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Preface

Stellar dynamics is an interdisciplinary field where mathematics, physics,
and astronomy overlap. It describes systems of stars considered as many
point mass particles whose mutual gravitational interactions determine their
orbits. Theses interactions may arise from the smoothed-out stellar distri-
bution of matter, which are then given through a gravitational potential, and
from the effect of the stellar encounters. The collisional relaxation time is
used to measure how long will it take before the cumulative effect of stellar
encounters prevents us from considering the stars as independent, conserva-
tive dynamical systems. In large stellar systems, like a galaxy, the relaxation
time is long and they may be assumed to be in statistical equilibrium accord-
ing to specific phase space density and potential functions.This approach is
generally done from theanalytical dynamics viewpoint. That is, the stellar
system is described as a conservative dynamical system fromthe canonical
equations through a Hamiltonian function, and the hydrodynamical flow in
the phase space is obtained according to Liouville’s theorem. In this mono-
graph we shall focus our attention on analytical stellar dynamics, by consid-
ering the stellar system as a fluid. In contrast, in small globular clusters, and
in processes of violent relaxation producing rapid fluctuations of the gravi-
tational field, the collisions cannot be omitted, andstatistical mechanics is
generally used to describe the dynamics of the interacting particles through
a many particle distribution function.

Analytical stellar dynamics has its origins in the early 20th century,
when the kinetic theory of gases was adapted to astronomicalproblems by
J.H. Jeans. He showed that, under some regularity conditions, the funda-
mental equation of stellar dynamics is equivalent to the collisionless Boltz-
mann equation, so that the Liouville theorem is satisfied. Then, velocity
moments of the collisionless Boltzmann equation yield the stellar hydrody-
namic equations. These equations, written in a comoving reference frame,
are comparable to the equations of motion of a compressible viscous fluid.
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However, because short-range atomic interactions dominate fluids, it is a
much better approximation to truncate the moment equationsat low order
for fluids (i.e. continuity and Navier-Stokes equations) than it is for stel-
lar systems. In addition, the general stellar hydrodynamical equations are
anisotropic in their spatial and velocity coordinates. Therefore, higher-order
hydrodynamic equations are non-negligible for stellar dynamics.

In the forties, S. Chandrasekhar gave an alternative formulation to ex-
plain the dynamics of collisionless systems and, in addition, he introduced a
new statistical approach for collisional systems through adynamical friction
mechanism. Chandrasekhar’s alternative approach for collisionless systems
is known as Jeans’ inverse problem and it is a functional approach for the
phase space density function based in the assumption that the residual ve-
locity distribution of any stellar population in statistical equilibrium satisfies
a generalised ellipsoidal law.

During the second half of last century, J.J. de Orús produceda rigorous
mathematical formulation of Chandrasekhar’s theory whichwas collected in
his Notes on Galactic Dynamics for the Astronomy Department in the Uni-
versity of Barcelona. He and his disciples thoroughly studied the direct and
inverse Jeans’ problems. It was proven that, if the Chandrasekhar equations
are fulfilled, the continuity equation and the Navier-Stokes equation are also
satisfied and, even more, that the Chandrasekhar equations could be derived
from the first four hydrodynamic equations. Solutions to theChandrasekhar
equations were given under hypotheses of axial (rotational) and point-axial
symmetry, and for stellar population mixtures.

The aim of the current monograph is to review, update, and make these
topics available to a broader audience. It is a fascinating area that addresses
issues on dynamical systems, information theory, numerical analysis, par-
tial differential equations, probability, statistics, tensor algebra, and vector
calculus, among other topics, in addition to astronomy and physics subjects.

These nine chapters altogether provide the reader with a quite complete
review of what are the main problems in this area at a level of postgradu-
ate course. The first two chapters are devoted to the Jeans’ direct problem,
where the full mathematical expression of an arbitraryn-order stellar hy-
drodynamic equation, either depending on the pressures or on the comoving
moments, is derived. In this way, the stellar hydrodynamic equations can be
compared to the equations of fluid dynamics, and general closure conditions
can be studied in order to build up a dynamical model from a finite number
of equations and variables, generally known as closure problem.

The third and fourth chapters deal with the Jeans’ inverse problem in
relation to the long-standing closure problem, which is oneof the classic,
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unsolved problems in fluid dynamics, discovered even earlier, in the nine-
teenth century, in ordinary hydrodynamics by O. Reynolds. The equivalence
of the Chandrasekhar equations and the stellar hydrodynamic equations is
discussed by proving that, for a generalised ellipsoidal velocity distribution,
some moment recurrence relationships act as closure conditions making the
infinite hierarchy of the hydrodynamic equations equivalent to the collision-
less Boltzmann equation. This result is generalised to maximum entropy
velocity distributions and to any velocity distribution function depending on
a polynomial function in the velocity variables.

Chapters five and six focus on the distribution function and the moments
problem. The maximum entropy approach for the solution of inverse prob-
lems, first introduced by E.T. Jaynes, illustrates how the velocity distribution
function is connected to the eventual asymmetries collected through its pop-
ulation moments. The density function maximising Shannon’s information
entropy provides the simplest and smoothest approach to thedistribution
function that fulfils a provided set of moment constraints, and gives a very
good estimation of the density function and of its velocity derivatives in-
volved in the collisionless Boltzmann equation. In particular, if an extended
set of moments is available, the parameter estimation of thedistribution
function may be simply done by solving a linear system of equations. Sev-
eral numerical applications of this functional approach, either to complete or
truncated distributions, are presented to show how the above mathematical
methods are able to describe the main kinematical features of the neighbour-
hood stars.

As an alternative approach, in the seventh chapter, insteadof using a
higher-degree polynomial along with a maximum entropy function, the mix-
ture model of Schwarzschild (Gaussian) density functions is studied in con-
nection with the moments problem. This approach is useful todescribe
large-scale kinematic structures of the Galactic disc associated with kine-
matic stellar populations, that has been a very active research field during
the last decades.

Finally, in the last two chapters, Chandrasekhar’s dynamical models for
axisymmetric and point-axial symmetric systems are studied, with a par-
ticular application to the superposition problem, which isthe appropriate
approach to the actual case of a Galaxy composed of several stellar pop-
ulations. Under a common potential, a finite mixture of ellipsoidal veloc-
ity distributions satisfying the collisionless Boltzmannequation provides a
set of integrability conditions that may constrain the population kinemat-
ics. These conditions determine which potentials are connected with a more
flexible superposition of stellar populations.
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Chapter 1

Analytical dynamics

1.1 Introduction

The aim of the first two chapters is to provide the complete mathematical
expression for an arbitraryn-order hydrodynamic equation depending on the
pressures, or alternatively on the comoving moments, without any additional
hypotheses.

The stellar hydrodynamic equations have been used in a number of
works on galactic dynamics to study the stellar mass and velocity distribu-
tions, either from an analytical viewpoint (e.g., Vandervoort 1975, Hunter
1979, Evans & Lynden-Bell 1989, Evans et al. 2000, van de Ven et al. 2003,
Evans et al. 2015, An & Evans 2016) or as a model for numerical simula-
tions to investigate the shape of the velocity distribution, or to reproduce
the spiral structure of galactic discs as an alternative wayto theN-body ap-
proach (e.g., Korchagin et al. 2000, Orlova et al. 2002, Vorobyov & Theis
2006). However, only equations of mass, momentum and, in fewcases,
energy transfer are generally handled, and, in most cases, axial symme-
try, steady-state stellar system, and other hypotheses areassumed. There
are few works that, in a mathematical aspect, have gone beyond such a
basic assumptions. Sala et al. (1985) proposed a general expression for
the n-order equation, without steadiness and axisymmetry, although it was
written depending on the absolute, non-comoving moments ofthe stellar
velocity distribution, where, by substitution of the moments as a series of
the pressures, they obtained a general but non-explicit expression of the
equations. The explicit equations were, in the end, specifically written for
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2 CHAPTER 1. ANALYTICAL DYNAMICS

ordersn = 0, 1, 2, 3. However, it is well-known that stellar hydrodynamic
equations are physically meaningful when they can be compared with the
ordinary hydrodynamic equations of a compressible, viscous fluid, and this
is only possible when they are written in terms of the tensorsof comoving
moments or of pressures, in the reference frame associated with the local
centroid. Often, these expansions or computational procedures are provided
instead of their explicit expression, and they are later used to simplify and
to close the system of equations, for example to study a cool,pure rotating
disc (Aoki 1985, Amendt & Cuddeford 1991).

On the other hand, the work by Cuddeford & Amendt (1991) had also a
general and more interesting mathematical scope, althoughit was restricted
to steady-state systems, amid other hypotheses. They studied higher-order
stellar hydrodynamic equations, by using central velocitymoments up to
eighth-order, and they investigated some quite general conditions over the
velocity distribution in order to close the infinite hierarchy of the moment
equations.

The general expression for such an arbitrary order hydrodynamic equa-
tion in the comoving frame was first derived by Cubarsi (2007,2013). It
should be taken as a starting point in forthcoming works either to use im-
proved observational data or to carry out more exhaustive numerical simula-
tions. In addition, the exactn-order equation is also essential to study more
general closure conditions or, under unrestrictive assumptions, for building
up more accurate dynamical models from a finite number of equations and
variables.

Actual kinematic data (ESA 1997, Nordtröm et al. 2004) do notsup-
port any more the hypotheses of axisymmetry, steadiness, orpure galactic
rotation (Cubarsi & Alcobé 2006). In addition, newer missions such as the
RAdial Velocity Experiment (RAVE) survey (Siebert et al. 2011, Zwitter
et al. 2008, Steinmetz et al. 2006) represent a major improvement, since
the three velocity components are available for the largestnumber of stars
ever collected, where an unbiased radial velocity component will provide
essential information to kinematic and dynamic studies of the Galaxy.

1.2 Jeans’ problems

From a macroscopic approach, a stellar system is described by giving its dis-
tribution in the phase space, which consists in couples of three-dimensional
vectorsr andV representing star position and velocity, measured from an
inertial reference system. The stellar distribution is then given through the
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phase space density functionf (t, r,V ), which is assumed as continuous and
differentiable in nearly every point, providing, at timet, the number of stars
with position within the ranger andr + dr, and velocity betweenV and
V + dV.

It is generally assumed that the Galaxy is at present in a state in which
each star can be idealised as a conservative dynamical system to a very high
degree of accuracy. In general, the forces acting in the system can be asso-
ciated with a gravitational potential function per unit massU(t, r), possibly
non-stationary, so that the motion of a star is described in aCartesian coor-
dinates system by the Hamiltonian system of equations

ṙ = V , V̇ = −U(t, r). (1.1)

For the whole stellar system, the collisionless Boltzmann equation is sat-
isfied, so that the phase space density functionf (t, r,V ), with (t, r,V ) ∈
R × Γr × ΓV , by using the Stokes operatorD(·)

Dt
1, fulfils

D f
Dt
≡ ∂ f
∂t
+ V · ∇r f − ∇rU · ∇V f = 0. (1.2)

The above equation is sometimes referred as Vlasov equation, Liouville
equation, Boltzmann equation, or Jeans equation; however,Hénon (1982)
clarifies the appropriate terminology.

The collisionless Boltzmann equation is a consequence of the Hamilto-
nian flow, which preserves volume, i.e. satisfies the Liouville theorem: the
density of any element of phase space remains constant during its motion.

Jeans showed that thefundamental equation of stellar dynamics was a
particular case of the Boltzmann equation from the kinetic theory of gases,

∂ f
∂t
+ ṙ · ∇r f + V̇ · ∇V f = C( f , f ), (1.3)

where the collision term of the right-hand side may be assumed to be null in
two cases. First, if the effect of the irregular forces, such as star encounters,
is negligible. Second, if the phase density is invariant with respect to the
irregular forces, that is, when the number of points leavingany space volume
as a result of encounters is balanced by those which enter thevolume for the
same reason. In both cases, the Liouville theorem is satisfied.

Hilbert (1912) gave an equivalent mathematical condition to neglect the
collision termC( f , f ), when it is orthogonal to 1,V , and|V |.

1The Stokes operatorD(·)
Dt is generally used to simplify the notation of the Lagrangian

derivative ∂(·)
∂t + V · ∇r(·) + V̇ · ∇V (·).
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The collisional relaxation time is long in large stellar systems. The time
of relaxation for stellar encounters in the solar neighbourhood is greater than
1013 years (Binney & Tremaine 2008), while the galactic rotationperiod
is about 108 years. Hence, the encounters are entirely unimportant. The
collisions cannot be omitted in a globular cluster which contain 105 stars,
but for a galaxy of 1011 stars, the relaxation time turns out to be much larger
than the age of the universe, and the encounters can be neglected.

The collisionless Boltzmann equation may be regarded from two dif-
ferent viewpoints. It is either a linear and homogeneous partial differential
equation for f , for a given potentialU, which is known as Jeans’ direct
problem, or a linear non-homogeneous partial differential equation forU,
where the density functionf is already known, which is called Jeans’ in-
verse problem. Both approaches have been largely studied since Edding-
ton (1921) and Oort (1928), and among other works, those of Vandervoort
(1979), de Zeeuw & Lynden-Bell (1985), Bienaymé (1999) and Famaey et
al. (2002) may be pointed out.

Obviously, neither the phase space density function nor thepotential
are observable quantities, while we do have enough large data sets of the
full space motions in the solar neighbourhood for different types of stars
to compute the kinematic statistics of the distribution. Then, in order to
isolate information about the spatial properties of the stellar system, the col-
lisionless Boltzmann equation may be integrated over the velocity space,
or in a more general way, it may be multiplied through by any powers of
the velocities before integrating, and each choice of powers leads to a dif-
ferent equation which involves the kinematic statistics describing the stellar
system for fixed time and position, which are the mean velocity and the mo-
ments of the velocity distribution. Such a strategy, which is usually referred
as moment or fluid approach, provides us with an infinite hierarchy of stel-
lar hydrodynamic equations, which could be used as a dynamical model to
study the stellar system, on condition that some closure relationships were
available in order to work with a finite number of equations and unknowns.

1.3 Isolating integrals

According to Jeans’ direct problem, Eq. 1.2 is a linear and homogeneous
partial differential equation forf , for a given potentialU, whose subsidiary
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Lagrange system of equations is

dr1

V1
=

dr2

V2
=

dr3

V3
=

dV1
∂U
∂r1

=
dV2
∂U
∂r2

=
dV3
∂U
∂r3

= dt (1.4)

An immediate consequence of the Liouville theorem is that ifI1, I2, ..., I6

are any six functional independent integrals of the stellarmotion for a given
potential satisfying the equations in Eq. 1.4, then the phase space density
function must be of the formf (t, r,V ) = f (I1, I2, ..., I6), where the quan-
tity on the right-hand side stands for an arbitrary functionof the specified
arguments, on the condition that the mass of the system be finite and that
the density in the phase space be non-negative. The phase space density
function is itself an integral of motion. The integrals of motion univocally
determine the orbit of any star in the phase space.

However, the phase density, by its physical significance, must be a one-
valued function of the six phase coordinates. Therefore, only the integrals
satisfying the condition of being one-valued in phase space, which are called
isolating integrals, can appear as an argument of the phase density, although
they may take several values in the space of integrals of motion. In 1953 G.
Kuzmin was the first in suggesting this fact, and Lynden-Bell(1961) pro-
vided a rigorous demonstration that a continuous phase space density func-
tion must be independent of any non-isolating integral almost everywhere.

More precisely, if in a bounded region of the phase space the equation
Ik(r,V ) = Ck can be solved with respect to every variable and gives a finite
number of solutions, then the integral is called isolating (e.g., Contopoulus
1963). On the other hand, if there exist at least one accumulation point at
a finite distance, the integral is called non-isolating. Isolating integrals are
important because they constrain the shapes of orbits by onedimension in
the phase space. Analytic integrals in a simply connected region including
the phase space are isolating, but non-classic integrals, which are implicit in
a numerical integration of an orbit, are usually non-isolating.

Thus, if the stellar system is time-independent, the phase space remains
decomposed in a set of disjoint hypersurfaces corresponding to different
integral values. Notice that if the system is time-dependent, the orbits may
intersect for different times, although, for a fixed timet0, the integrals must
define a family of level curves of the phase space.

Let us briefly review some typical examples of isolating integrals. In
general, up to three isolating integrals are found for all orbits under steady-
state and axisymmetric potentials. Thus, by expressing thevelocity com-
ponents (V1,V2,V3) in a Cartesian heliocentric coordinate system, withV1
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toward the Galactic centre,V2 in the rotational direction, andV3 perpendic-
ular to Galactic plane, positive in the direction of the North Galactic pole,
for a stationary potentialU the energy integral can be written as

I1 = V2
1 + V2

2 + V2
3 + 2U(r). (1.5)

The integral for the axial component of the angular momentumunder an
axisymmetric potential is expressed, in cylindrical coordinatesr = (r, θ, z),
as

I2 = rV2. (1.6)

Also, under a separable potentialU = U1(r) +U2(z), which is valid near
the Galactic plane, it is obtained a third integral, sometimes called Oort’s
integral,

I3 = V2
3 + 2U2(z). (1.7)

Of course, any combination of above integrals is also conserved. Let us
point out two very simple cases. For a fixed position in the Galaxy, the
quantity

I4 = V2
1 + V2

3 (1.8)

is also an isolating integral. Similarly, a quadratic function

I5 = V2
1 + α(V2 − V0)2 + βV2

3 (1.9)

for anyV0, α andβ constants or depending on the position, is also conserved.
The later may be generalised, under appropriate hypotheses, to arbitrary
quadratic functions of the peculiar velocity components, which justifies the
generalised use of Gaussian type velocity distributions.

When some kinematic knowledge about the stellar system is available,
such as that concerning the integrals of motion, if the density function f
is already known, Eq. 1.2 may be interpreted according to theJeans’ in-
verse problem as a linear, non-homogeneous partial differential equation for
U. For example, the velocity distribution of some stellar groups can be
assumed, after a transient period, of Maxwell type, Schwarzschild type, or
ellipsoidal shaped (e.g., de Zeeuw & Lynden-Bell 1985). This viewpoint
is a functional approach, which generally focuses on the study of a single
stellar population (or may be used to define a statistical population) where
the gravitational potential and the total stellar densityN are related through
the Newton-Poisson equation

∇2
rU = 4πGN.
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However, self-consistent models that use the above equation are very lim-
ited, since unknown stellar populations –including gas anddark matter– do
contribute also to the gravitational field.

In addition, it may be combined with a mixture model to get a more
complete portrait of the velocity distribution (e.g., Cubarsi 1990, 1992).
With this viewpoint, there is no need of the collisions term.On the con-
trary, it is assumed that there are sufficient collisions to keep the system in
statistical equilibrium, according to the specific phase space density func-
tion or the particular integrals of motion. In other words, it is assumed
that the phase space density function is invariant under thecollisional op-
eratorC( f , f ). The idea comes from the original work on statistical dy-
namics (Chandrasekhar 1943), where the collisional term, accounting for
diffusion and frictional processes, is exactly what is needed toconserve the
energy of the whole system and leave the Maxwellian distribution invari-
ant. Therefore, it is not surprising that Lynden-Bell (1967), in studying the
equilibrium distribution achieved after a violent relaxation process, induced
by rapid fluctuations of the gravitational field, obtains a similar smooth dis-
tribution function for a rotating elliptical system, whichis quadratic as in
Chandrasekhar (1942). Notice, however, that the former uses the statisti-
cal dynamics approach, while the latter in this case faces the problem from
analytical dynamics. Other examples are described in Ogorodnikov (1965)
when deriving the most probable phase distribution after anefficient relax-
ation mechanism.

If P(t, r,V ) is an isolating integral of motion, continuous and differen-
tiable in its arguments, for any fixed timet0, the equationP(t0, r,V ) = C
must define a one-parameter family of five-dimensional surfaces filling all
the six dimensional phase spaceΓr × ΓV , for all the possible values of the
constantC ∈ IP. If we assume that the phase density depends only onP,
that is f (t, r,V ) = f (P), then f (P) is also an isolating integral of motion,
which must define, for the same fixed timet0, another uniparametric family
of curves f (P) = K ∈ I f (P), associated with the same set of hypersurfaces
filling Γr × ΓV . To each level curve of the former family corresponds one,
and only one, level curve of the later family, so thatK = f (C). Thus, we
can assume thatf is a diffeomorphism in the interior of its domain. Hence,
the following inequality must be fulfilled,

d f (P)
dP , 0. (1.10)

In other words,f (P) is a strictly increasing or decreasing, smooth function
of the argument in any open set within the intervalIP. This is a basic prop-
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erty used in Chapter 4 for the general solution of the closureproblem.
A typical example of this situation is the generalised Schwarzschild dis-

tribution, withP = Q + σ, whereQ = uT ·A2 · u is a quadratic, positive
definite form depending on the peculiar velocityu, where the second-rank
symmetric tensorA2 and the scalar functionσ depend only on time and po-
sition. Then, owing to Eq. 1.10, we can express the collisionless Boltzmann
equation in either of the following forms

D f (P)
Dt

=
d f (P)

dP
DP
Dt
= 0 ⇐⇒ DP

Dt
= 0. (1.11)

For the generalised Schwarzschild distribution, Chandrasekhar (1942) ob-
tained a system of twenty partial differential equations forA2, σ, the mean
velocity, and the potential, which is equivalent to the collisionless Boltz-
mann equation.

1.4 Self-consistent models

For isolated stellar systems the symmetries of the potential and the stellar
density can be investigated from the self-consistency hypothesis according
to a variant of the Jeans inverse problem. When the density function or the
isolating integrals of the star’s motion are known, the collisionless Boltz-
mann equation allows to determine the potential or some properties of the
potential such as symmetry properties. The variant consists in taking into
account the Poisson equation by relating the potential to the stellar density
and assuming that the gravitational potential generated bythe stellar sys-
tem satisfying the stationary collisionless Boltzmann equation is the unique
origin of the stellar system force field (e.g., An et al. 2017,and references
therein). Theoretically, from the isolating integrals thestellar density can
be determined by integrating the distribution function in terms of either the
velocities or the integrals themselves, arising the dependence of the dis-
tribution function on the potential and the space coordinates. Once estab-
lished this functional dependence, several theorems aboutthe symmetry of
the solutions of elliptical partial differential equations (in particular for the
Poisson equation) lead to particular symmetries for the potential and the
stellar density, such as symmetry plane and axisymmetry, without the need
of solving any differential equation. Nevertheless, the existence of such a
joint solution is not guaranteed.

Formally, the Poisson equation acts as a mathematical shortcut to deduce
such symmetries instead of deducing them from the collisionless Boltzmann
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equation by assuming that there is no external force that favours any direc-
tion of the symmetry axis and, therefore, the average behaviour of the stellar
fluid is symmetric. In this sense, it is worth mentioning the work by Camm
(1941).

Camm considers the distribution function depending on a linear combi-
nation of the three integralsI1, I2, and I3 (i.e., he assumes the ellipsoidal
hypothesis). He solves the stationary collisionless Boltzmann equation and
obtains a plane of symmetry for the velocity ellipsoid and a potential sym-
metric with respect to this plane. This is obtained without using the hy-
pothesis of self-consistency. He proves that the potential, in addition to be
axisymmetric, is either: (a) spherically symmetric, i.e.,the solution below
Eq. (19), in which he is not interested; (b) separable in addition, viz., the
expression below Eq. (22), not consistent with a finite system; (c) Eq. (23),
depending on the latitude (actually on its absolute value);(d) symmetric
about an arbitrary plane z=0, i.e., the general solution below Eq. (23), in
the new coordinates, which are the roots of the quadratic equation. Without
using the hypothesis of self-consistency, the solutions that Camm thinks of
physical significance (a,c,d) satisfy both separability for the potential and
symmetry plane. But what is more interesting is that when he adds the Pois-
son equation he finds that there is no mathematical solution satisfying such
a joint solution. It could also occur that a possible solution was so simple
that it was totally unrealistic. Therefore, one must be cautious in using the
self-consistency model.

Nevertheless, Camm forgets that, just as the ellipsoidal hypothesis is not
valid for the whole system, neither the potential consistent with this model
will be valid for the whole system. That is to say, in a certainregion of the
stellar system the potential, or its dominant term, can behave, for example,
as the one associated to a quasi-elastic field of force (Ogorodnikov 1965),
and therefore be separable in addition. The harmonic potential, according
to Poisson equation, is the one created within a homogeneousspheroid. It
would not be logical to pretend that such a model is extensible to an infinite
galactic system but, in the central part of the system, the potential due to the
galactic halo can certainly be modelled that way.

1.5 Stellar statistics

For fixed values of timet and positionr, the macroscopic properties of a
stellar system can be described from the moments of the distribution, which
provide indirect information on the phase-space density function f (t, r,V ).
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It is well-known that the first moments, accounting for the mean, give the
more elementary property of the distribution; the second central moments
describe how much the distribution is spread around the mean; the third
moments describe distribution asymmetries like the skewness; the fourth
moments are used to quantify how peaked the distribution is;and so forth
(e.g., Stuart & Ord 1987).

In particular, the stellar density is given by

N(t, r) =
∫

ΓV

f (t, r,V ) dV (1.12)

and the stellar mean velocity, or velocity of the centroid, is

v(t, r) =
1

N(t, r)

∫

ΓV

V f (t, r,V ) dV . (1.13)

The symmetric tensor of then-order, non-centred trivariate moments is
obtained from the expected value

mn(t, r) = 〈(V )n〉 ≡ 1
N(t, r)

∫

ΓV

(V )n f (t, r,V ) dV , n ≥ 0 (1.14)

where (·)n stands for then-tensor power. The tensormn then has
(
n+2

2

)
dif-

ferent elements according to the expression

mi1i2...in = 〈Vi1Vi2 . . .Vin〉, (1.15)

so that the indices belong to the set{1, 2, 3}, depending on the velocity com-
ponent. Sometimes, instead of the component notation, namely Latin in-
dices, it is also used a notation to make the velocity powers explicit, namely
Greek indices, according to

mαβγ = 〈Vα
1 Vβ

2Vγ

3〉. (1.16)

Obviously,m0 = 1 andm1 = v(t, r), which is the mean velocity, or veloc-
ity of the centroid.

In a similar way, the symmetric tensor of then-order centred moments
is obtained by working from the peculiar velocity

u = V − v(t, r), (1.17)

as the expected value

µn(t, r) =
1

N(t, r)

∫

ΓV

(V − v(t, r))n f (t, r,V ) dV , n ≥ 0, (1.18)
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with elements
µi1i2...in = 〈ui1ui2 . . . uin〉. (1.19)

In this case,µ0 = 1 andµ1 = 0. The second central momentµ2 is also
known as covariance matrix.

The second moment tensors, either centred or non-centred, are sym-
metric and positive-definite matrices, hence are diagonalizable with posi-
tive eigenvalues. When all the eigenvalues are equal, we saythe tensor is
isotropic. If an eigenvalue does not depend onr, we say it is isothermal in
the direction of the corresponding eigenvector.

The tensor of the central moments is related to the tensor of temperatures
from the kinetic theory of gases, while the tensor of pressures is given by

Pn = N µn. (1.20)

Hereafter, when studying the velocity dependence of the distribution
function from a statistical viewpoint, the variables of time and position
are omitted, although they might be used in the framework of adynami-
cal model for the whole phase-space distribution function.

Ellipsoidal distributions, such as the Schwarzschild distribution, can be
described in terms of their central second momentsµi j, which sometimes
are written with Latin indices, such asσ2

i j = 〈ViV j〉 − 〈Vi〉〈V j〉 (Binney &
Tremaine 2008). However, in other standard astronomy reference books,
the Greek index notation is used (Gilmore, King & van der Kruit 1989), in
particular when the velocity variables are expressed in the(U,V,W) coor-
dinate system (without subindices), where then-th momentsmαβγ satisfy
α + β + γ = n. The second central moments account for the shape and
orientation of the velocity ellipsoid and for the varianceσ2

l of the velocity
distribution function in an arbitrary directionl of the peculiar velocity space.
According to the coordinate system, ifc1 , c2, andc3 are the corresponding
direction cosines, we have

σ2
l = 〈(c1u1 + c2u2 + c3u3)2〉 =

∑

i, j

cic jµi j; i, j ∈ {1, 2, 3}. (1.21)

The symmetric tensorµ−1
2 (inverse of the second central momentsµ2) is

then associated with the peculiar velocity ellipsoid

uT · µ−1
2 · u = 1, (1.22)

so that the velocity dispersionsσ1 , σ2, andσ3 are the semiaxes of the
ellipsoid that refers to the same coordinate axes.
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Usually the directionu1 is taken as the radial direction, having the greater
velocity dispersion. Then, the major semiaxis of the velocity ellipsoid has
a direction close to that of the location vector of the centroid. The angle of
such a deviation is referred to as vertex deviation. The tiltof the velocity
ellipsoid is also significant. If one of the principal semiaxes points to the
Galactic centre, then there is no tilt, if not, the tilt is theangle of such a
deviation. A precise definition of vertex deviation and tiltof the velocity
ellipsoid is given in Appendix G.2).

For these distributions, higher order central moments can be computed
depending on the second ones; in other words, they cannot take arbitrary
values, as shown in Appendix C. However, for arbitrary distributions, the
variances and the velocity ellipsoid are meaningless, unless they could be
used as a Gaussian approximation. Similarly, the skewness and the kurtosis
are also meaningless for multivariate distributions far from Gaussian, which
have to be qualitatively described from moments of order higher than two,
up to a sufficient degree of approximation of the basic distribution trends.

1.6 Velocity moments

In the very beginning of the book, Chandrasekhar (1942) outlines the appro-
priate conditions to define a unique local standard of rest (LSR) for describ-
ing the motions in a given relatively small volume of the Galaxy. The condi-
tions are related to a continuous estimation of the centroid2 velocity within
this volume and to a slow varying distribution function, which could be re-
ferred to as regularity conditions. He concludes that the stellar systems can
be divided into those for which the notion of LSR (and, by extension, higher
velocity moments) is of significance and those for which it isnot. Among
the latter we can mention the systems dominated by a phase mixing process
(e.g., Binney & Tremaine 2008), for which a macroscopic, coarse-grained
distribution function may be defined in contrast with the true, fine-grained
distribution function, although the coarse-grained distribution function of a
mixing system would not satisfy the collisionless Boltzmann equation. We
shall focus on the first class of stellar systems, for which the mean velocity
and similar statistics are meaningful.

2The centroid of motion corresponds to the mean velocity of the stars in a small volume
of the Galaxy and is used as synonymous of LSR. It is not exactly the same as the centre of
mass of this volume, since we know little about the masses of individual stars. However, for
the whole Galaxy, the galactic standard of rest is identifiedwith the centre of gravity and not
with the centroid of motion of all stars.
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Let us remember that for the Galaxy and, in general, for stellar systems
larger than globular clusters, the forces acting on a star can exclusively be
associated with a mean gravitational field, by neglecting the random forces
due to stellar encounters. In the solar neighbourhood, assuming that the
Galaxy has reached an equilibrium configuration, the potential is usually
taken as explicitly time-independent. Then, the Hamiltonian flow possesses
the energy integral, is alwaysnonergodic and, therefore,nonmixing (e.g.,
Arnold & Avez 1968).

Thus, in order to introduce the kinematic statistics into the collisionless
Boltzmann equation, Eq. 1.2 is multiplied by then-tensor power of the star
velocity and then integrated over the whole velocity space,

∫

ΓV

(V )n D f
Dt

dV = (0)n, n ≥ 0 (1.23)

where in the integration process the following boundary conditions are as-
sumed because there are no stars with velocity beyondΓV

V → ∂ΓV =⇒ (V )n f (t, r,V )→ (0)n, n ≥ 0. (1.24)

It is always assumed that the foregoing integrals do exist, as those of the
velocity moments.

For each value ofn, the tensor equation Eq. 1.23 leads to then-order
stellar hydrodynamic equation, which provides us with a conservation or
transfer lawalong the centroid trajectory. The most basic cases are the
continuity equation, forn = 0, which stands for mass conservation, and the
momentum conservation equation, forn = 1.

However, the methodology of most books on galactic dynamicswhich
devote a chapter to obtain or discuss the stellar hydrodynamic equations
(e.g., Chandrasekhar 1942, Kurth 1957, Ogorodnikov 1965, Mihalas 1968,
Binney & Tremaine 2008) is to integrate Eq. 1.23 –forn = 0 andn = 1–
over the absolute, non-peculiar velocities, leading to equations involving
the absolute moments of the velocity distribution, and afterwards, in order
to give a physical interpretation of each equation, the total moments are
explicitly written in function of the central moments. Sucha procedure
is appropriate for the lowest order equations, but it is not adequate for an
arbitraryn-order equation.





Chapter 2

Stellar hydrodynamic
equations

2.1 Comoving-frame equations

Let us write the collisionless Boltzmann equation, Eq. 1.2,in terms of the
stellar mean velocity, Eq. 1.13, and of the peculiar velocities, Eq. 1.17, by
expressing the phase space density functionf in the form

φ(t, r,u) = f (t, r,u + v(t, r)) (2.1)

wheret, r andu are independent variables. Hence, the derivatives with
respect to these variables are

∂ f
∂t
=
∂φ

∂t
+
∂u

∂t
· ∇uφ =

∂φ

∂t
− ∂v
∂t
· ∇uφ,

∇r f = ∇rφ + ∇ru · ∇uφ = ∇rφ − ∇rv · ∇uφ,

∇V f = ∇V u · ∇uφ = ∇uφ.

(2.2)

Then Eq. 1.2 becomes

∂φ

∂t
− ∂v
∂t
· ∇uφ + (u + v) · (∇rφ − ∇rv · ∇uφ) − ∇rU · ∇uφ = 0 (2.3)

15
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so that, by reorganising terms, it yields

∂φ

∂t
+v ·∇rφ−

(
∂v

∂t
+ v · ∇rv

)
·∇uφ+u ·(∇rφ−∇rv ·∇uφ)−∇rU·∇uφ = 0.

(2.4)
To simplify the notation, we use the material derivative (also called substan-
tial derivative) associated with the motion of the centroid,

d
dt

(·) =
(
∂

∂t
+ v · ∇r

)
(·) . (2.5)

Sincer andu are independent variables, we take into account the identity

u · ∇rφ = ∇r · (u φ) (2.6)

and we also consider the following equality1

u · ∇rv · ∇uφ = ∇rv : (u ⊗ ∇uφ) (2.7)

where each dot represents an inner product, and⊗ a tensor product2. No-
tice that the colon stands for the dot products∇r with u, andv with ∇u,
respectively.

Hence, Eq. 2.4 may be written as follows

dφ
dt
−

(
dv
dt
+ ∇rU

)
· ∇uφ + ∇r · (uφ) − ∇rv : (u ⊗ ∇uφ) = 0. (2.8)

We take now the tensor product of the foregoing equation withthen-tensor
power of the peculiar velocity (u)n,

(u)n dφ
dt
− (u)n ⊗

[(
dv
dt
+ ∇rU

)
· ∇uφ

]
+

+∇r ·
[
(u)n+1φ

]
− ∇rv :

[
(u)n+1 ⊗ ∇uφ

]
= (0)n

(2.9)

1In component notation the equality can be written asui
∂v j

∂ri

∂φ

∂u j
=

∂v j

∂ri

(
ui
∂φ

∂u j

)
, where

Einstein’s summation criterion for repeated indices is applied.
2The notation used for nabla operators is the usual one. Ifx is a vector variable and

Fn(x) a n-rank symmetric tensor field, then forn ≥ 1 the divergence∇x · Fn is, in com-
ponents, ∂

∂xi1
Fi1...in , while for n ≥ 0,∇xFn is used instead of∇x ⊗Fn to represent the gradient

∂
∂xi1

Fi2...in+1 .
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and the resulting equation is then integrated over the peculiar velocities
spaceΓu, where the factors depending only onr and t are left out of the
integrals. Thus, we obtain

d
dt

∫

Γu

(u)n φ du −
(

dv
dt
+ ∇rU

)
·
∫

Γu

(u)n ⊗ ∇uφ du+

+∇r ·
∫

Γu

(u)n+1φ du − ∇rv :
∫

Γu

(u)n+1 ⊗ ∇uφ du = (0)n.

(2.10)

The first and third terms of the above relationship are directly expressed
in function of the pressures, according to Eq. 1.14 and Eq. 1.20. Instead,
for the other terms an auxiliary tensor may be defined as follows

Qn+1 = −
∫

Γu

(u)n ⊗ ∇uφ du, n ≥ 0 (2.11)

so that Eq. 2.10 may be rewritten in a more compact notation,

dPn

dt
+

(
dv
dt
+ ∇rU

)
·Qn+1 + ∇r · Pn+1 + ∇rv : Qn+2 = (0)n. (2.12)

However, the tensorsQn are not directly computable in their current form.

2.2 Conservation of pressures

The next step is to write the general hydrodynamic equation Eq. 2.12 ex-
plicitly depending on the pressures. Hence we shall find out how the tensors
Qn can be expressed in terms of the pressuresPn.

Let us note a particular case of Eq. 2.11. Forn = 0, bearing in mind the
boundary condition Eq. 1.24, we get

Q1 = −
∫

Γu

∇uφ du = φ|u = 0. (2.13)

For n = 1, the tensor product (u)n ⊗ ∇uφ within the integral of Eq. 2.11
verifies, in components,

ui
∂φ

∂u j
=
∂(uiφ)
∂u j

− δi j φ, (2.14)
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beingδi j the Kronecker delta, and forn ≥ 2,

ui1 . . . uin
∂φ

∂uin+1

=
∂(ui1 . . .uinφ)

∂uin+1

− (
δi1in+1 ui2 . . . uin + . . .+

+δi jin+1 ui1 . . . ûi j . . . uin + . . . + δinin+1 ui1 . . . uin−1

)
φ

(2.15)

where the hat remarks the omitted factors.
Then, the tensorQn+1 can be evaluated by integrating Eq. 2.14 and Eq.

2.15. The conditions of Eq. 1.24 are once more applied over the integration
boundary, so that the first term on the right-hand side of Eq. 2.15, when
integrating overuin+1, yields

∫

uin+1

∂(ui1 . . .uinφ)

∂uin+1

duin+1 = ui1 . . . uin φ|uin+1
= 0. (2.16)

Hence, the tensorQn+1 is obtained by integrating only the remaining terms,
and by taking into account Eq. 1.19 and Eq. 1.20.

Thus, forn = 1 we are led to

(Q2)i j = δi j P0 (2.17)

and forn ≥ 2, we get the following expression depending on the pressures,

(Qn+1)i1...in+1
= δi1in+1 Pi2...in + . . .+δi jin+1 Pi1...î j ...in

+ . . .+δinin+1 Pi1...in−1. (2.18)

The foregoing relationships will be used to write both termsin Eq. 2.12,
which involve the tensorQn+1. One of the terms contains a single dot prod-
uct of this tensor with a vector, namelya · Qn+1. Hence, by applying Eq.
2.18, we get

(a ·Qn+1)i1...in =

= ain+1

(
δi1in+1 Pi2...in + . . . + δi jin+1 Pi1...̂i j ...in

+ . . . + δinin+1 Pi1...in−1

)
=

= ai1 Pi2...in + . . . + ai j Pi1...î j ...in
+ . . . + ain Pi1...in−1

(2.19)

where Einstein’s summation convention is used. The result is the sym-
metrised tensor product in regard to permutations of indices,S(a ⊗ Pn−1),


