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PREFACE 
 
 
 
   The technological revolution in electronics and computers which has 
taken place during the recent decades has radically changed the outlook 
for analytical laboratories. Robotic techniques have replaced test tubes 
used for sample preparation. Compact computerized instruments have 
allowed practitioners to perform rapid and precise analyses. Commercially 
available software packages based on highly efficient algorithms of 
mathematical statistics and signal processing have opened new horizons 
for data processing. Significant progress has been achieved in the field of 
computer-enhanced spectrochemical analysis, mostly due to the emergence 
of a new scientific discipline called chemometrics.  
   An international journal called "Chemometrics and Intelligent 
Laboratory Systems" defines chemometrics as "the chemical discipline 
that uses mathematical and statistical methods to design or select optimal 
procedures and experiments, and to provide maximum chemical information 
by analyzing chemical data."  
   Chemometrics can be presented as a bridge between the obtaining of raw 
data and the validation of analytical methods. The main metrological 
characteristics that must be considered during such validation include 
accuracy and precision. There is a large set of the international standards 
which define the standard practice for conducting the studies aimed at 
determining these characteristics. 
   Chemometrics originated in the 1970s as a means of solving the 
multivariate calibration problems of the quantitative analytical measurements. 
Today, this field includes a diverse set of computerized tools for 
preprocessing of analytical data and for its further use in the qualitative 
and quantitative analysis for extraction the information necessary for 
practical and theoretical applications. The ultimate goal of chemometrics 
is to estimate hidden values of the system parameters under investigation. 
   Any measurement of these parameters is to be accompanied by an 
estimate of the error. That is, a measurement uncertainty must necessarily 
characterize the data obtained by analytical measurements. The study of 
the error propagation in the data collection, processing and analysis is one 
of the main tasks of chemometrics. 
   In solving this problem, chemometrics uses cumbersome mathematical 
methods based on statistics and the signal processing theory. Unfortunately, 
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scientific literature on this issue had to be drawn from diverse sources 
(extracts of manuals, monographs, scattered articles, and tutorials). 
   It is somewhat tricky to independently study all the aspects of the error 
propagation problem since the documents mentioned above usually do not 
contain numerical calculations. Moreover, such calculations cannot be 
checked by a practitioner who has a basic knowledge of mathematics and 
statistics. These estimates have to be taken "on faith." 
   Open source software in statistics is a "black box" for non-professional 
programmers. Also, there is always a danger of a blind use of the problem-
solving recipes which may lead to unpredictable results. 
   Apparently, the only scholar who has so far given some valuable 
examples of signal processing ready for practical use is Prof. T. O'Haver, 
author of "A Pragmatic Introduction to Signal Processing: with applications 
in scientific measurement," 2017. Available from: https://terpconnect. 
umd.edu/~toh/spectrum/ (Accessed February, 1st, 2018).     
   The goal of this guidebook was to provide the readers with a 
comprehensive presentation of the problems in the error analysis in 
analytical spectrometry. We did not intend to scrutinize the published data 
but only to briefly point out the primary studies in each particular case and 
to redirect those who are eager to investigate the relevant sources. 
   Theoretical discussions on this issue are illustrated by various examples 
supplied by a simple programme code on MATLAB which can be easily 
modified by non-professional users. The readers who may wish to study 
the problem further can validate numerical data given in the guide by 
using computer calculations. Thus, they will be able to understand the 
details of the algorithm and, if necessary, modify corresponding computer 
programs. 
   This book is intended for a broad range of readers including practitioners 
and researchers of industrial and university analytical laboratories as well 
as for students specializing in analytical spectroscopy and chemometrics. 
 
 
 
 
 
 



 

 

ABOUT THE STRUCTURE OF THE BOOK 
 
 
 
   The main topics are organized into four parts divided up into brief 
chapters according to the thematic areas they cover. Each chapter is 
supplied with suitable references to make it more convenient for readers. 
   In the first part, we introduce the readers to the main problems posed in 
the book, so that they understand what awaits them while reading the 
following chapters. We give general characteristics of the noise in 
spectroscopic measurements, define the accuracy and the precision in 
analytical chemistry and formulate the main tasks of preprocessing, 
calibration and prediction. The second and the third parts review the wide-
spread methods of the univariate and multivariate calibration and 
prediction and give the accepted mathematical expressions of the noise 
propagation. The last part dedicated to the analysis of the uncertainty in 
determining parameters of the overlapping peaks. 
   Each chapter has a large number of examples focused on the subject 
matter and is supplied with exercises based on the computer programs.  
   The book closes with appendices included supplementary materials that 
are necessary to facilitate the readers' ability to understand more deeply 
the theoretical problems discussed in the main text.  
   Reading requires the knowledge of the secondary school courses on the 
differential calculus, linear algebra, and statistics. To perform the 
exercises, the readers must have programming skills for beginners in 
MATLAB. 
   All programs are open sources which can be downloaded from in the 
project "Computer-Based Tutorial on Chemometrics" 
https://www.researchgate.net/profile/Joseph_Dubrovkin. 
   A significant part of the book is based on the original research carried 
out by the author. 
   For simplicity, the captions of figures, tables, exercises, and examples 
have the following structure: "part.chapter-current number." 
   The author would be very grateful for the criticisms, comments and 
proposals about this book and hopes take them into account in his future 
work. 
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PART I:  

INTRODUCTION TO ERROR ANALYSIS 



 

 

CHAPTER ONE 

ANALYSIS OF NOISE IN SPECTRAL 
MEASUREMENTS 

 
 
 
   Measurements of any physical value are influenced by random and 
systematic errors. The systematic errors may arise from incorrect 
measurement (a typical example is an improper preparation of the blank 
cuvette in the spectrophotometer) and from the imperfection of the 
instrument (e.g., spurious reflection and radiation). Often the systematic 
errors can be decreased to be negligible by improving the apparatus and 
the measurement process (e.g., by correct calibration). However, the 
random errors cannot be eliminated in principle; they only can be 
decreased by improving the measurement procedure (e.g., by an expansion 
of the measurement scale) and by analog or numerical processing of 
obtained results (e.g., by smoothing). It is important to emphasize that 
reduction of the random errors can cause significant unpredictable 
distortions of the actual value of the quantity to be measured (systematic 
errors).  
   The random errors vary randomly with time. They are due both to the 
errors in analog-to-digital conversion of the measured value and to the 
impact of different external factors on the measurement process (e.g., a 
variation of the sample temperature, vibrations). In spectroscopy, the 
sources of the random errors are the random noises arising in different 
parts of the spectrometer, mainly, in the radiation detector. The origins of 
these noises are very different and can be approximately described in 
every case by the particular mathematical model based on the probability 
theory. The following classification was given in the series of the articles 
which were summarized by Mark and Workman [1]. 

The sources of noise 

Detector-dependent noise 

   The thermal noise (IR, NIR spectrometers) is the noise in the thermal 
detectors. This noise does not depend on the intensity of the electromagnetic 
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radiation that falls on a sensor. In the time domain, this noise has a 
Gaussian (normal) intensity distribution (We hope that the readers 
remember this from the university course in probability and statistics). 
This noise is often called "white noise" because it has the constant power 
density of Fourier spectrum (Appendix A2) in the vast range (Fig. 1.1-1). 
The noise power is proportional to the width of an interval of Fourier 
frequencies (bandwidth) of the recording device. 
 

 

 
Fig. 1.1-1. White and pink noises in the time and the Fourier domain (panels a, b 
and c, d, respectively). The noise mean value and the standard deviation are zero 
and one, respectively.  

 
   The standard deviation of the absorbance (ܣ) measurements distorted by 
a low-intensity thermal noise [2]:     ்ߪ௘௥௠ = {݇ଵ/݈݊ (10)}√1 + 100஺,                                                        (1.1 − 1)  

where ݇ଵ is a constant indicating precision of a spectrophotometer.  
   Plot [்ߪ௘௥௠/ܣ](ܣ) (Fig. 1.1-3) shows that the absorbance region 0.2-
1.2 is the most suitable for spectroscopic measurements since in this range 
the relative standard deviation is approximately constant. 
   The shot-noise (UV-VIS, X-ray, and gamma-ray spectrometry) in the 
photon counting detectors has a Poisson intensity distribution in the time 
domain. Its intensity increases with the square root of the signal. This 
noise is also white. 
   The standard deviation of the absorbance distorted by a low-intensity 
short-noise:  
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ௌ௛௢௧ߪ = {݇ଶ/(݈݊ (10))}√1 + 10஺,                                                         (1.1 − 2)  
where ݇ଶ is a constant similar to ݇ଵ in Eq. (1.1-1). 
 
Exercise 1.1 
The readers are invited to represent noise data obtained by their 
instruments similar to Fig. 1.1-2.  
 

 

 
Fig. 1.1-2. Noise measured on Bruker Optics 2501S spectrograph by D. V. 
Ushakou (Pomeranian University in Slupsk, Poland) and the noise power spectrum 
(panels a and b, respectively). 

 
 

 
Fig. 1.1-3. Eq. (1.1-1). ݇ଵ = 0.01. 

 
   Variations in energy fall on the detector due to vibrations of the source 
and the changing geometry of the radiation cause the flicker (pink) noise 
(1/݂-noise). The noise intensity is proportional to the signal energy. The 
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noise power spectrum depends on frequency: ݂ିఈ , where ߙ ≃ 1 (Fig. 1.1-
1). If the noise is small then the standard deviation of absorbance ߪ௙ is 
approximately constant. 

Detector-independent noise 

   The noise sources include mechanical vibrations of the optical 
instruments and different kinds of instabilities: 
 
• The variation of the pathlength in the absorption spectroscopy due to the 

changes in the sample position [2].   
• The variability of the sample properties that cannot be measured. 

However, these properties influence on the measurement property (e.g., 
the changing of light reflectance in the transmittance measurements, 
inhomogeneous of the sample, the artefacts of the blood motion in the 
blood analysis using Functional NIR Spectroscopy [3, 4]).   

• Random drifts of optical and electronic devices (the flicker noise) caused 
by slow changes of their parameters due to the temperature variations 
and other factors. 

 
   The mathematical analysis of these sources can be performed only in 
each case using appropriate assumptions which simplify the solution of the 
problem.  

Computer modelling of correlated noise 

   Let us consider the noise intensity distribution in the time domain [5]. 
As was pointed out above, Gaussian (normal) and Poisson noise 
distributions are usually used to model noise models in spectroscopic 
measurements. In the time domain, noise is characterized mathematically 
by the error covariance matrix ࢂࡻ࡯ which diagonal elements  ܱܥ ௜ܸ௜ = ௜  ଶߪ                                                                                                  (1.1 − 3) 
represent the noise variances (dispersions) in the ݅௧௛ point. If no two points 
of the noise in the time domain are correlated with each other, the non-
diagonal elements ܱܥ ௜ܸ௝ = 0. If all variances (Eq. (1.1-3)) are the same, 
the noise is called homoscedastic, otherwise-heteroscedastic. The source 
of the heteroscedastic noise, in particular, is a randomly varying baseline 
(background) [6, 7], due to both instrumental and physical-chemical 
factors. Total baseline compensation is practically impossible. 
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   Suppose that the baseline is approximated by the second-order 
polynomial which coefficients are random numbers. This baseline is added 
to some spectrum. The procedure is repeated ݎ times. Then the intensity of 
the t-spectrum the point i:  ݕ௜௧ = ௜ݕ + ௜ߟ + ܽ଴௧ + ܽଵ௧݅ + ܽଶ௧݅ଶ ,                                                    (1.1 − 4)        
where ݕ௜ is the undistorted value, ߟ௜ is the normal noise with zero mean 
and dispersion ߪ௬ଶ, ܽ௤௧ is the ݍ coefficient of Eq. (1.1-4) which is constant 
for a given spectrum, but it changes randomly for each spectrum. The 
estimation of the covariance matrix element [8]: ݕ)ܸܱܥ௞, (௟ݕ = ݎ)/1] − 1)] ∑ ௞௧ݕ) ത௞)௥௧ୀଵݕ − ௟௧ݕ) ത௟),                (1.1ݕ − − 5)  
where the bar is the average symbol. According to Eq. (1.1-4):  
ത௜ݕ  = ௜ݕ + തܽ଴ + (ܽଵ)തതതതതത݅ + (ܽଶ)തതതതതത݅ଶ                                                            (1.1 − 6) 
Substituting Eqs. (1.1-4) and (1.1-6) into Eq. (1.1-5), we have ݕ)ܸܱܥ௞, (௟ݕ = ௞௟ߦ௬ଶߪ  + ,௞ݕ)ܵܤ ௟),                                                     (1.1ݕ − 7)  
where ݕ)ܵܤ௞, (௟ݕ = ݎ)/1] − 1)] ∑ ൫ߜ௔బ೟ + ௔భ೟݇ߜ + ௔మ೟݇ଶ൯௥௧ୀଵߜ ൫ߜ௔బ೟ ௔భ೟݈ߜ+ +   ,௔మ೟݈ଶ൯ߜ
௞௟ߦ  =  ൜1, ݇ = ݈0, ݇ ≠ ݈ൠ is the Kronecker symbol, ߜ௔೜೟ = ܽ௤௧ − തܽ௤. 
 
   Suppose that ߜ௔೜೟ is a normal random variable with zero mean and 
covariance matrix ߪ௔೜ଶ  Then, by neglecting the .(is the identity matrix ࡵ) ࡵ
small contributions to the sum of the cross members for sufficiently large ݎ, we obtain from Eq. (1.1-7):       ݕ)ܸܱܥ௞, (௟ݕ = ௞௟ߦ௬ଶߪ + ௔బଶߪ + ௔భଶߪ ݈݇ + ௔మଶߪ ݇ଶ݈ଶ .                              (1.1 − 8)  
   Correlations between analytical points may also be due to the pre-
processing, e.g., digital smoothing [6]. Since a digital filter is usually 
much shorter than a spectrum, the covariance matrix will be a sparse 
matrix (populated primarily with zeros) and, therefore, singular (Appendix 
D2).  If the matrix is near to singular, a correctly computed inverse is 
impossible. We found that stabilization of the inverting process with 
Tikhonov regularization (Appendix D3) is not useful. Therefore, in 
further, we will not consider inverting of this correlation matrix.  
 
 



 

 

CHAPTER TWO 

PREPROCESSING OF SPECTRAL DATA 
 
 
 

   Data preprocessing is one of the most critical steps for any data analysis 
problem in signal processing [1]. Data preprocessing involves data 
cleansing, analysis of missing values and data transformations for further 
modelling and extracting necessary information. Preprocessing of 
spectrochemical data includes the following steps: 
 
• Smoothing of noisy spectra 
• Baseline removal 
• Decomposition of overlapping peaks  
• Data transformation and compression  
 
These steps can be combined with each other; for example, the first three 
items can be carried out together. 
   The historically first preprocessing methods were digital smoothing and 
differentiation of spectral data introducing in analytical chemistry by 
Savitzky and Golay (SG) [2] (Appendix A1.1). The primary goal of these 
methods was made the spectrum plot more visible for its interpretation by 
denoising and improving spectral resolution using the even-order 
derivatives of the graph [3]. These derivatives are very similar to raw 
spectra but significantly narrower, and they flatten the polynomial 
baseline. The exceptional success of using SG filters in 1960-1980 is 
explained by the simplicity of the algorithm design, possibility of the 
manual calculations and by the fact that the interpretation of the 
transformed and non-transformed spectra is similar. Unfortunately, the 
error analysis of the derivative spectrometry showed many drawbacks of 
this method [3-6]. As an example, consider Gaussian triplet (Fig. 1.2-1): (ݔ)ܣ = ∑ ௝ܴ exp ቄ−4݈݊2ൣ൫ݔ − ଴௝൯ݔ ௝ൗݎ ൧ଶቅଷ௝ୀଵ ,                                  (1.2 − 1)  
where parameters of each component ܴ,  are the intensity, the ݎ ଴, andݔ
position of the maximum and the width of the peak, respectively. The last 
two parameters are defined in the dimensionless abscissa ݔ. The peak 
parameters: [ݔ଴, ܴ,   ;[0.5 ,0.5 ,1.3 ;2 ,2 ,0 ;2 ,1 ,2-] =[ݎ
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Fig. 1.2-1 demonstrates:  
 
• The shift of the peak maxima of the first peak observed in the second- 
order derivative from its correct position (The left-side shift is shown by 
 the shift of the arrows). 
• The erroneous structure appears due to the satellites (negative peaks in 
the Fig.).  
• The wrong relative intensity in the derivative spectra of the non-equal 
peak widths (compare the third peaks in the spectrum and its second-order 
derivative).  
 
   Also, it is well-known that noise in the derivative spectrum significantly 
increases; therefore, a smoothing is needed. 
   These items will be discussed below in Chapters 4.6 and 4.7. 
 
Exercise 1.2 
The readers are invited to calculate a set of triplets by varying the peak 
parameters, the noise intensity, the step of ݔ and the number of smoothing.  
You will be able to detect that the optimal differentiation is a very 
cumbersome task! 
 

 
 
Fig. 1.2-1. Gaussian triplet, its components and the negative second-order 
derivative of the triplet (solid, dotted and dashed curves, respectively).  

 
   Parallel to SG filters, a variety of the smart preprocessing methods has 
been developed at the end of the past century [7]. Among these, the 
mathematically rigorous spectral decomposition (deconvolution) 
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algorithms are of the most importance [6]. This is because they are based 
on: 
 
• Mathematical models of the measured spectrum which were 
predetermined theoretically and experimentally proven. 
•  Non-linear curve fitting procedures which are strict from a statistical 
point of view [8]. 
 
These issues will be discussed in Chapter 4.1. 
   Digital data filtration is one of the families of the Linear Data 
Transformation methods widely used for data compression [9]. For this 
goal, the conventional coordinate system of spectra (e.g., absorbance 
versus wavelength) is transformed to another coordinate frame. In this 
frame, Y and X axes represent the generalized Fourier series expansion 
coefficients of the spectrum (generalized discrete harmonics - GDH) [10] 
and their consecutive numbers, respectively. 
   Transformed data were used for qualitative and quantitative purposes 
without reconstruction [11]. The examples of GDH are Fourier, Walsh, 
and wavelet harmonics [12], statistical moments [13] and coefficients in 
the series expansions using classical orthogonal polynomials [14]. 
According to the information theory, the GDH method involves some loss 
of information. It cannot decrease the errors of unbiased estimates in 
determining mixture concentrations, but high compression ratios can be 
obtained by ignoring some low informative harmonics [11].   
   The GDH method belongs to the general group of the linear 
transformations of analytical signals. This group also includes the ordinate 
transformations, while the abscissa is not changed; e.g., derivative spectra 
[3] and the Net Analyte Signals [15]. 
 
 
 



 

 

CHAPTER THREE 

CALIBRATION AND PREDICTION 
 IN ANALYTICAL SPECTROMETRY 

 
 
 
   Calibration is one of the significant methodological problems in the 
spectrochemical analysis [1-10]. The multivariate calibration methods 
which have laid the foundation of chemometrics are wide-spread in 
modern analytical chemistry for laboratory studies and Process Analytical 
Technology. 
   There are various definitions of calibration which dependent on science 
[1]. In analytical chemistry, calibration is a process of setting relations 
between physical-chemical properties of the sample (e.g., the analyte 
concentration) and the analytical signal (e.g., spectral absorbance).  
Danzer [1] distinguished between three types of calibration: absolute, 
definitive and experimental. He pointed out that the following conditions 
of correct calibration must be fulfilled: 
 
• reliable and traceable standards, 
• fixed calibration parameters, 
• proper mathematical treatment of an appropriate calibration model. 
 
   These issues have been carefully discussed and are supplied with 
numerous references [1]. They are beyond the scope of this book.        
   The most straightforward procedure for measuring the content of a 
single mixture component (analyte) using one analytical point 
(wavelength) in the measured spectrum is called Univariate Calibration 
(Fig. 1.3-1a). It uses the direct calibration model: estimation of the relation 
of the measured value (absorbance, A) to the content (concentration, c) of 
a reference sample using predefined parameters of the linear model [6]: ܣ = ݇ଵܿ + ݇଴ + ߳,                                                                                    (1.3 − 1) 
where the slope ݇ଵ is the absorptivity constant, ݇଴ is the intercept, ߳ is a 
residual due to the imperfections in the model and to the random variations 
of the absorbance. The constants ݇଴ and ݇ଵ are estimated using reference 
samples containing different amounts of the analyte under study. The 
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concentration of the unknown sample is calculated by substituting the 
measured absorbance into: ܿ = ܣ) − ݇଴)/ ݇ଵ                                                                                      (1.3 − 2) 
 

 
 
Fig. 1.3-1. Block diagrams of univariate (a, b) and multivariate (c) calibration. ݊௦, ݉ and ݊௣ are the number of samples, analytical points and the sample parameters, 
respectively. 
 
  To improve the metrological properties of the calibration procedure, the 
calibration matrix (set) is obtained by collecting spectra of different 
reference samples measured in several analytical points (Fig. 1.3-1b).  
   As noted in IUPAC Technical Report [2], for univariate calibration the 
spectrum must be "highly selective for the analyte of interest." In other 
words, there should not be interference from other components. Many 
technical procedures have been developed to eliminate the contribution of 
the interfering constituents including the linear transformation methods 
described in the previous section [5]. However, these methods are not 
suitable in many cases, especially, for the samples which contain complex 
mixtures of many different chemicals.  
   Now the multivariate calibration methods (Fig. 1.3-1c) have taken the 
dominant position in chemometrics. They have become a standard means 
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of scientific research [6-10]. The multivariate calibration is mostly based 
on the inverse calibration model: ࡯ = ࡮࡭ + ࣕ,                                                                                               (1.3 − 3)  
where ࡯ is the matrix of the concentrations of the analytes in the 
calibration mixtures which spectra are in the data matrix ࡮ ,࡭ is the 
regression matrix, ࣕ is the matrix of residuals. For predefined matrices ࡯  
and ࡭, matrix ࡮ is estimated by solving Eq. (1.3-3). However, in practice, 
the solution is made complicated by the fact that the matrix ࡭ is usually 
poorly conditioned (Appendix D2) since the spectra of different mixtures 
may be very similar to each other [6]. To overcome this, so called, the 
collinearity problem [11], smart mathematical methods (the Principal 
Component Regression, the Partial Least Squares Regression, and 
Tikhonov regularization) were used [6-9, 12]. The review [13] discusses 
various modifications of the regularization procedures in chemometrics. 
   Here we first mentioned the term 'Regression' which needs clarification 
since there is often confusion between the concepts of 'Calibration' and 
'Regression.' 
   Consider a simple example [14]. Suppose that there is some relationship 
 and other independent (ݕ) between the response (dependent) variable (ܨ)
variables ݔଵ, ,ଶݔ … , ݕ :௧ (called explanatory or regressor variables)ݔ ≈ ,ଵݔ)ܨ ,ଶݔ … , ௧).                                                                                (1.3ݔ − 4)  
Some of regressors may have fixed values, others-random (measured) 
values. Also, we suppose that the mathematical expression (linear or 
nonlinear) of the function ܨ has a priory predefined, based on the 
theoretical and experimental data. In other words, the form and the 
parameters of the model ܨ are known. Then the goal of regression is to 
estimate the model parameters provided the best-fit of ݔ)ܨଵ, ,ଶݔ … ,  ௧) toݔ
the response ݕ. E.g., according to the Least Squares Method (LS), the best-
fit model provided a minimum: ݉݅݊{∑ ௜ݕ) − ௜)ଶ௡௜ୀଵܨ },                                                                               (1.3 − 5)  
where ݅ = 1, 2, … , ݊ is a number of a measured sample.  
If "we have little or no idea about the form of the relationship" [14] (Eq. 
(1.3-4)) then it is necessary to select a family of the models and find the 
most appropriate model. Unfortunately, mathematics in principle cannot 
give an unambiguous solution without involving additional 
physicochemical information.  
   We conclude that calibration set relations between the physical-
chemical properties of the sample and the analytical signal using a 
statistical (mathematical) method called regression. In principle, the 
calibration may be performed without a rigorous mathematical tool, e.g., 
using the plot: response over a property. 
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   The preprocessing step is also wide-spread in the multivariate calibration 
[6-10]. This step is called "Multivariate signal processing" [4] similar 
common term "signal processing" being used in electronics and 
communication. Often the preprocessing step includes data compression.   
   There is a large number of software packets designed to solve calibration 
problems. Among them, the most popular are MATLAB [15] and 
UNSCRAMBLER [16].  
   As we pointed above, the calibration process is closely related to the 
choice of the optimal model involving preparation of the calibration 
(training) set, selection of the optimal analytical points and preprocessing 
procedures for a predefined mathematical method of calibration. These 
very complex problems are not reviewed in this book. The interested 
reader is encouraged to refer to the bibliographical sources [6-10]. 
  The calibration process also closely related to the prediction ability of the 
developed model, that is, its validation [6]. The monograph [6] describes 
theoretical and practical aspects of the estimation of prediction errors in 
the linear regression models.  
   The rigorous discussion of the theoretical concepts of the calibration and 
prediction requires from the reader a solid mathematical background and 
extensive training in signal processing and computers. Consequently, in 
what follows, we will try to simplify the presentation of the material taken 
from the books [6-9] and IUPAC documentation [2, 3, 10], but not 
emasculating its essence. Without loss of generality, for convenience, we 
will consider the spectrophotometric absorption methods and use the 
appropriate terminology.   
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   Before analysts start using a newly developed analytical method, they 
should validate it. The goal of the validation is to confirm that the 
analytical method is suitable for its intended use, that is, its metrological 
characteristics indicate that the method is reliable and consistent [1]. In 
other words, measurement results must be meet the tolerance limits of the 
material under study. However, there are always consumer and producer 
risks of the false decisions [2, 3]. The mathematical aspects of the false 
accept risk were carefully discussed by Castrup [2] which gave common 
guidelines for managing in-tolerance compliance decisions. Kuselman et 
al. [3] studied this issue in analytical chemistry. Generally speaking, the 
measured analyte content (the measurand) must be treated as a random 
variable and expressed in terms of a probability density function (PDF). 
The probability of a random variable to fall within a particular range is 
equal to the area under PDF and is mathematically given by the integral of 
its PDF over that range.  
The PDF 
   "combines prior knowledge of the measurand and new information 
acquired during the chemical analysis/ measurement/testing" [3].  
   Since the population of the measurand is unknown, one can only 
estimate the population parameters such as mean and standard deviation 
using a set of random samples. These estimates (the best guesses) are 
called "point estimates" [4]. It is essential to underline that these estimates 
are not deterministic but have probabilistic properties. 
    The estimator is called unbiased if there is no difference between an 
estimator's expected value and the true value of the estimated parameter. 
For example, if the mean analyte concentration obtained in repeated 
measurements approaches to the correct value of the measurand while the 
number of the repetitions increases, then this mean concentration is 
unbiased. 
   To determine how accurate the point estimate of the population mean, 


