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Preface

Stellar dynamics is an interdisciplinary field where mathéos, physics,
and astronomy overlap. It describes systems of stars cenesichs many
point mass particles whose mutual gravitational intecastidetermine their
orbits. Theses interactions may arise from the smoothedtellar distri-
bution of matter, which are then given through a gravitatigotential, and
from the dfect of the stellar encounters. The collisional relaxatioretis
used to measure how long will it take before the cumulatitect of stellar
encounters prevents us from considering the stars as indepg conserva-
tive dynamical systems. In large stellar systems, like axgathe relaxation
time is long and they may be assumed to be in statisticalibguiin accord-
ing to specific phase space density and potential functibims.approach is
generally done from thanalytical dynamics viewpoint. That is, the stellar
system is described as a conservative dynamical systemtfr@canonical
equations through a Hamiltonian function, and the hydradlyical flow in
the phase space is obtained according to Liouville’s theota this mono-
graph we shall focus our attention on analytical stellaraggits, by consid-
ering the stellar system as a fluid. In contrast, in small glatxclusters, and
in processes of violent relaxation producing rapid fludgaret of the gravi-
tational field, the collisions cannot be omitted, astatistical mechanicsis
generally used to describe the dynamics of the interactamtiges through
a many particle distribution function.

Analytical stellar dynamics has its origins in the early i2@entury,
when the kinetic theory of gases was adapted to astronogiichlems by
J.H. Jeans. He showed that, under some regularity congljttbe funda-
mental equation of stellar dynamics is equivalent to thésitohless Boltz-
mann equation, so that the Liouville theorem is satisfiedenltvelocity
moments of the collisionless Boltzmann equation yield te#as hydrody-
namic equations. These equations, written in a comovirgreete frame,
are comparable to the equations of motion of a compressibbews fluid.
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However, because short-range atomic interactions domiiatls, it is a

much better approximation to truncate the moment equatbimvy order

for fluids (i.e. continuity and Navier-Stokes equationsgrtht is for stel-

lar systems. In addition, the general stellar hydrodynah@quations are
anisotropic in their spatial and velocity coordinates. refi@re, higher-order
hydrodynamic equations are non-negligible for stellaratyics.

In the forties, S. Chandrasekhar gave an alternative fatiaul to ex-
plain the dynamics of collisionless systems and, in addljti@ introduced a
new statistical approach for collisional systems throudhrsamical friction
mechanism. Chandrasekhar’s alternative approach fasioolless systems
is known as Jeans’ inverse problem and it is a functional egugr for the
phase space density function based in the assumption thegstdual ve-
locity distribution of any stellar population in statistical equilibrium ségs
a generalised ellipsoidal law.

During the second half of last century, J.J. de OrUs prodaaggbrous
mathematical formulation of Chandrasekhar’s theory whiek collected in
his Notes on Galactic Dynamics for the Astronomy Department in the Uni-
versity of Barcelona. He and his disciples thoroughly stddhe direct and
inverse Jeans’ problems. It was proven that, if the Chae#tiess equations
are fulfilled, the continuity equation and the Navier-Stokguation are also
satisfied and, even more, that the Chandrasekhar equatiolustie derived
from the first four hydrodynamic equations. Solutions to@mandrasekhar
equations were given under hypotheses of axial (rotafj@mel point-axial
symmetry, and for stellar population mixtures.

The aim of the current monograph is to review, update, ancertfadse
topics available to a broader audience. It is a fascinatiag that addresses
issues on dynamical systems, information theory, numilegicalysis, par-
tial differential equations, probability, statistics, tensor bigeand vector
calculus, among other topics, in addition to astronomy dngjes subjects.

These nine chapters altogether provide the reader withta gomplete
review of what are the main problems in this area at a levelostgradu-
ate course. The first two chapters are devoted to the Jearst groblem,
where the full mathematical expression of an arbitnasgrder stellar hy-
drodynamic equation, either depending on the pressureastiieccomoving
moments, is derived. In this way, the stellar hydrodynamitdions can be
compared to the equations of fluid dynamics, and general@anditions
can be studied in order to build up a dynamical model from agfinumber
of equations and variables, generally known as closurel@nmb

The third and fourth chapters deal with the Jeans’ inversélpm in
relation to the long-standing closure problem, which is ofithe classic,
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unsolved problems in fluid dynamics, discovered even gaitighe nine-
teenth century, in ordinary hydrodynamics by O. Reynolde &quivalence
of the Chandrasekhar equations and the stellar hydrodynequiations is
discussed by proving that, for a generalised ellipsoidkloity distribution,
some moment recurrence relationships act as closure amlihaking the
infinite hierarchy of the hydrodynamic equations equivaierthe collision-
less Boltzmann equation. This result is generalised to maxi entropy
velocity distributions and to any velocity distributiomfttion depending on
a polynomial function in the velocity variables.

Chapters five and six focus on the distribution function dredrhoments
problem. The maximum entropy approach for the solution eéiige prob-
lems, firstintroduced by E.T. Jaynes, illustrates how theoity distribution
function is connected to the eventual asymmetries coliigtteugh its pop-
ulation moments. The density function maximising Shansarformation
entropy provides the simplest and smoothest approach tdistibution
function that fulfils a provided set of moment constraintg] gives a very
good estimation of the density function and of its velocigridatives in-
volved in the collisionless Boltzmann equation. In pataeLif an extended
set of moments is available, the parameter estimation ofdisigibution
function may be simply done by solving a linear system of ¢éiqua. Sev-
eral numerical applications of this functional approadtes to complete or
truncated distributions, are presented to show how theabwmthematical
methods are able to describe the main kinematical featfitbe aeighbour-
hood stars.

As an alternative approach, in the seventh chapter, insieading a
higher-degree polynomial along with a maximum entropy fiamg the mix-
ture model of Schwarzschild (Gaussian) density functiers$udied in con-
nection with the moments problem. This approach is usefulescribe
large-scale kinematic structures of the Galactic disc @ated with kine-
matic stellar populations, that has been a very active resdeeld during
the last decades.

Finally, in the last two chapters, Chandrasekhar’s dynahmmwdels for
axisymmetric and point-axial symmetric systems are stidigth a par-
ticular application to the superposition problem, whichtie appropriate
approach to the actual case of a Galaxy composed of sevelak giop-
ulations. Under a common potential, a finite mixture of aldijplal veloc-
ity distributions satisfying the collisionless Boltzmaequation provides a
set of integrability conditions that may constrain the pagan kinemat-
ics. These conditions determine which potentials are cctedevith a more
flexible superposition of stellar populations.
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Chapter 1

Analytical dynamics

1.1 Introduction

The aim of the first two chapters is to provide the completehermtatical
expression for an arbitranyorder hydrodynamic equation depending on the
pressures, or alternatively on the comoving moments, withoy additional
hypotheses.

The stellar hydrodynamic equations have been used in a nuaibe
works on galactic dynamics to study the stellar mass anctitgldistribu-
tions, either from an analytical viewpoint (e.g., Vandemtdl 975, Hunter
1979, Evans & Lynden-Bell 1989, Evans et al. 2000, van de Yah €003,
Evans et al. 2015, An & Evans 2016) or as a model for numericalla-
tions to investigate the shape of the velocity distributionto reproduce
the spiral structure of galactic discs as an alternative twalye N-body ap-
proach (e.g., Korchagin et al. 2000, Orlova et al. 2002, bgovy & Theis
2006). However, only equations of mass, momentum and, incieses,
energy transfer are generally handled, and, in most caged, symme-
try, steady-state stellar system, and other hypotheseasastened. There
are few works that, in a mathematical aspect, have gone beyoch a
basic assumptions. Sala et al. (1985) proposed a genenadssign for
the n-order equation, without steadiness and axisymmetrypafh it was
written depending on the absolute, non-comoving momentbefstellar
velocity distribution, where, by substitution of the morteeas a series of
the pressures, they obtained a general but non-expliciteegfn of the
equations. The explicit equations were, in the end, spadifigvritten for
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2 CHAPTER 1. ANALYTICAL DYNAMICS

ordersn = 0,1,2,3. However, it is well-known that stellar hydrodynamic
equations are physically meaningful when they can be coedpaith the
ordinary hydrodynamic equations of a compressible, visdtuid, and this

is only possible when they are written in terms of the tenséiomoving
moments or of pressures, in the reference frame associatiedhe local
centroid. Often, these expansions or computational proescdre provided
instead of their explicit expression, and they are latedusesimplify and
to close the system of equations, for example to study a poiog rotating
disc (Aoki 1985, Amendt & Cuddeford 1991).

On the other hand, the work by Cuddeford & Amendt (1991) had al
general and more interesting mathematical scope, althibugts restricted
to steady-state systems, amid other hypotheses. Thewedthdjher-order
stellar hydrodynamic equations, by using central velogitynents up to
eighth-order, and they investigated some quite generalitons over the
velocity distribution in order to close the infinite hierhycof the moment
equations.

The general expression for such an arbitrary order hydraahynequa-
tion in the comoving frame was first derived by Cubarsi (200713). It
should be taken as a starting point in forthcoming worksegith use im-
proved observational data or to carry out more exhaustiveenical simula-
tions. In addition, the exactorder equation is also essential to study more
general closure conditions or, under unrestrictive assiomg for building
up more accurate dynamical models from a finite number of tempsmand
variables.

Actual kinematic data (ESA 1997, Nordtrom et al. 2004) do s\gi-
port any more the hypotheses of axisymmetry, steadinegsjrergalactic
rotation (Cubarsi & Alcobé 2006). In addition, newer missisuch as the
RAdial Velocity Experiment (RAVE) survey (Siebert et al. 220 Zwitter
et al. 2008, Steinmetz et al. 2006) represent a major impnewne, since
the three velocity components are available for the largestber of stars
ever collected, where an unbiased radial velocity compow#hprovide
essential information to kinematic and dynamic studiehefGalaxy.

1.2 Jeans problems

From a macroscopic approach, a stellar system is descnbgiglibg its dis-
tribution in the phase space, which consists in couplesrettidimensional
vectorsr andV representing star position and velocity, measured from an
inertial reference system. The stellar distribution istigézen through the
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phase space density functibt, », V'), which is assumed as continuous and
differentiable in nearly every point, providing, at titpéhe number of stars
with position within the range andr + dr, and velocity betweei¥V” and

V +dV.

It is generally assumed that the Galaxy is at present in a stathich
each star can be idealised as a conservative dynamicaftsystevery high
degree of accuracy. In general, the forces acting in thesysan be asso-
ciated with a gravitational potential function per unit m@&t, r), possibly
non-stationary, so that the motion of a star is describedGarmesian coor-
dinates system by the Hamiltonian system of equations

F=V, V=-Utr). (1.1)

For the whole stellar system, the collisionless Boltzmaguation is sat-
isfied, so that the phase space density funcfifinr, V'), with (t,r, V) €
Rx Iy x I'v, by using the Stokes operat§*, fulfils

Df of

Dt = 4t +V - V,.f-V,. U -Vyf=0. (1.2)
The above equation is sometimes referred as Vlasov equadtioaville
equation, Boltzmann equation, or Jeans equation; howeMaTon (1982)
clarifies the appropriate terminology.

The collisionless Boltzmann equation is a consequenceedfiimilto-
nian flow, which preserves volume, i.e. satisfies the Lidetheorem: the
density of any element of phase space remains constangdtgimotion.

Jeans showed that tHiendamental equation of stellar dynamics was a
particular case of the Boltzmann equation from the kinétgoty of gases,

of . .
E+r-v,,f+vovvf=C(f,f), (1.3)
where the collision term of the right-hand side may be assltmbe null in
two cases. First, if theffect of the irregular forces, such as star encounters,
is negligible. Second, if the phase density is invarianhwispect to the
irregular forces, that is, when the number of points leagimgspace volume
as a result of encounters is balanced by those which enteothmne for the
same reason. In both cases, the Liouville theorem is satisfie

Hilbert (1912) gave an equivalent mathematical condit@ndglect the
collision termC(f, f), when it is orthogonal to 1V, and|V|.

1The Stokes operato@ is generally used to simplify the notation of the Lagrangian
derivative Y + V- V,.() + V - Vy ().
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The collisional relaxation time is long in large stellart®ms. The time
of relaxation for stellar encounters in the solar neighbood is greater than
103 years (Binney & Tremaine 2008), while the galactic rotatjpsriod
is about 18 years. Hence, the encounters are entirely unimportant. The
collisions cannot be omitted in a globular cluster whichteim1® stars,
but for a galaxy of 18 stars, the relaxation time turns out to be much larger
than the age of the universe, and the encounters can be teztjlec

The collisionless Boltzmann equation may be regarded fromdif-
ferent viewpoints. It is either a linear and homogeneousgatifferential
equation forf, for a given potentiafl{, which is known as Jeans’ direct
problem, or a linear non-homogeneous partifiledential equation foflf,
where the density functioffi is already known, which is called Jeans’ in-
verse problem. Both approaches have been largely studied &dding-
ton (1921) and Oort (1928), and among other works, those néi&evoort
(1979), de Zeeuw & Lynden-Bell (1985), Bienaymé (1999) aathkey et
al. (2002) may be pointed out.

Obviously, neither the phase space density function nomptiential
are observable quantities, while we do have enough larges#s of the
full space motions in the solar neighbourhood foffetient types of stars
to compute the kinematic statistics of the distribution.efhin order to
isolate information about the spatial properties of théasteystem, the col-
lisionless Boltzmann equation may be integrated over thecitg space,
or in a more general way, it may be multiplied through by anw@is of
the velocities before integrating, and each choice of psweads to a dif-
ferent equation which involves the kinematic statisticsadiding the stellar
system for fixed time and position, which are the mean vela@sid the mo-
ments of the velocity distribution. Such a strategy, whhsually referred
as moment or fluid approach, provides us with an infinite hé@maof stel-
lar hydrodynamic equations, which could be used as a dyrsdmmicdel to
study the stellar system, on condition that some closuegiogiships were
available in order to work with a finite number of equationd anknowns.

1.3 Isolatingintegrals

According to Jeans’ direct problem, Eq. 1.2 is a linear anchdgeneous
partial diferential equation fof, for a given potential{, whose subsidiary
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Lagrange system of equations is

drq dr, dra dv, dv, dvs
V. -V, -V % % % dt 1.4)

An immediate consequence of the Liouville theoremis thiat if,, ..., Ig
are any six functional independent integrals of the stetiation for a given
potential satisfying the equations in Eq. 1.4, then the plspsace density
function must be of the forni(t,, V') = f(I1, 12, ..., lg), where the quan-
tity on the right-hand side stands for an arbitrary funciidrthe specified
arguments, on the condition that the mass of the system lie &ind that
the density in the phase space be non-negative. The phase deasity
function is itself an integral of motion. The integrals of tiem univocally
determine the orbit of any star in the phase space.

However, the phase density, by its physical significancestrine a one-
valued function of the six phase coordinates. Thereforly, the integrals
satisfying the condition of being one-valued in phase spabeh are called
isolating integrals, can appear as an argument of the phase density, although
they may take several values in the space of integrals ofomokn 1953 G.
Kuzmin was the first in suggesting this fact, and Lynden-BE61) pro-
vided a rigorous demonstration that a continuous phasespatsity func-
tion must be independent of any non-isolating integral atneverywhere.

More precisely, if in a bounded region of the phase spacedhat®n
Ik(r, V') = Ci can be solved with respect to every variable and gives a finite
number of solutions, then the integral is called isolatiag(, Contopoulus
1963). On the other hand, if there exist at least one accuionlpoint at
a finite distance, the integral is called non-isolating.ldsng integrals are
important because they constrain the shapes of orbits byliomension in
the phase space. Analytic integrals in a simply connectgidmencluding
the phase space are isolating, but non-classic integralshvare implicit in
a numerical integration of an orbit, are usually non-isafat

Thus, if the stellar system is time-independent, the phpaeesremains
decomposed in a set of disjoint hypersurfaces correspgrdirdifferent
integral values. Notice that if the system is time-depehdbe orbits may
intersect for diferent times, although, for a fixed ting the integrals must
define a family of level curves of the phase space.

Let us briefly review some typical examples of isolating gmtds. In
general, up to three isolating integrals are found for ditsrunder steady-
state and axisymmetric potentials. Thus, by expressingé¢kecity com-
ponents Y1, V2, V3) in a Cartesian heliocentric coordinate system, With
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toward the Galactic centr®, in the rotational direction, ands perpendic-
ular to Galactic plane, positive in the direction of the Mo@alactic pole,
for a stationary potentig{ the energy integral can be written as

Iy = V2 + V2 + V2 + 2U(r). (1.5)

The integral for the axial component of the angular momentunaler an
axisymmetric potential is expressed, in cylindrical conatiesr = (r, 0, 2),
as

I, =rVo. (16)

Also, under a separable potentédl = Ui (r) + U2(2), which is valid near
the Galactic plane, it is obtained a third integral, somesiralled Oort’s
integral,

I3 = V3 + 2Ux(2). (1.7)

Of course, any combination of above integrals is also cameser Let us
point out two very simple cases. For a fixed position in thea®gl the
guantity

lg = V2 + V2 (1.8)

is also an isolating integral. Similarly, a quadratic fuaot
Is = V2 + a(Va — Vp)? + BV2 (1.9)

for anyVp, @ andB constants or depending on the position, is also conserved.
The later may be generalised, under appropriate hypothesesbitrary
guadratic functions of the peculiar velocity componentsiclv justifies the
generalised use of Gaussian type velocity distributions.

When some kinematic knowledge about the stellar systemaidadne,
such as that concerning the integrals of motion, if the dgriainction f
is already known, Eq. 1.2 may be interpreted according taJdans’ in-
verse problem as a linear, non-homogeneous parfiagrdntial equation for
U. For example, the velocity distribution of some stellarugys can be
assumed, after a transient period, of Maxwell type, Scheanid type, or
ellipsoidal shaped (e.g., de Zeeuw & Lynden-Bell 1985). sTtiewpoint
is a functional approach, which generally focuses on thdysti a single
stellar population (or may be used to define a statisticalifadipn) where
the gravitational potential and the total stellar denbitgire related through
the Newton-Poisson equation

V24U = 47GN.
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However, self-consistent models that use the above equat®very lim-
ited, since unknown stellar populations —including gas @tk matter— do
contribute also to the gravitational field.

In addition, it may be combined with a mixture model to get areno
complete portrait of the velocity distribution (e.g., Cadial990, 1992).
With this viewpoint, there is no need of the collisions ter@n the con-
trary, it is assumed that there ardftient collisions to keep the system in
statistical equilibrium, according to the specific phasacspdensity func-
tion or the particular integrals of motion. In other wordsjsi assumed
that the phase space density function is invariant undecahisional op-
eratorC(f, f). The idea comes from the original work on statistical dy-
namics (Chandrasekhar 1943), where the collisional teooounting for
diffusion and frictional processes, is exactly what is needednserve the
energy of the whole system and leave the Maxwellian didfiobuinvari-
ant. Therefore, it is not surprising that Lynden-Bell (196 studying the
equilibrium distribution achieved after a violent relaratprocess, induced
by rapid fluctuations of the gravitational field, obtainsmitar smooth dis-
tribution function for a rotating elliptical system, whiéé quadratic as in
Chandrasekhar (1942). Notice, however, that the formes thse statisti-
cal dynamics approach, while the latter in this case faceptbblem from
analytical dynamics. Other examples are described in Qiypokov (1965)
when deriving the most probable phase distribution aftezfacient relax-
ation mechanism.

If P(t,r, V) is an isolating integral of motion, continuous anéelien-
tiable in its arguments, for any fixed ting the equatiorP(tp, ,V) = C
must define a one-parameter family of five-dimensional seddilling all
the six dimensional phase spdtex I'y, for all the possible values of the
constaniC € lp. If we assume that the phase density depends onl,on
thatisf(t,r, V) = f(P), thenf(P) is also an isolating integral of motion,
which must define, for the same fixed timgeanother uniparametric family
of curvesf(P) = K € I¢p), associated with the same set of hypersurfaces
filling I'y x I'y. To each level curve of the former family corresponds one,
and only one, level curve of the later family, so that= f(C). Thus, we
can assume thdtis a difeomorphism in the interior of its domain. Hence,
the following inequality must be fulfilled,

df(P)
dP
In other wordsf(®) is a strictly increasing or decreasing, smooth function
of the argument in any open set within the interkal This is a basic prop-

# 0. (1.10)
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erty used in Chapter 4 for the general solution of the clopooblem.

A typical example of this situation is the generalised Satzaehild dis-
tribution, with® = Q + o, whereQ = u' - A, - u is a quadratic, positive
definite form depending on the peculiar velocitywhere the second-rank
symmetric tensor; and the scalar functiom depend only on time and po-
sition. Then, owing to Eq. 1.10, we can express the colllsgmnBoltzmann
equation in either of the following forms

DI(P) _diP)DP _ _ DP_
Dt dP Dt Dt

For the generalised Schwarzschild distribution, Charekiaar (1942) ob-
tained a system of twenty partialftérential equations faA,, o, the mean
velocity, and the potential, which is equivalent to the isadnless Boltz-
mann equation.

0. (1.11)

1.4 Sdf-consistent models

For isolated stellar systems the symmetries of the polesnic the stellar
density can be investigated from the self-consistency thgsis according
to a variant of the Jeans inverse problem. When the densittifin or the
isolating integrals of the star's motion are known, theisalhless Boltz-
mann equation allows to determine the potential or someguti@s of the
potential such as symmetry properties. The variant cansistaking into
account the Poisson equation by relating the potentialgctallar density
and assuming that the gravitational potential generatethéystellar sys-
tem satisfying the stationary collisionless Boltzmannagiun is the unique
origin of the stellar system force field (e.g., An et al. 204fid references
therein). Theoretically, from the isolating integrals ttellar density can
be determined by integrating the distribution functiongmis of either the
velocities or the integrals themselves, arising the depeoel of the dis-
tribution function on the potential and the space coordisaOnce estab-
lished this functional dependence, several theorems dabeltymmetry of
the solutions of elliptical partial éierential equations (in particular for the
Poisson equation) lead to particular symmetries for them@l and the
stellar density, such as symmetry plane and axisymmettiiowt the need
of solving any dfferential equation. Nevertheless, the existence of such a
joint solution is not guaranteed.

Formally, the Poisson equation acts as a mathematicatshootdeduce
such symmetries instead of deducing them from the collisggBoltzmann
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equation by assuming that there is no external force thaufavany direc-
tion of the symmetry axis and, therefore, the average behawi the stellar
fluid is symmetric. In this sense, it is worth mentioning therkvby Camm
(1941).

Camm considers the distribution function depending onesglircombi-
nation of the three integralg, I,, andl; (i.e., he assumes the ellipsoidal
hypothesis). He solves the stationary collisionless Badtzn equation and
obtains a plane of symmetry for the velocity ellipsoid ancbéeptial sym-
metric with respect to this plane. This is obtained withosihg the hy-
pothesis of self-consistency. He proves that the potemtiaddition to be
axisymmetric, is either: (a) spherically symmetric, iteg solution below
Eg. (19), in which he is not interested; (b) separable intatdiviz., the
expression below Eq. (22), not consistent with a finite sys{g) Eq. (23),
depending on the latitude (actually on its absolute val{&);symmetric
about an arbitrary plane=p, i.e., the general solution below Eq. (23), in
the new coordinates, which are the roots of the quadratiatemu Without
using the hypothesis of self-consistency, the solutioat @amm thinks of
physical significance (a,c,d) satisfy both separabilitytfee potential and
symmetry plane. But what is more interesting is that whenduks éhe Pois-
son equation he finds that there is no mathematical soluéitisfging such
a joint solution. It could also occur that a possible solutizas so simple
that it was totally unrealistic. Therefore, one must be icaustin using the
self-consistency model.

Nevertheless, Camm forgets that, just as the ellipsoidabthesis is not
valid for the whole system, neither the potential consistéth this model
will be valid for the whole system. That is to say, in a certagion of the
stellar system the potential, or its dominant term, can behar example,
as the one associated to a quasi-elastic field of force (@gdtov 1965),
and therefore be separable in addition. The harmonic pateatcording
to Poisson equation, is the one created within a homogersphesoid. It
would not be logical to pretend that such a model is exteasdan infinite
galactic system but, in the central part of the system, therial due to the
galactic halo can certainly be modelled that way.

1.5 Stellar statistics

For fixed values of timé and positionr, the macroscopic properties of a
stellar system can be described from the moments of thétdigtm, which
provide indirect information on the phase-space densitgtion f (t, », V).
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It is well-known that the first moments, accounting for theamegive the
more elementary property of the distribution; the secontdreé moments
describe how much the distribution is spread around the miggnthird
moments describe distribution asymmetries like the skesnthe fourth
moments are used to quantify how peaked the distributioarid; so forth
(e.g., Stuart & Ord 1987).

In particular, the stellar density is given by

N7y = | ftr,V)dV (1.12)

I'v

and the stellar mean velocity, or velocity of the centrasd, i

o(t,r) = Vv ft,r,V)dV. (1.13)

N(t, T) T'v

The symmetric tensor of the-order, non-centred trivariate moments is
obtained from the expected value

mn(t,r)=<(V)n>s® fr (VY ft,rV)dV, n>0 (1.14)

where ()" stands for ther-tensor power. The tensen, then has(”gz) dif-
ferent elements according to the expression

Myiy..ip = (ViyViy .. Vi), (1.15)

so that the indices belong to the $&t2, 3}, depending on the velocity com-
ponent. Sometimes, instead of the component notation, Igdmaén in-
dices, it is also used a notation to make the velocity powguBat, namely
Greek indices, according to

Mysy = (VSVAVD). (1.16)

Obviously,mgy = 1 andm, = v(t, r), which is the mean velocity, or veloc-
ity of the centroid.

In a similar way, the symmetric tensor of theorder centred moments
is obtained by working from the peculiar velocity

u=V —-v(,r), (2.17)
as the expected value

1
N(t, r)

pn(t,r) = ﬁ (V —o(t,r)" f(t,»,V)dV, n=>0, (1.18)
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with elements
Higi..in = (Ui Uiy ... Ui ). (1.19)

In this caseyuo = 1 andpy = 0. The second central momengt is also
known as covariance matrix.

The second moment tensors, either centred or non-centredsyan-
metric and positive-definite matrices, hence are diagpaklé with posi-
tive eigenvalues. When all the eigenvalues are equal, wehsatensor is
isotropic. If an eigenvalue does not dependromve say it is isothermal in
the direction of the corresponding eigenvector.

The tensor of the central moments is related to the tensengfératures
from the kinetic theory of gases, while the tensor of pressis given by

Pn = N llrn. (1.20)

Hereafter, when studying the velocity dependence of thtilgigion
function from a statistical viewpoint, the variables of énand position
are omitted, although they might be used in the framework dyrami-
cal model for the whole phase-space distribution function.

Ellipsoidal distributions, such as the Schwarzschildrthistion, can be
described in terms of their central second momesytswhich sometimes
are written with Latin indices, such az§J = (ViVj) = (VixVj) (Binney &
Tremaine 2008). However, in other standard astronomy eatar books,
the Greek index notation is used (Gilmore, King & van der K#89), in
particular when the velocity variables are expressed inth&, W) coor-
dinate system (without subindices), where thth momentsm,g, satisfy
a + B +vy = n. The second central moments account for the shape and
orientation of the velocity ellipsoid and for the varianeg of the velocity
distribution function in an arbitrary directidrof the peculiar velocity space.
According to the coordinate systemgif, ¢,, andcs are the corresponding
direction cosines, we have

O'|2 = ((clul + CoUo + C3U3)2> = Z GiCjuij; i, j €{1,2,3}. (1.21)
i
The symmetric tenso,ag1 (inverse of the second central momepts is
then associated with the peculiar velocity ellipsoid

ul oyt u =1, (1.22)

so that the velocity dispersions; , o2, andos are the semiaxes of the
ellipsoid that refers to the same coordinate axes.
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Usually the direction; is taken as the radial direction, having the greater
velocity dispersion. Then, the major semiaxis of the véjoellipsoid has
a direction close to that of the location vector of the cadtrdhe angle of
such a deviation is referred to as vertex deviation. Thefilhe velocity
ellipsoid is also significant. If one of the principal sengaxpoints to the
Galactic centre, then there is no tilt, if not, the tilt is thegle of such a
deviation. A precise definition of vertex deviation and tftthe velocity
ellipsoid is given in Appendix G.2).

For these distributions, higher order central moments eaocdmputed
depending on the second ones; in other words, they cannetatditrary
values, as shown in Appendix C. However, for arbitrary distiions, the
variances and the velocity ellipsoid are meaningless,ssrileey could be
used as a Gaussian approximation. Similarly, the skewmastha kurtosis
are also meaningless for multivariate distributions fanfrGaussian, which
have to be qualitatively described from moments of ordeh&ighan two,
up to a stfficient degree of approximation of the basic distributiomti®

1.6 Veocity moments

In the very beginning of the book, Chandrasekhar (1942)rmglthe appro-
priate conditions to define a unique local standard of reSR)Lfor describ-
ing the motions in a given relatively small volume of the Ga&larhe condi-
tions are related to a continuous estimation of the cerftnatbcity within
this volume and to a slow varying distribution function, wihicould be re-
ferred to as regularity conditions. He concludes that tekestsystems can
be divided into those for which the notion of LSR (and, by esien, higher
velocity moments) is of significance and those for which mdd. Among
the latter we can mention the systems dominated by a phasegwisocess
(e.g., Binney & Tremaine 2008), for which a macroscopic,reegyrained
distribution function may be defined in contrast with theetrtine-grained
distribution function, although the coarse-grained distion function of a
mixing system would not satisfy the collisionless Boltzmaguation. We
shall focus on the first class of stellar systems, for whiehrttean velocity
and similar statistics are meaningful.

2The centroid of motion corresponds to the mean velocity efgtars in a small volume
of the Galaxy and is used as synonymous of LSR. It is not exdol same as the centre of
mass of this volume, since we know little about the massesdiidual stars. However, for
the whole Galaxy, the galactic standard of rest is identifitl the centre of gravity and not
with the centroid of motion of all stars.
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Let us remember that for the Galaxy and, in general, foratelystems
larger than globular clusters, the forces acting on a staresalusively be
associated with a mean gravitational field, by neglectirgréindom forces
due to stellar encounters. In the solar neighbourhood naissuthat the
Galaxy has reached an equilibrium configuration, the p@kist usually
taken as explicitly time-independent. Then, the Hamikorflow possesses
the energy integral, is alwaysnergodic and, thereforenonmixing (e.g.,
Arnold & Avez 1968).

Thus, in order to introduce the kinematic statistics in®¢bllisionless
Boltzmann equation, Eq. 1.2 is multiplied by the¢ensor power of the star
velocity and then integrated over the whole velocity space,

Df
(V)" = dV =(0)", n>0 (1.23)
. Dt

where in the integration process the following boundaryditions are as-
sumed because there are no stars with velocity beyond

V - oly = (V)"f(t, 7, V) - (0)", n> 0. (1.24)

It is always assumed that the foregoing integrals do exssthase of the
velocity moments.

For each value of, the tensor equation Eq. 1.23 leads to therder
stellar hydrodynamic equation, which provides us with aseswmation or
transfer lawalong the centroid trajectory. The most basic cases are the
continuity equation, fon = 0, which stands for mass conservation, and the
momentum conservation equation, foe 1.

However, the methodology of most books on galactic dynamvttish
devote a chapter to obtain or discuss the stellar hydrodimequations
(e.g., Chandrasekhar 1942, Kurth 1957, Ogorodnikov 196BaMs 1968,
Binney & Tremaine 2008) is to integrate Eq. 1.23 —foe 0 andn = 1—
over the absolute, non-peculiar velocities, leading toa¢igns involving
the absolute moments of the velocity distribution, andraféeds, in order
to give a physical interpretation of each equation, thel totaments are
explicitly written in function of the central moments. Suahprocedure
is appropriate for the lowest order equations, but it is m#cuate for an
arbitraryn-order equation.






Chapter 2

Stellar hydrodynamic
equations

2.1 Comoving-frame equations

Let us write the collisionless Boltzmann equation, Eq. Ih2erms of the
stellar mean velocity, Eq. 1.13, and of the peculiar velesjtEq. 1.17, by
expressing the phase space density functiomthe form

ot,r,u) = f(t,r,u +v(t,r)) (2.1)

wheret, » andu are independent variables. Hence, the derivatives with
respect to these variables are

of _ 99 du

of L ou _0¢ v
ot ot ot

Vyp=—— — -V
uf ot ot ufs

Vol =Vep+ Vo -V = Vg — Vov - Vo, (2.2)
va = VVu . Vu¢ = Vu¢.
Then Eq. 1.2 becomes

‘;—‘f—‘;—1’~Vu¢+(u+v)~(VT¢—VTv-Vu¢)—Vm-Vu¢=0 (2.3)

15
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so that, by reorganising terms, it yields

6—¢+v -Vyp— (6’_t +v- V,,'u) Vud+u - (Vop=V,v-Vyud) =V, UV = 0.

ot

(2.4)
To simplify the notation, we use the material derivative¢atalled substan-
tial derivative) associated with the motion of the centroid

()—( +v- V)(.). (2.5)
Sincer andu are independent variables, we take into account the igentit
u-Vep =V, (ug) (2.6)
and we also consider the following equatity
u-Vov -V = Vo (u®Vyd) 2.7)

where each dot represents an inner product,@adtensor produét No-
tice that the colon stands for the dot produ€tswith w, andv with V,,,
respectively.

Hence, Eq. 2.4 may be written as follows

%_@?wwd Vi + Vo (ug) Vv (u@Vud) =0.  (2.8)

We take now the tensor product of the foregoing equation thigm-tensor
power of the peculiar velocity)",

(wy ¥ ()”K“ vw)u¢+

(2.9)
Vo - ()] = Vo : () © Vug] = (0)
1In component notation the equality can be erttenu;i? aal‘f = Z\:J (u g¢) where
j i uj

Einstein’s summation criterion for repeated indices idiapgp

2The notation used for nabla operators is the usual oner i a vector variable and
Fy(x) an-rank symmetric tensor field, then for > 1 the divergencé/,, - Fy is, in com-
ponents,% Fi,..in» While forn > 0, V, Fy, is used instead 07, ® Fy, to represent the gradient

il L
W F'Z«««|n+1'
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and the resulting equation is then integrated over the ecuélocities
spacel'y, where the factors depending only erandt are left out of the
integrals. Thus, we obtain

d n dv n
afru(u) ¢du—(a+VﬁL{)~ ru(u) ® Vo dut
(2.10)

+V, - | @)™odu-Veo: | (@)1 Vepdu = (0)".
Iy Iy

The first and third terms of the above relationship are diyextpressed
in function of the pressures, according to Eq. 1.14 and E20.1Instead,
for the other terms an auxiliary tensor may be defined asvisllo

Qne1 = - f (u)"® Vypdu, n>0 (2.11)
Iy

so that Eq. 2.10 may be rewritten in a more compact notation,

dP, dv
dtn + (a + V,,(Ll) Qi1+ Ve Py + Vv Qui2 = (0)".  (2.12)

However, the tensoi®,, are not directly computable in their current form.

2.2 Conservation of pressures

The next step is to write the general hydrodynamic equatigpnZE12 ex-
plicitly depending on the pressures. Hence we shall find owtthe tensors
Q\ can be expressed in terms of the pressiies

Let us note a particular case of Eq. 2.11. Rer 0, bearing in mind the
boundary condition Eg. 1.24, we get

Q1= —f Vuddu = ¢, = 0. (2.13)
Ty

Forn = 1, the tensor product)” ® V. ¢ within the integral of Eq. 2.11
verifies, in components,

y 92 _ oug)
Ian B 5Uj

- dij b, (2.14)
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beingd;; the Kronecker delta, and for> 2,

o(Ui, .. .U
6¢ = (I1 '”¢)—(6i1in+1ui2...ui + ...+

Ui, ... U
! ! 6uin+1 6uin+1 !

(2.15)

+6ijin+1 Ui, ... 0?1 Ui e+ 6inin+1 Ui ... Uin_l) 1)

where the hat remarks the omitted factors.

Then, the tenso®,,.1 can be evaluated by integrating Eq. 2.14 and Eq.
2.15. The conditions of Eq. 1.24 are once more applied oeeintiegration
boundary, so that the first term on the right-hand side of E45,2when
integrating ovewr ,, yields

(U, ... U
f % du,, = Ui ...U;, ¢|Uin+1 =0. (2.16)
u uin+1

in+1

Hence, the tensd@,,; is obtained by integrating only the remaining terms,
and by taking into account Eq. 1.19 and Eq. 1.20.
Thus, forn = 1 we are led to

(Q2)ij = 6ij Po (2.17)
and forn > 2, we get the following expression depending on the pressure
(@n2)iy gy = Osina Pigeia +- -+ 0iins P i+ -+ 0iina Pirin, - (2.18)
The foregoing relationships will be used to write both teimEq. 2.12,
which involve the tenson.1. One of the terms contains a single dot prod-

uct of this tensor with a vector, namely- Q1. Hence, by applying Eq.
2.18, we get

(a- Qn+1)i1...in =
= ain+1 (6i1in+1 I:>i2~~~in +...F 6ijin+1 Pil,,,i’j\,,,in +.o.0F 6inin+1 Pilmin—l) = (219)

=a, Pi,.i, +...+ &, Pil...ﬂ...in +...+a, P,

where Einstein’s summation convention is used. The resuthé sym-
metrised tensor product in regard to permutations of irgiSéa ® P,_1),



