.e., still unknown experimentally) EOC is actual. Moreover, this EOC can, in principle, involve a linear combination of some 'old' $r_{i l}$ coefficients, which have already been determined in the previous experiments. In this manner, one can derive progressively the whole EOC matrix in a number of consecutive electro-optic experiments.

Figure 1.1. Orientations of samples needed for completing EOC matrix in the case of triclinic crystals [17]

1. In order to determine the nine independent principal EOCs (those with indices $i, k, l=1,2,3$), so-called 'direct cuts' of crystals are used, with their faces being perpendicular to the crystal-physical axes X_{1}, X_{2} and X_{3}. To determine all these coefficients, one has to direct the field along all three principal directions, one after another. Therefore, it is necessary to make three such samples with the electrodes attached to the faces $\left(X_{2} X_{3}\right)$, $\left(X_{1} X_{3}\right)$ and $\left(X_{1} X_{2}\right)$. Then each of the principal EOC is calculated based on formula (1.12):

$$
\begin{equation*}
r_{i l}=-2 n_{i}^{-3} \frac{\delta \Delta_{i k l}}{E_{l} t_{k}}+2 n_{i}^{-3} d_{l k}\left(n_{i}-1\right) \tag{1.13}
\end{equation*}
$$

Each of these three samples can provide three principal EOCs, for which the directions of the electric voltage E_{l} coincide.

Note that, when determining the principal EOCs for some optically uniaxial crystals (e.g., for those of symmetry classes $62 m, 6,32$ and 3), formula (1.13) must be used for the case of r_{11} coefficient. The same is valid for the coefficient r_{22} measured for symmetry classes $6,3 m$ and 3. Indeed, there is no component of the inverse PEE involved in optical path change $\delta \Delta_{i k l}$ for the experimental geometries that correspond to the first (i $=1, k=3$ and $l=1)$ and second $(i=2, k=3$ and $l=2)$ cases. This is because the corresponding $d_{l k}$ coefficients are zero in these crystals. Then the relation (1.13) becomes simplified:

$$
\begin{equation*}
r_{11}=-2 n_{1}^{-3} \frac{\delta \Delta_{131}}{E_{1} t_{3}}, r_{22}=-2 n_{2}^{-3} \frac{\delta \Delta_{232}}{E_{2} t_{3}} . \tag{1.14}
\end{equation*}
$$

2. In order to determine the rest of the EOCs (samples \#\#2, 3 and 4 see Figure 1.1), so-called ' 45°-cut' samples are used. In general, the coefficients r_{41}, r_{52} and r_{63} can be determined on the samples for which the electrodes are attached to the faces perpendicular to directions X_{1}, X_{2} and X_{3}.

The most difficult step in solving the problem of completing the EOC matrices is to derive the formulae that relate the EOCs to the induced changes in the optical path for each of the particular geometries of the interferometric experiments. A well-known approach, which consists of the analysis of the equation for the optical indicatrix perturbed by electric field [14], turns out to be cumbersome in too many cases. For the purpose of analytical description of the most complex experimental geometries of electro-optics, we use a tensor method instead (see also the corresponding analysis in Reference [33]).

The essence of the tensor method is as follows. When obtaining formulae for the EOCs, we use formula (1.12) generalized for an arbitrary ('new') coordinate system:

$$
\begin{equation*}
\delta \Delta_{i k l}^{\prime}=-\frac{r_{i l}^{\prime} h_{i}^{\prime 3}}{2} E_{l} t_{k}+d_{l k}^{\prime}\left(n_{i}^{\prime}-1\right) E_{l} t_{k} . \tag{1.15}
\end{equation*}
$$

Here the effective values $r_{i l}^{\prime}$ and $d_{i l}^{\prime}$ of the tensor components are determined by the standard expressions for transforming third-rank tensors [24, 25]:

$$
\begin{gather*}
r_{i l}^{\prime}=r_{i l l}^{\prime}=\alpha_{i f} \alpha_{i g} \alpha_{l q} r_{f g q}, \\
d_{l k}^{\prime}=d_{l k k}^{\prime}=\alpha_{l q} \alpha_{k g} \alpha_{k f} d_{q g f} . \tag{1.16}
\end{gather*}
$$

In (1.16), $r_{f g q}$ and $d_{q g f}$ denote the components of EOE and PEE tensors in the principal coordinate system, and refractive index n_{i}^{\prime} is linked with the optical polarization constants $a_{i i}$ by a known expression,

$$
\begin{equation*}
n_{i}^{\prime}=1 / \sqrt{a_{i}^{\prime}}=1 / \sqrt{\alpha_{i g}^{2} a_{g g}}=1 / \sqrt{\alpha_{i g}^{2} n_{g}^{-2}} . \tag{1.17}
\end{equation*}
$$

Here $\alpha_{l q}, \ldots, \alpha_{k f}, \ldots, \alpha_{i g}, \ldots$ are the direction cosines of the axes of an 'old' (i.e., crystal-physical) coordinate system with respect to the directions of field (l), light propagation (k) and light polarization (i).

To determine the coefficient r_{41}, one should use sample \#2 (see Figure 1.1) with electrodes attached to the face perpendicular to the X_{1} direction. Then the two experimental geometries can possibly be used for determining $r_{41}: i=4, k=\overline{4}$ and $l=1$ (we call them 'direct conditions')
and $i=\overline{4}, k=4$ and $l=1$ (we call them 'symmetric conditions' of the above direct conditions). Here ' 4 ' denotes a diagonal of the positive directions of the X_{2} and X_{3} axes, and direction $\overline{4}$ is perpendicular to axis 4 . Note that simultaneous utilization of these direct and symmetrical conditions represents a basis of a so-called twofold method of EOC measurements (see References [17, 18]).

It is interesting that the signs of the r_{41} and d_{14} terms in the formulae given below would depend on the choice of signs of the crystal-physical coordinate axes [29, 30]. For the above experimental conditions, the direction cosines for the light polarization are given by $\alpha_{i 1}=0$, $\alpha_{i 2}=\sqrt{2 / 2}$ and $\alpha_{i 3}= \pm \sqrt{2 / 2}$ (hereinafter the lower signs ' + ' or ' - ' refer to the symmetrical conditions of the experiment). For direction \vec{k} of the light propagation, we have $\alpha_{k 1}=0, \alpha_{k 2}=\sqrt{2} / 2$ and $\alpha_{k 3}=\mp \sqrt{2} / 2$, while the relations $\alpha_{l 1}=1, \alpha_{l 1}=0$ and $\alpha_{l 1}=0$ hold true for direction \vec{l} of the electric field. Substituting these direction cosines into formulae (1.16) and (1.17), we arrive at the expressions for the effective $r_{i l}^{\prime}, d_{k l}^{\prime}$ and n_{i} parameters:

$$
\begin{gather*}
r_{41}^{\prime}=\frac{1}{2}\left(r_{21}+r_{31} \pm 2 r_{41}\right), d_{14}^{\prime}=\frac{1}{2}\left(d_{12}+d_{13} \mp d_{14}\right), \\
n_{4}=\sqrt{2} / \sqrt{n_{2}^{-2}+n_{3}^{-2}} . \tag{1.18}
\end{gather*}
$$

After substituting formula (1.18) into (1.15) and solving it with respect to r_{41}, we obtain the expressions for the EOC r_{41}, which are valid for the crystals of the lowest symmetry under direct and symmetric conditions. These formulae are given in the first two rows of Table 1.1.

After combining the latter formulae, one obtains a significantly simpler formula (T.1) (see Table 1.2) for determining the EOC r_{41}. This formula does not involve the EOCs r_{21} and r_{31}, as well as the PECs d_{12} and d_{13}. This makes it possible to obtain a more accurate r_{41} value, by analogy with the method suggested in our work [11] for the POE. Therefore, the method of twofold measurements increases the accuracy of interferometric methods for determining the EOCs.

Table 1.1 shows the expressions derived for the components r_{41}, r_{52} and r_{63}, as well as the corresponding errors of their determination. The latter are calculated as a standard deviation of the mean errors for all the measurables $\delta \Delta_{i k m}, E_{l}$ and $d_{l k}$, which are included in the operating relations. The errors of the latter parameters have been taken to be equal to $3 \%, 2 \%$ and 3%, respectively. From the formulae of Table 1.1, one can obtain the relations for the EOCs r_{41}, r_{52} and r_{63} (the corresponding relations are
presented in Table 1.2), as well as some convenient relations used within the method of twofold measurements for the other EOCs.

Table 1.1. Basic relations for determining non-principal EOCs $r_{i l}$ in the crystals of triclinic symmetry [17]

Sample (see Figure 1.1)	Working relation	Calculated error
\#2	$\begin{aligned} & r_{41}=-2 n_{4}^{-3} \frac{\delta \Delta_{441}}{t_{4} E_{1}}+n_{4}^{-3}\left(n_{4}-1\right) \\ & \times\left(d_{12}+d_{13}-d_{14}\right)-\left(r_{21}+r_{31}\right) / 2 \\ & r_{41}=2 n_{4}^{-3} \frac{\delta \Delta_{441}}{t_{4} E_{1}}-n_{4}^{-3}\left(n_{4}-1\right) \\ & \times\left(d_{12}+d_{13}+d_{14}\right)+\left(r_{21}+r_{31}\right) / 2 \end{aligned}$	$\begin{aligned} & 9 \% \\ & 9 \% \end{aligned}$
\#3	$\begin{aligned} & r_{52}=2 n_{5}^{-3} \frac{\delta \Delta_{552}}{t_{5} E_{2}}+n_{5}^{-3}\left(n_{5}-1\right) \\ & \times\left(d_{21}+d_{23}-d_{25}\right)-\left(r_{12}+r_{32}\right) / 2 \\ & r_{52}=2 n_{5}^{-3} \frac{\delta \Delta_{552}}{t_{5} E_{2}}-n_{5}^{-3}\left(n_{5}-1\right) \\ & \times\left(d_{21}+d_{23}+d_{25}\right)+\left(r_{12}+r_{32}\right) / 2 \end{aligned}$	$\begin{aligned} & 9 \% \\ & 9 \% \end{aligned}$
\#4	$\begin{aligned} & r_{63}=-2 n_{6}^{-3} \frac{\delta \Delta_{663}}{t_{6} E_{3}}+n_{6}^{-3}\left(n_{6}-1\right) \\ & \times\left(d_{31}+d_{32}-d_{36}\right)-\left(r_{13}+r_{23}\right) / 2 \\ & r_{63}=2 n_{6}^{-3} \frac{\delta \Delta_{663}}{t_{6} E_{3}}-n_{6}^{-3}\left(n_{6}-1\right) \\ & \times\left(d_{31}+d_{32}+d_{36}\right)+\left(r_{13}+r_{23}\right) / 2 \end{aligned}$	$\begin{aligned} & 9 \% \\ & 9 \% \end{aligned}$

Table 1.2. Relations for determining non-principal EOCs for the crystals of triclinic symmetry with the method of twofold measurements [17]

Sample (see Figure 1.1)	Working relation	Formula	Calculated error
\#2	$\begin{aligned} & r_{41}=-n_{4}^{-3}\left(\frac{\delta \Delta_{4 \overline{4} 1}}{t_{\overline{4}} E_{1}}-\frac{\delta \Delta_{\overline{4} 41}}{t_{4} E_{1}}\right) \\ & -n_{4}^{-3}\left(n_{4}-1\right) d_{14} \end{aligned}$	(T.1)	6\%
\#3	$\begin{aligned} & r_{52}=-n_{5}^{-3}\left(\frac{\delta \Delta_{552}}{t_{5} E_{2}}-\frac{\delta \Delta_{352}}{t_{5} E_{2}}\right) \\ & -n_{5}^{-3}\left(n_{5}-1\right) d_{25} \end{aligned}$	(T.2)	6\%
\#4	$\begin{aligned} & r_{63}=-n_{6}^{-3}\left(\frac{\delta \Delta_{663}}{t_{\overline{6}} E_{3}}-\frac{\delta \Delta_{\overline{6} 63}}{t_{6} E_{3}}\right) \\ & -n_{6}^{-3}\left(n_{6}-1\right) d_{36} \end{aligned}$	(T.3)	6\%
\#2	$\begin{aligned} & r_{43}=-\sqrt{2} n_{4}^{-3}\left(\frac{\delta \Delta_{444}}{t_{4} E_{4}}+\frac{\delta \Delta_{444}}{t_{4} E_{4}}\right) \\ & +n_{4}^{-3}\left(n_{4}-1\right)\left(d_{22}+d_{23}-d_{34}\right) \\ & -\left(r_{22}+r_{32}\right) / 2 \end{aligned}$	(T.4)	10\%
	$\begin{aligned} & r_{42}=-\sqrt{2 n_{4}^{-3}}\left(\frac{\delta \Delta_{444}}{t_{\overline{4}} E_{4}}-\frac{\delta \Delta_{444}}{t_{4} E_{\overline{4}}}\right) \\ & +n_{4}^{-3}\left(n_{4}-1\right)\left(d_{32}+d_{33}-d_{24}\right) \\ & -\left(r_{23}+r_{33}\right) / 2 \end{aligned}$	(T.5)	10\%
\#3	$\begin{aligned} & r_{51}=-\sqrt{2} n_{5}^{-3}\left(\frac{\delta \Delta_{555}}{t_{5} E_{5}}-\frac{\delta \Delta_{355}}{t_{5} E_{5}}\right) \\ & +n_{5}^{-3}\left(n_{5}-1\right)\left(d_{31}+d_{33}-d_{15}\right) \\ & -\left(r_{13}+r_{33}\right) / 2 \end{aligned}$	(T.6)	10\%

