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Preface

Controllability, i.e., the ability of a system to be transmitted from
a given initial state to a required terminal state by an admissible con-
trol within a finite time, is one of the most crucial characteristics of
control systems. Controllability is of two main types: exact and ap-
proximate. The choice depends on how precisely the required terminal
state is implemented. The existence of powerful computers and efficient
numerical tools for linear and nonlinear equations allows the exact or
approximate controllability analysis to be carried out numerically even
for extremely complicated systems. Such analysis can bring with it a
burdensome computational cost. However, in some special cases a sim-
plifying step can considerably speed up the analysis. Such a step, for
example, could be the determination of explicit dependence between
state and control functions, i.e., a solution of the state constraints.
While this is to some extent possible for linear systems, for nonlinear
systems it is much more complicated.

The main motivation behind presenting our work to a wider sci-
entific community is to illustrate how efficiently the Green’s function
method can be applied in controllability analysis of both linear and
nonlinear dynamic systems and possibly initiate new studies in this di-
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rection. We illustrate this idea by a basic analysis of a few typical ex-
amples. Even though the examples were picked intuitively rather than
systematically, they include some of the common issues which usually
make the controllability analysis complicated: coordinate dependent
material characteristics, unbounded domains, uncertainty in internal
or external parameters, higher dimensions, specific non-linearities, etc.
We also address the problem of determination of resolving control func-
tions in an explicit form, which speeds up the controllability analysis
further.

Generally speaking, due to, for example, modeling inaccuracies, ran-
dom issues, uncertainties, etc., even by means of highly precise produc-
tion technologies it is practically impossible to implement the desired
state exactly. The terminal state implemented by the “best” choice of
admissible control is more often “sufficiently” close to the desired state,
rather than coinciding with it exactly. That is the motivation behind
paying the most attention specifically to the approximate controlla-
bility. Nevertheless, possibilities of exact implementation of required
states are shown as well.

In order to make the reading more engaging, the book is completely
free of rigorous mathematical statements such as lemmas, propositions,
theorems, as well as redundant long proofs, which can be found in the
cited references. The focus is concentrated on the ways the developed
approach can be applied in dealing with particular control problems.
Thus, the book is mostly intended for researchers who are focused on
the applications of control, as well as for engineers attempting to apply
control techniques in their practice. It can also be useful for postgrad-
uate students in mechanics, physics, engineering, applied mathematics,
etc.
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PREFACE

Even though we study the controllability of linear and nonlinear dif-
ferential equations arising in many applied areas of science, including
physics, production, mechanical, aerospace, civil and chemical engineer-
ing, hydrodynamics, information processing and transfer, communica-
tions, etc., we refrain from giving specific recommendations regarding
particular real-life objects, processes or phenomena. The reason is very
simple: we stand on mathematical ground and look at all those sys-
tems from a mathematical viewpoint. Nevertheless, we hope that the
book will capture the interest of applied scientists towards the approach
which will lead to its real-life implementations.

Ara S. Avetisyan
Asatur Zh. Khurshudyan
Yerevan, Shanghai, 2018
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1

Introduction

“Everything must be made as simple as possible. But not
simpler.”

– Albert Einstein

This introductory chapter begins by laying out the main concepts
and problems the book is dealing with (Section 1.1), and then proceeds
to the mathematical foundations of the solution technique including
the description of the Green’s function method for both linear and
nonlinear systems (Sections 1.2 and 1.3). The technique itself is then
described in detail in Section 1.4. The goal for the chapter is to set out
the issues in an understandable manner for researchers without special
mathematical training (especially for engineers and applied scientists)
so it is bereft of mathematical formalism.

All the notations that are not common or well-known are explained
within the text directly after being used.



1. INTRODUCTION

1.1 Controllability

The majority of dynamic systems, e.g., vehicles, aircrafts, robots,
production equipment, financial and biological processes, etc., are some-
how controlled by a predetermined program or influence often referred
to as control programs or simply controls. Controls are designed and
implemented by special controllers attached to the system. Controllers
have limited capabilities, so that restrained types of controls can be
elaborated. Controls that a controller is able to use in design are often
referred to as admissible controls.

Dynamic systems may need to be controlled for a variety of different
purposes. Put simply, the aim of a control is to provide a stable tran-
sition of a dynamic system from a given state to a required terminal
one within a fixed amount of time. Additional requirements, such as
constraints on the state at intermediate time instants, constraints on
control, mixed constraints, etc., may be considered as well. For a given
system, situations may occur such that, even for a fixed range of system
parameters, prescribed initial and terminal states, and a fixed control
time, it is impossible to develop an admissible control providing the
desired state transition. That is why before exploiting control systems,
an overall examination of the ability to accommodate the desired state
in the required time by means of attached controllers is carried out.
This property is called controllability.

There are two main types of controllability—exact and approxi-
mate. A system is called exactly controllable if by a specific choice of
admissible controls it can be transitioned from a given state to a re-
quired state exactly in a finite amount of time. There is a huge body
of references devoted to the development of methods of exact control-

2


