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PREFACE  
 

 

   It is difficult to overestimate the role and place of one of the main fields 
of mathematical statistics, hypothesis testing, in both theoretical and applied 

statistics. There are many theoretical and applied works dedicated to solving 

this problem, the number of which is increasing every day. Among them, 

based on contemporary research, my 2018 book is worth noting, the logical 

continuation of which is this book (Kachiashvili, 2018a). In particular, the 

results of the further development of the CBM for many types of interesting 

and practically useful hypotheses and comparison results with the existing 

basic methods are given there (Fisher, 1925; Neyman and Pearson, 1928, 

1933; Jeffreys, 1939; Wald, 1947a, b; Berger, 2003). A brief description of 

the discussed methods is given in the first chapter. The second chapter 

provides optimal and quasi-optimal methods for testing individual and 

multiple directional hypotheses for parallel and sequential experiments 

using CBM; Also, the general forms of presentation of statistical hypotheses 

in the form of their intersection-union and union-intersection and optimal 

decision-making methods for such formulation using CBM are discussed; 

hypothesis testing methods using CBM for normal distribution with equal 

parameters and for equi-correlation coefficient of standard symmetric 

multivariate normal distribution are considered. The next chapter shows the 

advantage of CBM compared to existing classical methods in terms of the 

reliability of the made decisions and the minimization of required 

information (sample size). The fourth chapter presents the results of the 

experimental investigation of the developed methods, which clearly 
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confirm the validity of the obtained theoretical results and the conclusions 

made on their basis. 

   In our opinion, the work will be interesting and useful for both 

professional and beginner researchers and practitioners of many fields, who 

are interested in the theoretical and practical issues of the considered 

direction of mathematical statistics, namely, in statistical hypothesis testing. 

It will also be very useful for specialists of different directions for solving 

suitable problems at the appropriate level, because the book discusses in 

detail many practically important problems and provides detailed 

algorithms for their solution, the direct use of which does not represent 

much difficulty. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



INTRODUCTION  
 

 

   A statistical hypothesis is a formalized record of properties of the 

investigated phenomenon and relevant assumptions. Statistical hypotheses 

are set when random factors affect the investigated phenomena, i.e., when 

the observation results of the investigated phenomena are random. The 

properties of the investigated phenomenon are completely defined by its 

probability distribution law. Therefore, the statistical hypothesis is an 

assumption concerning this or that property of the probability distribution 

law of a random variable. Mathematical statistics is the set of methods for 

studying the events caused by random variability and estimates the 

measures (the probabilities) of possibility of occurrence of these events. For 

this reason, parametrical methods of hypotheses testing directly use 

distribution laws and non-parametrical methods use not distribution laws 

but only the properties of these laws. Practically all methods of 

mathematical statistics one way or another, in different doses, use 

hypotheses testing techniques. Therefore, it is very difficult to overestimate 

the meaning of the methods of statistical hypotheses testing in the theory 

and practice of mathematical statistics (Kachiashvili, 2019, 2022).  

   A lot of investigations are dedicated to the statistical hypotheses testing 

theory and practice (see, for example, Berger, 1985, 2003; Berger et al., 

1994; Bernardo and Rueda, 2002; Christensen, 2005; Hubbard and Bayarri, 

2003; Lehmann, 1993, 1997; Moreno and Giron, 2006; Moreno and 

Martínez, 2022; Mei and Jiang, 2022; Wolpert, 1996; Zou et al., 2022) and 

their number increase steadily. But, despite this, there are only three 
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following basic ideas (philosophies) of hypotheses testing at parallel 

experiments: the Fisher, the Neyman-Pearson and the Jeffreys (Fisher, 

1925; Neyman and Pearson, 1928, 1933; Jeffreys, 1939). They use different 

ideas for testing hypotheses but all of them are identical in one aspect: they 

all necessarily accept one of the stated hypotheses in making decisions, 

despite the existence or absence of enough information for decision making 

with given reliability. The considered methods have well known positive 

and negative sides (Kachiashvili, 2022). All other existing methods are the 

particular cases of these approaches taking into account the peculiarities of 

the concrete problems and adapting to these specificities for increasing the 

reliability of the decision (see, for example, Berger and Wolpert, 1988; 

Berger et al., 1994; Bernardo, 1980; Delampady and Berger, 1990; Kiefer, 

1977; Bansal and Sheng, 2010; Bansal and Miescke, 2013; Bansal et al., 

2016).   

   The essences of these methods are discussed below. Fisher considered 

only one hypothetical distribution and on the basis of the observation results 

was making a decision concerning its correctness (see Item 2.1). A question 

that Fisher did not raise was the origin of his test statistics: Why these rather 

than some others? This is the question that Neyman and Pearson considered 

(Neyman & Pearson, 1928, 1933). Their solution involved not only the 

hypothesis but also a class of possible alternatives and the probabilities of 

two kinds of errors (see Item 2.2): false rejection (Error I) and false 

acceptance (Error II) (Lehmann, 1993). The “best” test was the one that 

minimized the probability of an alternative at validity of the basic 

hypothesis (Error II) subject to a bound on probability of the basic 

hypothesis at validity of the alternative (Error I). The latter is the 

significance level of the test. To the requirements of the Neyman-Pearson 

experiment, Jeffrey added a priori probabilities and loss function, using 
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which he defined a risk function as averaged losses and by minimizing the 

risk function, hypotheses acceptance regions are defined (see Item 2.3).    

   An attempt to reconcile the different points of view of noted philosophies 

was made in (Berger, 2003), and as a result there was offered a new, 

compromise 
*T  method of testing (see Item 2.4). The method uses the 

Fisher’s p -value criterion for making a decision, the Neyman-Pearson’s 

statement (using basic and alternative hypotheses) and Jeffrey’s formulae 

for computing the Type I and Type II conditional error probabilities for 

every observation result x  on the basis of which the decision is made.  

   A new approach (philosophy) to the statistical hypotheses testing, called 

Constrained Bayesian Methods (CBM), was comparatively recently 

developed (Kachiashvili, 1989, 2003, 2011, 2014a, b, 2015, 2016, 2018a, 

b; Kachiashvili et al. 2012a, b, c; Kachiashvili and Mueed, 2013; 

Kachiashvili et al., 2018; Kachiashvili, 2021) (see Item 1.4). This method 

differs from the traditional Bayesian approach with a risk function split into 

two parts, reflecting risks for incorrect rejection and incorrect acceptance of 

hypotheses and stating the risk minimization problem as a constrained 

optimization problem when one of the risk components is restricted and the 

another one is minimized. It generates data-dependent measures of evidence 

with regard to the level of restriction. In spite of absolutely different 

motivations of introduction of *T  and CBM, they lead to the hypotheses 

acceptance regions with identical properties in principle. Namely, despite 

the classical cases when the observation space is divided into two 

complementary sub-spaces for acceptance and rejection of tested 

hypotheses, here the observation space contains the regions for making the 

decision and the regions for no-making the decision (see, for example, 

Berger, 2003; Kachiashvili et al., 2012a; Kachiashvili et al. 2012b; 
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Kachiashvili and Mueed, 2013; Kachiashvili, 2018a). Though, for CBM, 

the situation is more differentiated than for 
*T . For CBM, the regions for 

not making the decision are divided into the regions of impossibility of 

making the decision and the regions of impossibility of making a unique 

decision. In the first case, the impossibility of making the decision is 

equivalent to the impossibility of making the decision with given 

probability of the error for a given observation result, and it becomes 

possible when the probability of the error decreases. In the second case, it 

is impossible to make a unique decision when the probability of the error is 

required to be small, and it is unattainable for the given observation result. 

By increasing the error probability, it becomes possible to make a decision.      

   In our opinion, these properties of 
*T  and CBM are very interesting and 

useful. They bring the statistical hypotheses testing rule much closer to the 

everyday decision-making rule when, at shortage of necessary information, 

acceptance of one of made suppositions is not compulsory. 

    The specific features of hypotheses testing regions of the Berger’s 
*T  

test and CBM, namely, the existence of the no-decision region in the 
*T  

test and the existence of regions of impossibility of making a unique or any 

decision in CBM give the opportunities to develop the sequential tests on 

their basis (Berger et al., 1994; Kachiashvili and Hashmi, 2010; 

Kachiashvili, 2015, 2018a). The sequential test was introduced by Wald in 

the middle of forty of last century (Wald, 1947a, b). Since Wald’s 

pioneering works, a lot of different investigations were dedicated to the 

sequential analysis problems (see, for example, Berger and Wolpert, 1984; 

Ghosh, 1970; Ghosh and Sen, 1991; Siegmund, 1985) and efforts to the 

development of this approach constantly increase as it has many important 
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advantages in comparison with the parallel methods (Tartakovsky et al., 

2015).   

   Application of CBM to different types of hypotheses (two and many 

simple, composite, directional and multiple hypotheses) with parallel and 

sequential experiments showed the advantage and uniqueness of the method 

in comparison with existing ones (Kachiashvili, 2014a, b, 2015, 2016, 

2018a, b; Kachiashvili et al., 2018). The advantage of the method is the 

optimality of made decisions with guaranteed reliability and minimality of 

necessary observations for given reliability. CBM uses not only loss 

functions and a priori probabilities for making decisions as the classical 

Bayesian rule does, but also a significance level as the frequentist method 

does. The combination of these opportunities improves the quality of made 

decisions in CBM in comparison with other methods. This fact has been 

confirmed many times by application of CBM to the solution of different 

practical problems (Kachiashvili, 2018a, 2019a, b; Kachiashvili et al., 

2012c; Kachiashvili and Melikdzhanian, 2006; Kachiashvili et al., 2007; 

Kachiashvili et al., 2008; Kachiashvili et al., 2009; Kachiashvili et al., 

2012b; Kachiashvili and Prangishvili, 2018; Kachiashvili et al., 2019; 

Kachiashvili et al., 2020). 

 

 

 

 



CHAPTER 1 

HYPOTHESES TESTING METHODS  
 

 

1.1. Existed Basic Parallel Methods of Hypotheses Testing 

1.1.1. The Fisher’s 𝑝 -test 

   Let us suppose that the observation result )|(~ xfX , where )|( xf  

is the probability distribution density of X  at hypothesis H  and it is 

necessary to test hypothesis 00 :  H . Let us choose the test statistics 

)(XtT   such that large values of T  reflects evidence against 0H . After 

computing the valuep   )|)()(( 0HxtXtPp  , where )(xt  is a value of 

the statistics )(Xt , computed by sample x ,  hypothesis 0H  will be 

rejected if p  is small (Kachiashvili, 2014b).   

   Some methods of generalization of this approach for multiple hypotheses 

can be found in (Kachiashvili, 2018a).  

1.1.2. The Newman-Pearson’s frequentist test 

   For the Neyman-Pearson (N-P) criterion for testing a null hypothesis 

00 :  H , it is necessary to form some alternative hypothesis, for 

instance, AAH  : , 0 A . The null hypothesis rejection region has the 

form cT   and otherwise it is accepted. Here c  is the critical value defined 

from the condition )|( 0HcTP  . Quantity   is the Type I error 
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probability, while the Type II error probability is calculated as 

)|( AHcTP   (Kachiashvili, 2014b, 2018a). 

   Generalization of this method for many (more than two) hypotheses is 

given by generalized Neyman-Pearson lemma (Rao, 2006) but its 

application in practice is quite problematic. 

1.1.3. The Jeffreys Bayesian approach 

   The general statement of the Bayes Method (the Jeffrey’s Method) for 

arbitrary number of hypotheses is the following.  

   Let the sample ),...,( 1 n
T xxx   be generated from );( xp , and the 

problem of interest is to test iiiH : , Si ,...,2,1 , where m
i R , 

Si ,...,2,1 , are disjoint subsets with m
i R . The number of tested 

hypotheses is S . Let the prior on   be denoted by  

S

i ii HpH
1

)()|( , 

where for each Si ,...,2,1 , )( iHp  is the a priori probability of hypothesis 

iH  and )|( iH  is a prior density with support i ; )|( iHxp  denotes 

the marginal density of x  given iH , i.e., 


i

dHxpHxp ii  )|()|()|(  and  dD   is the set of solutions, 

where  Sddd ,...,1 , it being  so that  










;,0

,,1

otherwise

acceptedisHhypothesisif
d i

i  

 )(),...,(),()( 21 xxxx S   is the decision function that associates each 

observation vector x  with a certain decision 
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Ddx x  )( ; 

j  is the region of acceptance of hypothesis jH , i.e.  1)(:  xx jj  . 

It is obvious that )(x  is completely determined by the j  regions, i.e. 

 Sx  ,...,,)( 21 .  

   Let us introduce loss function ))(,( xHL i   which determines the value of 

loss in the case when the sample has the probability distribution 

corresponding to hypothesis iH , but, because of random errors, decision 

)(x  is made. 

   Making the decision that hypothesis iH  is true, in reality true could be 

one of the hypotheses Sii HHHH ,...,,,..., 111  , i.e. accepting one of the 

hypothesis, we risk to reject one of )1( S  really true hypotheses. This risk 

is called the risk corresponding to the hypothesis iH , and is equal to 

(Berger, 1985; Kachiashvili, 2003)     

      dxHxpxHLH i
R

ii n
|,,   . 

   A complete risk for any decision rule )(x , i.e. the risk of making an 

incorrect decision, is characterized by the function: 

  


S

i R
iii

S

i ii n
dxHxpxHLHpHpHr

11
)|())(,()()(),(  ,   (1.1) 

which is called risk function.   

   Decision rule )(* x  or, what is the same, Sii ,...,1,*  - the regions of 

acceptance of hypotheses SiHi ,...,1,  , is called a Bayes rule if there 

takes place: 
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   rr
x)(

min*                                            (1.2) 

   Its solutions for general and stepwise loss functions are given below.  

 

1.1.3.1. General loss function 

   In the general case, the loss function ))(,( xHL i   consists of two 

components:   

    


S

j ji
S

j jii xHLxHLxHL
1 21 1 0)(,1)(,))(,(  , (1.3) 

i.e. loss function ))(,( xHL i   is the total loss of incorrectly accepted and 

incorrectly rejected hypotheses.  

   Taking into account (1.3), the solution of the problem (1.2) can be written 

down in the following form (Berger, 1985; Kachiashvili, 2003): 


   

S

i iijij HxpHpxHLx
1 1 )|()()1)(,(:   


 

S

i iiji HxpHpxHL
1 2 )|()()0)(,(  , 

Sj ,...,1 .                                                (1.4)                                  

   Let us suppose that the losses are the same within the acceptance and 

rejection regions and introduce denotations ),(1 ji HHL   and ),(2 ji HHL  

for incorrect acceptance of iH  when jH  is true and incorrect rejection of 

iH  in favor of jH . Then it is possible to rewrite the risk function (1.1) as 

follows (Kachiashvili, 1989, 2003):   

    


S

j

S

jii iiji
j

dxHxpHpHHLr
1 ,1

)|()(),( ,      (1.5) 

and condition (1.4) takes the form 
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;)|(),()|(),(:
1 21 1

   

S

i iki
S

i ijij xHpHHLxHpHHLx                                           

  SjSjjkk ,...,1,,...,1,1,...,1:  .                   (1.6) 

 

Example 1.1. Let us consider the case when the number of hypotheses 

equals two. Then risk function (1.5) is 

 2

)|()(),( 1121 dxHxpHpHHLr                  

1

)|()(),( 2212 dxHxpHpHHL ,                      (1.7) 

and hypotheses acceptance regions (1.6) take the form 

  )|()(),(: 111111 HxpHpHHLx  

 )|()(),( 22121 HxpHpHHL  

)|()(),()|()(),( 2222211212 HxpHpHHLHxpHpHHL  , 

  )|()(),(: 112112 HxpHpHHLx  

 )|()(),( 22221 HxpHpHHL  

)|()(),()|()(),( 2212211112 HxpHpHHLHxpHpHHL  .   (1.8) 

 

1.1.3.2. Stepwise loss function  
   Let us suppose that the losses for incorrectly accepted hypotheses are 

identical, while those for correctly-made decisions are equal to zero, i.e. 














.0

,
),(

jiat

jiatC
HHL ji                                 (1.9) 
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   In this case, risk function (1.5) takes the form (Kachiashvili, 1989, 2003; 

Duda et al., 2006; Sage and Melse, 1972): 







    

S

i ii
i

dxHxpHpCr
1

)|()(1 .                 (1.10) 

   The minimum in (1.10) is achieved by solving the problem:  

    

S

i ii
ii

dxHxpHp
1

)|()(max .                       (1.11) 

   It is evident, that we can consider 1C  without limiting the generality.  

   It is not difficult to be persuaded that the solution of problem (1.11) has 

the following form: 

 );|()()|()(: jjiii HxpHpHxpHpx       

),...,1,1,...,1(: Siijj  .                            (1.12) 

   Let us denote: 

 )}|()()|()(:{ jjiiij HxpHpHxpHpx  
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Hxpx .                                           (1.13) 

   Then 


S

ijj iji 


,1
. 

 

Example 1.2. For stepwise loss functions (1.9), hypotheses acceptance 

regions (1.12) at testing two hypotheses are the following 

)}|()()|()(:{ 22111 HxpHpHxpHpx  , 

)}|()()|()(:{ 11222 HxpHpHxpHpx  .             (1.14) 
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   An attempt to reconcile the different points of view of noted philosophies 

was made in (Berger, 2003), and as a result there was offered a new, 

compromise *T  method of testing. The method uses the Fisher’s p -value 

criterion for making a decision, the Neyman-Pearson’s statement (using 

basic and alternative hypotheses) and Jeffrey’s formulae for computing the 

Type I and Type II conditional error probabilities for every observation 

result x  on the basis of which the decision is made.  

1.1.4. The Berger’s conditional test 

      The conditional test CT  is the following 


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

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
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
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00
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xCEPreport

andHacceptcxBif

xB
xBx

CEPyprobabiliterrorlconditiona

reportandHrejectcxBif

T C



  

where )(xB  is the likelihood ratio, and 0c  is the minimax critical value 

defined as  

)|)((1)|)(( 10 HcxBPHcxBP  .           (1.15) 

   The modified conditional test *T  consists in the following 
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
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where )|(/)|()( 0 AHxpHxpxB   is the likelihood ratio and a  and r  are 

defined as follows 

1r  and ))1(1(1
0 AFFa    if )1(1)1(0 AFF  , 

))1(1( 0
1 FFr A    and 1a  if )1(1)1(0 AFF  ,              (1.16) 

where 0F  and AF  are the cumulative distribution functions (c.d.f.) of 

)(XB  under )|( 0Hxp  and )|( AHxp , respectively.    

   As was mentioned in (Dass and Berger, 2003, p. 196), “ *T  is an actual 

frequentist test; the reported CEPs, ))(( xB  and ))(( xB , are conditional 

frequentist Type I and Type II error probabilities, conditional on the statistic 

we use to measure strength of evidence in the data. Furthermore, ))(( xB  

and ))(( xB  will be seen to have the Bayesian interpretation of being 

(objective) posterior probabilities of 0H  and AH , respectively. Thus, *T  

is simultaneously a conditional frequentist and a Bayesian test.” 

Generalization of the *T  test for any number of hypotheses seems quite 

problematic. For the general case, it is possible only by simulation because 

the definition of exact distribution of )(xB  likelihood ratio for arbitrary 

hypothetical distributions is very difficult if not impossible.  
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1.2. Sequential Tests  

1.2.1. The Wald’s method 

   The sequential test was introduced by Wald in the mid-forties of last 

century (Wald, 1947a, b).   The essence of the Wald’s sequential test 

consists in the following: compute the likelihood ratio 

)|,...,,(/)|,...,,()( 21021 Ann HxxxpHxxxpxB   for n  sequentially 

obtained observation results, and, if  

AxBB  )( , 

do not make the decision and continue the observation of the random 

variable. If    

AxB )( , 

accept the hypothesis 0H  on the basis of n  observation results. If  

BxB )( , 

accept the hypothesis AH  on the basis of n  observation results.  

   The thresholds A  and B  are chosen so that  





1A    and   






1

B . 

   Here   and   are the desirable values of the error probabilities of Types 

I and II, respectively.     

   It is proved (Wald, 1947a) that in this case the real values of the error 

probabilities of Types I and II are close enough to the desired values, but 

still are distinguished from them. 

   Since Wald’s pioneer works, a lot of different investigations were 

dedicated to the sequential analysis problems (see, for example, Ghosh, 

1970; Siegmund, 1985; Kachiashvili, 2018a) and efforts to the development 

of this approach constantly increase as it has many important advantages in 
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comparison with the parallel methods (see, for example, Tartakovsky et al., 

2015).   

1.2.2. The Bayes’ method  

   Concerning the Bayesian sequential methods, the following is written in 

Berger (1985): “While Bayesian analysis in fixed sample size problems is 

straightforward (robustness consideration aside), Bayesian sequential 

analysis is very difficult” (p. 442). The idea of sequential Bayesian 

procedure consists in computation of the Bayes risk function for every stage 

of obtained observation result and its comparison with expected posterior 

Bayes risk that will be obtained if more observations are taken. If the 

posterior Bayes risk is greater than the Bayes risk function, to stop 

experimentation and to make decision, otherwise to continue 

experimentation.     

   The readers, interested in details of sequential Bayesian method, can refer 

to the following sources (Berger, 1985; Arrow et al., 1949; Ghosh and Sen, 

1991).        

1.2.3. The Berger’s method 

   The sequential test developed on the basis of *T  test is as follows (Berger 

et al., 1994):  

if the likelihood ratio rxB )( , reject 0H  and report the conditional error 

probability ))(1/()())(( xBxBxB  ;  

if axBr  )( , make no decision and the observations continue;  

if axB )( , accept 0H  and report the conditional error probability 

))(1/(1))(( xBxB  . 
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   Here r  and a  are determined by ratios (1.16).   

1.3. Constrained Bayesian Methods (CBM) of Hypotheses 
Testing 

   A new approach (philosophy) to the statistical hypotheses testing, called 

Constrained Bayesian Methods (CBM), was comparatively recently 

developed (Kachiashvili, 2003, 2011, 2014a,b, 2015, 2016, 2018a,b; 

Kachiashvili et al., 2012a,bc; Kachiashvili and Mueed, 2013; Kachiashvili 

et al., 2018). This method differs from the traditional Bayesian approach 

with a risk function split into two parts, reflecting risks for incorrect 

rejection and incorrect acceptance of hypotheses and stating the risk 

minimization problem as a constrained optimization problem when one of 

the risk components is restricted and the another one is minimized. It 

generates data-dependent measures of evidence with regard to the level of 

restriction. In spite of absolutely different motivations of introduction of *T  

and CBM, they lead to the hypotheses acceptance regions with identical 

properties in principle. Namely, in despite of the classical cases when the 

observation space is divided into two complementary sub-spaces for 

acceptance and rejection of tested hypotheses, here the observation space 

contains the regions for making the decision and the regions for no-making 

the decision (see, for example, Berger, 2003; Kachiashvili, 2018a; 

Kachiashvili et al., 2012a; Kachiashvili et al., 2012b; Kachiashvili and 

Mueed, 2013). Though, for CBM, the situation is more differentiated than 

for *T . For CBM the regions for no-making the decision are divided into 

the regions of impossibility of making the decision and the regions of 

impossibility of making unique decision. In the first case, the impossibility 

of making the decision is equivalent to the impossibility of making the 
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decision with given probability of the error for a given observation result, 

and it becomes possible when the probability of the error decreases. In the 

second case, it is impossible to make a unique decision when the probability 

of the error is required to be small, and it is unattainable for the given 

observation result. By increasing the error probability, it becomes possible 

to make a decision.   

   It is possible to formulate nine different statements of CBM depending on 

what type of restrictions is desired which is determined by the aim of the 

practical problem that must be solved (Kachiashvili, 2011, 2018a; 

Kachiashvili et al., 2012b). They are (see chapter 2): 1) Restrictions on the 

averaged probability of acceptance of true hypotheses (Task 1); 2) 

Restrictions on the conditional probabilities of acceptance of true 

hypotheses (Task 2); 3) Restrictions on the conditional probabilities of 

acceptance of each true hypothesis (Task 21); 4) Restrictions on posterior 

probabilities of acceptance of true hypotheses (Task 3); 5) Restrictions on 

the averaged probability of rejection of true hypotheses (Task 4); 6) 

Restrictions on the conditional probabilities of rejection of each true 

hypothesis (Task 5); 7) Restrictions on a posteriori probabilities of rejection 

of each true hypothesis (Task 6); 8) Restrictions on probabilities of rejection 

of true hypothesis (Task 61); 9) Restrictions on posterior probability of 

rejected true hypotheses (Task 7). 

   Let us introduce Task 1, as an example, for a demonstration of the 

specificity of CBM. In this case, we have to minimize the averaged loss of 

incorrectly accepted hypotheses 

  







     

S

i

S

j ijii
jj

dxHxpxHLHpr
1 1 1 )|()1)(,()(min  ,    (1.17) 

subject to the averaged loss of incorrectly rejected hypotheses 
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    
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dxHxpxHLHp
1 1 2 )|()0)(,()(   

   

S

i

S

j R
ijii n

dxHxpxHLHp
1 1 2 )|()0)(,()(   

11 1 2 )|()0)(,()( rdxHxpxHLHp
S

i

S

j ijii
j

    
 .    (1.18) 

where 1r  is some real number determining the level of the averaged loss of 

incorrectly rejected hypotheses.      

   By solving problem (1.17), (1.18), we have   


   

S

i iijij HxpHpxHLx
1 1 )|()()1)(,(:   


  

S

i iiji HxpHpxHL
1 2 )|()()0)(,(  ,                                       

,,...,1 Sj                                                   (1.19) 

where Lagrange multiplier   ( 0 ) is defined so that in (1.18) the 

equality takes place. 

   

Example 1.3. Let us consider stepwise losses 
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   Then problem (1.17), (1.18) transforms  
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subject to  

11
)|()(1 rdxHxpHp

S

i ii
i

  
,                       (1.22) 

and hypotheses acceptance regions (1.19) take the form (Kachiashvili, 

2013).  





   

)|()()|()(:
,1 jj

S

jii iij HxpHpHxpHpx  ,    

Sj ,...,1 .                                               (1.23) 

   When number of hypotheses 2S  statement of the problem and its 

solution are 

  





    1221

)|()()|()(min 2211,
dxHxpHpdxHxpHpr ,    (1.24) 

12211 1)|()()|()(
21

rdxHxpHpdxHxpHp   
,    (1.25) 

 )|()()|()(: 11221 HxpHpHxpHpx  ,            

 )|()()|()(: 22112 HxpHpHxpHpx  ,         (1.26) 

   In our opinion, the mentioned properties of *T  and CBM are very 

interesting and useful. They bring the statistical hypotheses testing rule 

much close to the everyday decision-making rule when, at shortage of 

necessary information, acceptance of one of made suppositions is not 

compulsory. 

    The specific features of hypotheses testing regions of the Berger’s *T  

test and CBM, namely, the existence of the no-decision region in the *T  

test and the existence of regions of impossibility of making a unique or any 

decision in CBM give the opportunities to develop the sequential tests on 
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their basis (Berger et al., 1994; Kachiashvili, 2018a; Kachiashvili, 2015; 

Kachiashvili and Hashmi, 2010).  

1.4. The Method of Sequential Analysis of Bayesian Type 

   Let us suppose that there is an opportunity to obtain repeated observations. 

To introduce the method of sequential analysis for an arbitrary number of 

hypotheses on the basis of constrained Bayesian task, let us use the 

denotations introduced by (Wald, 1947a). Let n
mR  be the sampling space of 

all possible samples of m  independent n -dimensional observation vectors 

 nxx ,...,1x . Let us split n
mR  into 1S  disjoint sub-regions n

mR 1, , n
mR 2,

,..., n
SmR , , n

SmR 1,   such that 
1

1 ,





S

i
n

im
n
m RR . Let  im H,...,p |1 xx  be the 

total probability distribution density of m  independent n -dimensional 

observation vectors; m  is the sample size. Then 

     im
ii

m HpHpH,...,p |...|| 11 xxxx  . 

   Let us determine the following decision rule (Kachiashvili, 2014a, 2018a; 

Kachiashvili and Hashmi, 2010). If the matrix of observation results 

 m,...,xxx 1  belongs to the sub-region n
imR , , Si ,...,1 , then hypothesis 

iH  is accepted and, if  m,...,xxx 1  belongs to the sub-region n
SmR 1,  , the 

decision is not made and the observations continue until one of the tested 

hypotheses is accepted.  

   Regions 1,...,1,,  SiRn
im , are determined in the following way: n

imR , , 

Si ,...,1 , is such a part of acceptance region m
i  of hypothesis iH  that 

does not belong to any other region m
j , Siij ,...,1,1,...,1  ; n

SmR 1,   is 


