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1 Introduction

Let us consider a continuous medium, consisting of small, identical
domains. The domains are so small that we can attach to each a
continuous position r. At the same time, the domains are sufficiently
large that we can attach a mass and a mass density to each domain.
Let us assume that a domain placed at r suffers a displacement u(t, r)
at the moment of time t, and, therefore, has a velocity v = du

dt . Then,
Newton’s equation of motion for each domain reads

dv

dt
= f , (1.1)

where f is a force per unit mass. This equation is invariant under
Galilei transformations.

The total time derivative is d
dt =

∂
∂t +vgrad, such that equation (1.1)

can also be written as

∂v

∂t
+ vgradv = f . (1.2)

If the force f arises from pressure variations, this is Euler’s equation
for the ideal fluid. If v is sufficiently small, or varies slowly with
distance, we may neglect the quadratic term in velocities in equation
(1.2) (the transport term), and get

∂v

∂t
= f . (1.3)

This equation is not invariant anymore under Galilei transformations.
The force f includes two contributions: an internal force f i, and
an external force fe. The internal contribution is related to second-
order spatial derivatives of the displacement. For instance, for sound
(compression and dilation) in fluids or solids the internal force f i

is proportional to grad divu, for shear displacement in solids f i is
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1 Introduction

proportional to −curl curlu. In some cases the internal force can be
expressed with the laplacian. In these cases, we write equation (1.3)
(within the same approximation of neglecting the transport term) as
the (standard) wave equation

∂2u

∂2t2
− c2∆u = fe , (1.4)

where c has the dimensions of a velocity. The approximation of ne-
glecting the transport term requires | ∂u/∂t |≪ c. In addition, if
the domains are made up of particles, u should be much smaller than
the mean inter-particle (relative) distance, for the consistency of the
continuous-medium description and the thermal equilibrium.1

As said above, the wave equation is not invariant under Galilei trans-
formations. However, as it is well known, it is invariant under Lorentz
transformation. For a velocity V along the x-coordinate the Lorentz
transformations are

x′ = αx+ cβt , t′ = 1
cβx+ αt ,

α = 1√
1−V 2/c2

, β = V/c√
1−V 2/c2

,

α2 − β2 = 1 ,

(1.5)

and the invariance of the wave equation ∂2u/∂t2 − c2∂2u/∂x2 = fe
can be immediately verified. On the other hand, for velocities V
much smaller than c (V ≪ c), which is precisely the condition of
validity of the standard wave equation, the Lorentz transformations
(equations (1.5)) are reduced to the Galilei transformations, and the
wave equation becomes invariant under Galilei transformations; the
wave equation (1.4) becomes now equivalent to equation (1.2).

For V → ±c the Lorentz transformations give x = ±ct (dx = ±cdt)
and the standard wave equation becomes 0 = fe, which is mean-
ingless. The equations of electromagnetism imply both a velocity
v of a continuous medium and a universal velocity c (the speed of

1M. Apostol, Physical Kinetics, Cambridge Scholars Publishing, Newcastle upon
Tyne (2020); see also "Non-inertial electromagnetic effects in matter. Gyro-
magnetic effect", Solid State Commun. 152 1567 (2012).
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1 Introduction

light in vacuum). They lead to standard wave equations without the
condition v ≪ c. In fact, the velocity v does not appear explicitly
in electromagnetic equations.2 This means that a medium (aether)
is superfluous for electromagnetism. However, the invariance under
Lorentz transformations requires all the velocities be smaller than the
universal velocity c, such that the electromagnetic equations become
meaningless for v greater than c.

A special class of wave equations have a singular (external) force, i.e.

a force proportional to δ(t), δ(r) or derivatives of the δ-functions.
For δ(t)δ(r) these equations provide the Green functions which help
in constructing particular solutions of wave equations. At the same
time, they may be viewed as singular equations, which may raise an
intrinsic interest. Besides being discontinuous (non-analytic) or even
singular in some cases, their solutions may include superfluous contri-
butions of the free equations, which should be removed. They need a
regularization procedure. The regularization procedure is presented in
this book, and applied, especially, to the two- and three-dimensional
Navier-Cauchy equations with a tensorial singular force. This tenso-
rial force is the force acting in seismic foci.3

The distinction is emphasized in this book between waves and vibra-
tions. The waves are governed by Cauchy initial conditions and the
causality principle, while the vibrations are governed by boundary
conditions for indefinite times. A particular example is provided by
vibrations of a string and a circular cymbal, and the occurrence of res-
onances is underlined. Some other applications to pulses, elastic solids
and fluids are presented, as well as a method of including the function
boundary values as sources. The elastic vibrations of a homogeneous
and isotropic half-space are presented by introducing new plane-wave
vector functions. Singular equations for the seismic main shock and
the Cherenkov radiation are also discussed. The book presents direct
and efficient methods of solving some wave equations, both for waves
and vibrations.

2M. Apostol, Statistical Physics, Cambridge Scholars Publishing, Newcastle upon
Tyne (2021).

3B. F. Apostol, The Theory of Earthquakes, Cambridge International Science
Publishing, Cambridge (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishing, Cambridge (2017); Seismology,
Nova, NY (2020).
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2 Waves and Vibrations in

One Dimension

2.1 Harmonic oscillator

Let us consider the well-known equation of a harmonic oscillator

ü+ ω2
0u = S(t) , (2.1)

where the unknown (real) function u(t) is the coordinate of the oscil-
lator, ω0 is its eigenfrequency, the known function S(t) is the source
and t denotes the time. Our problem is to determine the unknown
function u(t). First, we need to specify the domain of the variable t
for the function u(t) (any function must have a domain of definition).
We choose the domain 0 < t < ∞. It is worth noting that the point
t = 0 is not included, such that the derivative is defined. Of course,
the source function S(t) should be defined over the same domain.
Second, we note that if we give the function u and its derivative at
t = 0, the equation provides the second-order derivative at t = 0, so
we may construct the solution as an analytic series at t = 0, providing
S(t) is analytic; we can continue the process for any point. It follows,
in these conditions, that the solution exists, and is unique and ana-
lytic. This is known as the Cauchy-Kovalewskaya theorem; the initial
(t = 0) conditions (which may also be called "boundary" conditions
for the initial time) are known as defining the Cauchy problem for our
equation. We write our initial conditions as

u(t = 0) = u0 , u̇(t = 0) = u1 , (2.2)

where the functions at t = 0 are understood as the limits for t→ 0+.

The solution is the sum of the free solution uf , i..e. the solution of
the homogeneous equation

üf + ω2
0uf = 0 , (2.3)

5



2 Waves and Vibrations in One Dimension

and a particular solution up of equation (2.1): u = uf + up. The free
solution is uf = A cosω0t+B sinω0t, where the coefficients A and B
are determined by the initial conditions. We get the solution

u(t) = [u0 − up(0)] cosω0t+
1

ω0
[u1 − u̇p(0)] sinω0t+ up(t) . (2.4)

It remains to determine a particular solution up.

The most direct method of finding a particular solution of equation
(2.1) is to use the solution G of the equation

G̈+ ω2
0G = δ(t) , (2.5)

where δ(t) is the Dirac delta-function. Then, the particular solution
is

up(t) =

ˆ

0

dt′G(t− t′)S(t′) ; (2.6)

indeed, if we apply the operator d2

dt2 + ω2
0 to this equation, we get

immediately üp + ω2
0up = S(t). It remains to give a consistent and

acceptable sense to equations (2.5) and (2.6).

The solution G of equation (2.5) is called the Green function of the
equation of the harmonic oscillator. Equation (2.5) may be viewed
as the equation of a harmonic oscillator with a "concentrated" source
δ(t). It is a very meaningful equation from the physical standpoint.
It is very different from the problem formulated for equation (2.1)
above.

Indeed, first, we notice that δ(t) in equation (2.5) requires the exten-
sion of the domain to negative t, at least in a neighbourhood of t = 0.
Second, δ(t) is not analytic, so we may not expect an analytic G.
Third, initial conditions at t = 0 are meaningless for equation (2.5),
because δ(t) is undetermined at t = 0. Such functions, with discon-
tinuities, non-analytic and, in general, not determined, may have a
sense only as generalized functions (distributions).1

Of course, G in equation (2.5) is defined up to free solutions. We
can leave them aside, especially as we are interested in a particular
solution up given by G. On the other hand, we can extend the domain

1V. S. Vladimirov, Equations of Mathematical Physics, Dekker, NY (1971).
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2 Waves and Vibrations in One Dimension

of definition of equation (2.1) to −∞ < t < +∞ with u = 0 and S = 0
for all t < 0. This amounts to multiplying equation (2.1) by the step
function θ(t), leading to

d2

dt2
(θu) + ω2

0(θu) = θS + u0δ̇(t) + u1δ(t) . (2.7)

Then we can re-define the source as

S̃(t) = θ(t)S(t) + u0δ̇(t) + u1δ(t) (2.8)

and get the solution by using the Green function (equation (2.6)).
This way, we can include the initial conditions for equation (2.1) in
the solution given by the Green function.2 This is the one-dimensional
form of the Green theorem for solution. We note that the step function
is not determined for t = 0 (it is a distribution). The θ-multiplication
procedure was used for treating electrical polarization in semi-infinite
media (half-spaces), scattering by rough surfaces and the penetration
depth of an electric field in a semi-infinite classical plasma.3

The above observation of a vanishing solution for negative times is
extremely important. It may serve as a means of determining the
Green function. According to equation (2.5), a pulse source appears
at t = 0, so we are interested in the behaviour of the oscillator at the
subsequent times t > 0, while the oscillator is at rest for all t < 0. This
is the principle of causality. Its application gives retarded solutions:
the source has effects only in the future, not backwards in time, in the
past. The effect of a cause comes from the past (retarded solution), not
from the future (advanced solution). Noteworthy, we avoid carefully
the moment t = 0, which is, from the physics standpoint, a very
sound procedure: at that moment the source acts, there cannot be a
meaningful "solution" G. It seems that the Green functions and the
generalized equations look more physical than the classical (analytic)
functions and equations. Our world does indeed involve discontinuities
(non-analyticity).

2M. Apostol, Equations of Mathematical Physics, Cambridge Scholars Publish-
ing, Newcastle upon Tyne (2018).

3M. Apostol, Essays in Electromagnetism and Matter, Lambert, Saarbruecken
(2013) and References therein; "Penetration depth of an electric field in a
semi-infinite classical plasma", Optik 220 165009 (2020).
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2 Waves and Vibrations in One Dimension

Moreover, the causality principle imposes certain restrictions upon
the way of deriving the solution. Indeed, it is easy to see that the
free solution uf is not vanishing for t < 0; similarly, the particular
solution up given by equation (2.6) may not be vanishing for t < 0.
On the other hand, it is easy to see, by comparing equation (2.4) to

the solution given by the source S̃, that the free solution corresponds
to the u0,1-contributions to S̃, so we need up(0) = 0 and u̇p(0) = 0.
As we will see shortly, these conditions are fulfilled for the harmonic
oscillator.

By extending the domain to the whole real axis we can use the Fourier
representation. In fact, solution (2.6) is the Fourier representation of
equation (2.1). Unfortunately, the Fourier transform of equation (2.5),

G(t) = − 1

2π

ˆ

dω
e−iωt

ω2 − ω2
0

, (2.9)

is an improper integral. We need to give a sense to this integral. This
is done by using the principle of causality. Indeed, for t < 0 we should
perform the integration in the upper half-plane, and should get zero.
Therefore, the poles ±ω0 should lie in the lower half-plane, which will
give a non-zero result for t > 0. Consequently, ω should be replaced
by ω + iε, ε→ 0+, in equation (2.9),

G(t) = − 1
2π

´

dω e−iωt

(ω+iε)2−ω2
0
=

= − 1
2π

´

dω e−iωt

ω2−ω2
0+isgn(ω)ε

,

(2.10)

or

G(t) = − 1

2π

ˆ

dω
e−iωt

(ω − ω0 + iε)(ω + ω0 + iε)
, (2.11)

so we get

G(t) = θ(t)
sinω0t

ω0
. (2.12)

We can check that this G satisfies equation (2.5). The causality princi-
ple determines the Green function. G(0) = 0 (in the sense G(0−) = 0,
G(0+) = 0) and Ġ(t) = θ(t) cosω0t (undetermined for t = 0). It is
noteworthy that the Green function and the particular solution are
determined by the eigenfrequency ω0 of the oscillator, which governs

8



2 Waves and Vibrations in One Dimension

the free solutions. The causality prescription of encircling the poles
ω = ±ω0 indicates that the source is viewed as a "boundary condi-
tion" in the ω-variable.

According to equation (2.6), the particular solution is

up(t) =

ˆ t

0

dt′
sinω0(t− t′)

ω0
S(t′) , (2.13)

up(0) = 0, u̇p(0) = 0 and, from equation (2.4), the solution is

u(t) = u0 cosω0t+
1
ω0
u1 sinω0t+

+
´ t

0
dt′ sinω0(t−t′)

ω0
S(t′) , t > 0 .

(2.14)

The same solution is obtained by using the source given by equation
(2.8):

θ(t)u(t) = θ(t)u0 cosω0t+ θ(t) 1
ω0
u1 sinω0t+

+θ(t)
´ t

0 dt
′ sinω0(t−t′)

ω0
S(t′) .

(2.15)

Equations (2.14) and (2.15) are known as the d’Alembert representa-
tion of the solution of the harmonic-oscillator equation. A damping
term can be included in equation (2.1). This term produces a damped
oscillation which fades out in the transient regime; thereafter, the sta-
tionary solution given above settles down.

2.2 Wave equation in one dimension

We write the wave equation in one dimension as

1

c2
ü− u′′ = S(t, x) , (2.16)

where c is the wave velocity. The time is denoted by t and the spa-
tial coordinate is denoted by x. We denote by upper dots the time
derivatives and by upper slashes the spatial derivatives. A choice is
to view the x-dependence of the solution u(t, x) as the restriction to

9



2 Waves and Vibrations in One Dimension

some x-domain. We note that if we give the function and its deriva-
tive at the initial moment, the second-order spatial derivative at that
moment is determined. Then, we are left with a second-order differ-
ential equation in the variable t, which requires two initial conditions
to be determined, for instance u(0, x) and u̇(0, x). This is the Cauchy
problem for our equation. The one-dimensional wave equation (2.16)
can be viewed as describing compression and dilation in a thin rod,
or transverse local displacement of a string.4

We may perform a spatial Fourier transform of equation (2.16),

1

c2
ü(t, q) + q2u(t, q) = S(t, q) , (2.17)

and write the solution as

u(t, q) = A cos cqt+B sin cqt+ up(t, q) , (2.18)

where the A, B-contribution is the free solution uf and up is a par-
ticular solution. The reverse q-Fourier transform shows that the free
solution is a sum of two functions depending on x± ct. We can see in-
deed that we have two coefficients A and B, which can be determined
by the initial conditions. We can write the free solution as

uf(t, x) = A(x− ct) +B(x+ ct) , (2.19)

where A and B are arbitrary functions. The particular solution is
given by

up(t, x) =

ˆ

dt′
ˆ

dx′G(t− t′, x− x′)S(t′, x′) , (2.20)

where the Green function is the solution of the equation

1

c2
G̈−G′′ = δ(t)δ(x) . (2.21)

4A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics,
Dover, NY (1963); P. M. Morse and H. Feshbach, Methods of Theoretical

Physics, McGraw-Hill, NY (1953); L. Landau and E. Lifshitz, Course of The-

oretical Physics, vol. 7 (Theory of Elasticity), Elsevier, Oxford (1986).

10



2 Waves and Vibrations in One Dimension

From the initial conditions u(0, x) and u̇(0, x) we get

u(0, x) = A(x) +B(x) + up(0, x) ,

u̇(0, x) = −cA′(x) + cB′(x) + u̇p(0, x) ,
(2.22)

a system of equations which determine the functions A and B (up to
a constant; the constant does not apear in A+B). This is known as
the d’Alembert solution for the Cauchy problem in one dimension.

In order to solve equation (2.21) we take the time Fourier transform,
with the same prescription regarding the integration, as given by the
causality principle: we require G = 0 for t < 0. This requirement
gives us retarded waves. Equation (2.21) becomes

G′′(ω, x) +
ω2

c2
G(ω, x) = −δ(x) . (2.23)

This is the equation of the harmonic oscillator (equation (2.5)), with
interchanged variables t, x and ω0 replaced by ω/c. As we will see
shortly, the boundary values for x are dictated by the conditions im-
posed upon t (variable ω). The formal solution is given by

G(ω, x) =
1

2π

ˆ

dq
eiqx

q2 − ω2/c2
. (2.24)

According to the causality principle this integral should be viewed as

G(ω, x) =
1

2π

ˆ

dq
eiqx

(q − ω/c− iε)(q + ω/c+ iε)
(2.25)

(ω → ω + iε, ε → 0+). We can see that the integration over q is
dictated by the ω-poles. For x > 0 we must integrate over the upper
half-plane; for x < 0 we integrate over the lower half-plane. Therefore,
we get

G(ω, x) =
ic

2ω
eiω|x|/c , (2.26)

or, more exactly,

G(ω, x) =
ic

2ω + iε
eiω|x|/c . (2.27)

11



2 Waves and Vibrations in One Dimension

This Green function is distinct from the Green function of the oscil-
lator given by equation (2.12). Taking the inverse Fourier transform
we get

G(t, x) =
ic

4π

ˆ

dω
e−iω(t−|x|/c)

ω + iε
. (2.28)

According to the causality principle, for t− | x | /c < 0 the integration
in the upper half-plane is zero (the pole is below), while for t− | x |
/c > 0 the integration in the lower half-plane gives c/2. Therefore,

G(t, x) =
c

2
θ(t− | x | /c) . (2.29)

It is worth noting that this equation depends on x ± ct (6= 0), as the
free solution does.

The same result can be obtained if we perform first the integration
over ω in the Fourier transform of equation (2.23),

G(t, q) =

ˆ

dω
e−iωt

q2 − (ω + iε)2/c2
= θ(t)c

sin cqt

q
(2.30)

(again, the poles are ω = ±cq, as for free waves). The inverse Fourier
transform of this function,

G(t, x) =
cθ(t)

4πi

ˆ

dq
eiq(x+ct) − eiq(x−ct)

q
(2.31)

has the pole q = 0 on the real axis; it is reduced to the integral

ˆ

dq
sin pq

q
= πsgn(p) ,

(
ˆ

dq
cos pq

q
= 0

)
; (2.32)

we get again equation (2.29).

The Green function given by equation (2.29) is a step-wise wave with
two wavefronts | x |= ct, which propagate with velocities ±c, ongo-
ing from t = 0 (a two-walls wave). The particular solution of the
wave equation (2.16) (equation (2.20)) satisfies the causality princi-
ple. The free solution does not fulfill the causality principle. We
may restrict ourselves to the domain t > 0, x > 0. We note that
the causality-principle condition leads to a non-vanishing solution for

12



2 Waves and Vibrations in One Dimension

x < 0. Therefore, we can obtain the solution by extending it to the
whole real t-axis and multiplying by θ(t); but we cannot do the same
thing for the variable x.

Doing so, equation (2.16) becomes

1
c2

∂2

∂t2 [θ(t)u]− ∂2

∂x2 [θ(t)u] =

= θ(t)S(t, x) + 1
c2 δ̇(t)u(0, x) +

1
c2 δ(t)u̇(0, x) ;

(2.33)

by making use of the Green function, we get

θ(t)u(t, x) =

= 1
2θ(t) [θ(x − ct)u(0, x− ct) + θ(x+ ct)u(0, x+ ct)] +

+ 1
2cθ(t)θ(x − ct)

´ x+ct

x−ct dx
′u̇(0, x′)+

+ 1
2cθ(t)θ(ct − x)

´ x+ct

0
dx′u̇(0, x′)+

+ c
2

´

0 dt
′ ´

0 dx
′θ(t− t′− | x− x′ | /c)S(t′, x′)+

(2.34)

This is the d’Alembert solution. We note that it satisfies the causality
principle (= 0 for t < 0) and u(0, x) = u(0, x), u̇(0, x) = u̇(0, x),
but it has non-vanishing values for x < 0; also, this solution and its
spatial derivative have well-defined values for x = 0. We may restrict
ourselves to x > 0. Boundary conditions (like conditions for x = 0) are
impossible for the wave equation which satisfies the causality principle.
The solution obtained above is valid for any x, and we may take its
restriction to whatever domain we choose.

It is worth noting that both the Green function and the particular
solution are constructed by the poles ω = ±cq corresponding to the
free solution. The source is treated as a "boundary condition" for
the free solution. Since the free solution depends only on two vari-
ables x ± ct, there exist only two coefficients to be determined by
two (independent) conditions, in agreement to the second order of the
equation.

13



2 Waves and Vibrations in One Dimension

2.3 Singular equation. Regularization

Equation (2.21) can also be viewed as a wave equation, not necessarily
an equation for a Green function; it is rather an unphysical equation,
since the total force δ(t)

´

dxδ(x) is not zero. In order to do this we
need to place the source in the domain t > 0, x > 0. Therefore, we
get the equation

1

c2
ü− u′′ = δ(t)δ(x − x0) , (2.35)

where t = 0 is understood as t = 0+ and x0 > 0. We call it a singular
equation. Obviously, the particular solution of this equation is

up(t, x) =
c

2
θ(t− | x− x0 | /c) (2.36)

(a two-walls wave). Equation (2.35) and its particular solution given
by equation (2.36) have a noteworthy particularity: for all times and
positions, except the wavefronts | x − x0 |= ct, the solution is a
constant (0 or c/2). The presence of the constant c/2 leads to an
unphysical situation, because the solution is determined up to an ar-
bitrary constant. The only physically relevant solutions should exist
at the discontinuous wavefronts, where, however, the solution is un-
determined. The restriction to these points is the regularization of
the solution. We denote the regularized solution by u. The θ func-
tion occurs because we require an analytic solution, except for some
points. We use equation (2.29) as a Green function, since we need
analytic functions for the particular solutions of the wave equation
with sources; but equation (2.29) is not a meaningful solution of the
singular wave equation (2.35).

The particular solution given by equation (2.36) satisfies the causality
principle (up = 0 for t < 0). We may view it as the restriction of up
to x > 0. Its initial and boundary values are

up(0, x) = 0 , u̇p(0, x) =
c2

2 δ(x − x0) ,

up(t, 0) =
c
2θ(t− x0/c) , u

′
p(t, 0) =

1
2δ(t− x0/c) .

(2.37)

We can include an initial condition u(0, x), according to equation
(2.34), since up(0, x) = 0. But we cannot include u̇(0, x), since

14



2 Waves and Vibrations in One Dimension

u̇p(0, x) 6= 0. Also, boundary conditions are impossible. We can
see that a concentrated source δ(x− x0) renders impossible the (full)
Cauchy problem of the wave equation. The waves given by equation
(2.36) start to propagate from the source, to the right and to the
left, at the initial moment t = 0. The wave propagating to the left
reaches the point x = 0 after the time x0/c and gives a constant "dis-
placement" c/2 to this point for all the subsequent times, while the
wave propagating to the right continues its way to infinity. We note
that the above functions (equations (2.37)) are not defined for x = x0,
t = 0 and x = 0, t = x0/c, which are particular wavefronts, i.e. points
which satisfy the equation |x − x0 |= ct; this equation (of the wave-
fronts) defines the "characteristics" of the wave equation. Indeed,
for x − x0 = ±ct the wave equation (2.35) becomes the meaningless
equality 0 = 1

c δ
2(t).

Under the above conditions the singular equation (2.35) may be ac-
cepted as a meaningful wave equation, though its regularized solution
u is reduced to a point.

The story of the singular equation (2.35) is not yet finished. Let us
first assume that the end point x = 0 is fixed. It follows that an oppo-
site displacement u(t, 0) = − c

2θ(t − x0/c) should appear at this end,
in order to have a total zero displacement. For subsequent times this
displacement becomes − c

2θ(t − x/c − x0/c); this is a solution of the
singular wave equation which propagates to the right with velocity c.
It originates in the mirror-image source placed at −x0. Therefore, the
wave is reflected (with change of sign) by the fixed end. The super-
position of the incident wave and the reflected wave gives a vanishing
displacement. Of course, this reflected solution should be regularized.
This reflected solution may be viewed as a scattered wave.

The wave acts upon the end point x = 0 by a force c2u′′ |x=0=
c
2δ

′(t − x0/c). Indeed, the internal force (per unit mass) in equation
(2.35) is c2u′′. We note that we can use the solution up for calculating
the derivatives of the regularized solution u. The internal force c2u′′

acts upon each point x > 0, on behalf of its neighbouring points. It
is a "volume" force. The force c2u′′ |x=0 acts upon an internal point
x where x → 0+. This is the internal point placed at x = 0. This
internal force is distinct from the "surface" force. Indeed, the internal
force arises from "surface" forces s(x) acting upon the "surface" of
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2 Waves and Vibrations in One Dimension

any domain; the internal force is given by

s(x+∆x/2)− s((x−∆x/2) = c2u′′(x) ·∆x , (2.38)

where ∆x is of the order of the dimension of the domains; hence we
can see that the "surface" force is s = c2u′(x). Since the domains
are contiguous, the "surface" forces acting upon them are vanishing;
except the "surface" force acting at the end point x = 0, which is
s = c2u′(0). The "surface" force acting at the end point x = 0 may,
at most, generate a displacement of the whole medium, but it cannot
generate a local motion. It may serve as a boundary condition, but
not as a force generating motion.

Therefore, the incident wave acts by a force c2u′′ |x=0=
c
2δ

′(t− x0/c)
upon the end point x = 0. Since the end is fixed, it reacts back to the
medium by a force − c

2δ
′(t− x0/c) placed at x = 0. We may imagine

that a "surface" force is present at the end point, for a short time,
which, divided by a small extension, of the order of the dimension
of the domains, cancels out the incident force, such that the total
force at the end point is zero. According to the Huygens principle,
the original wave ceases its existence at this point and a new wave
appears, generated by this reaction force. The Huygens principle acts
at any point in the medium, only that the relevant part of the force
generated by the incident wave at any internal point is identical to
the incident force, such that the motion is transmitted through the
medium.

Usually, the reflection is treated for a continuous presence of the in-
cident wave at the surface, which is a vibration problem (as we shall
see shortly); in that case, a force may have a continuous presence at
the surface.

The localization of the end-point force at x = 0 raises problems in
determining its form. The solution of this indetermination resides
in the physical meaning of the δ function. We should use lδ(x) for
the spatial localization of this force, where l is the small extension
of the function δ(x). Consequently, we can represent the force as
− c

2δ
′(t − x0/c)lδ(x). However, this force is placed at x = 0, so half

of it is lost outside the domain x > 0. Therefore, we should multiply
this result by 2, such that the force is

−cδ′(t− x0/c)lδ(x) . (2.39)
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2 Waves and Vibrations in One Dimension

The cutoff l allows the representation − c2

l δ(t − x0/c) for −cδ′(t −
x0/c), which, together with lδ(x), eliminates the cutoff parameter l.
Consequently, we are lead to the wave equation

1

c2
ü− u′′ = −δ(t− x0/c)δ(x) . (2.40)

The solution of this equation is

u(t, x) = − c
2
θ(t− x/c− x0/c) (2.41)

for x > 0, i.e. precisely the reflected wave found above. Of course,
the solution should be regularized.

If the end point x = 0 is "free" the force acting upon it on behalf of
the incident wave sets it in motion. Since the medium is consistent,
i.e. it cannot be disrupted, an equal and opposite force should appear,
exactly as for a fixed end point. Therefore, the situation is completely
similar to that described above.

The representation given by equation (2.39) may also be cast as

−c2lδ(t)δ′(x) (2.42)

(where we measure the time from t = x0/c); this leads to the equation

1

c2
ü− u′′ = −lδ(t)δ′(x) . (2.43)

We put this source at x = x0, leave aside the cutoff l and write the
equation as

1

c2
ü− u′′ = δ(t)δ′(x− x0) . (2.44)

This representation is preferable, since the total force acting upon the
body in this case is zero, which is a physical situation (

´

dxδ′(x−x0) =
0). The particular solution of this equation can be obtained from the
solution of equation (2.35) by differentiation with respect to x:

up(t, x) = −
1

2
sgn(x− x0)δ(t− | x− x0 | /c) (2.45)

17



2 Waves and Vibrations in One Dimension

(a pulse wave). In contrast to the wave equation (2.35), this wave
equation in one dimension has meaningful solutions, in the sense that
they are already regularized. The solution up is the regularized solu-
tion u. We note that on the wavefronts x− x0 = ±ct equation (2.44)
becomes 0 = 1

c δ(t)δ
′(t), which is a valid equality.

Its initial and boundary values are

u(0, x) = − c
2sgn(x− x0)δ(x − x0) ,

u̇(0, x) = − c2

2 sgn(x− x0)δ′(x− x0) ,

u(t, 0) = 1
2δ(t− x0/c) , u

′
(t, 0) = 1

2cδ
′(t− x0/c) .

(2.46)

We can see that the Cauchy problem becomes meaningless for this
equation (u(0, x) 6= 0, u̇(0, x) 6= 0). This is expected for a solution
whose support is reduced to points (δ(t− | x − x0 | /c) is different
from zero for x = x0 ± ct).5 We may view u(t, x) as the full solution
of equation (2.44), with the restriction x > 0 (it satisfies the causality
principle, u = 0 for t < 0). This solution describes two concentrated
pulses, with opposite signs, propagating to the right and to the left
with velocities ±c from x = x0 and for all times t > 0. Once arrived at
x = 0, after time x0/c, the wave produces a reaction force −c2u′′ |x=0,
which, following the procedure described above leads to the equation

1

c2
ü− u′′ = −δ(t− x0/c)δ′(x) , (2.47)

with solution

u(t, x) =
1

2
δ(t− x/c) (2.48)

for x > 0. This wave propagates to the right, as a pulse, with velocity
c. It is a reflected wave. If we have a finite-size body, with x restricted
to 0 < x < l, the pulse waves will suffer multiple reflections on both
ends.

Singular equations in one dimension with sources δ(t)δ(x), δ(t)δ′(x)
describe the propagation of electric pulse on a metallic wire (the phys-
ical problem corresponds to the latter).6

5B. F. Apostol, "On the Lamb problem: forced vibrations in a homogeneous and
isotropic elastic half-space", Arch. Appl. Mech. 90 2335 (2020).

6M. Apostol, "Electric pulse on a metallic wire", Optik 204 164095 (2020).
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2 Waves and Vibrations in One Dimension

The equation of elastic waves in a three-dimensional solid with a ten-
sorial force localized at R0 is

ü− c2t∆ui − (c2l − c2t )grad divu = F , (2.49)

where u is the displacement, cl,t are the longitudinal and transverse
velocities and the force (per unit mass) is given by

Fi = mijTδ(t)∂jδ(R−R0) , (2.50)

mij being the (symmetric) tensor of the moment per unit mass and
T denotes the duration of the force; the cartesian indices are i, j =
x, y, z.7 In one dimension, along the coordinate x, with R0 = (x0, 0, 0),
this equation becomes

üx − c2l u
′′
x = mxxTδ(t)δ

′(x− x0) ,

üα − c2tu
′′
α = mαxTδ(t)δ

′(x− x0) ,
(2.51)

where α = y, z. These equations are of the form given by equation
(2.44). The source is distributed uniformly in a plane perpendicular
to the x-axis.

2.4 Vibrations in one dimension

The solution u(t, x) of the wave equation

1

c2
ü− u′′ = S(t, x) (2.52)

can also be viewed as the restriction to some t-domain, or the whole
temporal space. Therefore, we may take the time Fourier transform
of this equation,

u′′(ω, x) +
ω2

c2
u(ω, x) = −S(ω, x) , (2.53)

7B. F. Apostol, The Theory of Earthquakes, Cambridge International Science
Publishing, Cambridge (2017); Introduction to the Theory of Earthquakes,
Cambridge International Science Publishing, Cambridge (2017); Seismology,
Nova, NY (2020).

19



2 Waves and Vibrations in One Dimension

and write the solution as

u(ω, x) = A cos
ωx

c
+B sin

ωx

c
+ up(ω, x) , (2.54)

where the A, B-contribution is the free solution uf and up is a par-
ticular solution. The coefficients A and B are determined by two
conditions. These are boundary conditions for the x-variable. For in-
stance, we can give u(t, 0) (a condition known as the Dirichlet condi-
tion) and u′(t, 0) (a von Neumann condition) for the boundary x = 0.
As shown before c2u′(t, 0) is the "surface" force acting upon the end
point x = 0; the condition u′(t, 0) = 0 means a free end point x = 0.
The condition u(t, 0) = 0 means a fixed end point. A combination
αu(t, 0) + βu′(t, 0) = 0, with α, β some coefficients, may represent a
certain motion of the end point. Insufficient conditions lead to a free
coefficient. By the reverse ω-Fourier transform, we can see that the
free solution depends on t ± x/c. Therefore, the free solution can be
written as a sum of two functions

uf (t, x) = A(t− x/c) +B(t+ x/c) . (2.55)

The particular solution is given by

up(t, x) =

ˆ

dt′
ˆ

dx′G(t− t′, x− x′)S(t′, x′) , (2.56)

where the Green function G is given by the equation

1

c2
G̈−G′′ = δ(t)δ(x) . (2.57)

The functions A and B are determined by the boundary conditions

A(t) +B(t) + up(t, 0) = u(t, 0) ,

− 1
cA

′(t) + 1
cB

′(t) + u
′
p(t, 0) = u′(t, 0) .

(2.58)

We note that the time may be extended from −∞ to +∞, or we may
take the restriction of the solution to any time domain. In a vibration
problem the time is indefinite and the boundary conditions act over
the entire time domain.
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In order to solve equation (2.57) for the Green function we may assume
G = 0 for x < 0, the space domain being 0 < x < +∞. Therefore, in
the spatial Fourier transform

G(t, x) =
1

2π

ˆ

dqG(t, q)eiqx (2.59)

we place the q-poles in the upper half-plane; indeed, for x < 0 the
integration in the lower half-plane gives then zero, while for x > 0
the integration in the upper half-plane gives a non-zero result. Con-
sequently, we replace q by q− iε, ε→ 0+ in G(t, q). We note that this
procedure is similar to a "causality" principle for x.

Let us take the spatial Fourier transform of equation (2.57):

1

c2
G̈(t, q) + q2G(t, q) = δ(t) . (2.60)

The solution of this equation is

G(t, q) = − c2

2π

´

dω e−iωt

ω2−c2q2 =

= − c2

2π

´

dω e−iωt

(ω−cq+iε)(ω+cq−iε) = ic
2

e−icq|t|

q−iε ,

(2.61)

such that the Green function is

G(t, x) =
ic

4π

ˆ

dq
eiq(x−c|t|)

q − iε = − c
2
θ(x − c | t |) . (2.62)

We can see again that the Green function and the particular solution
are given by the poles ω = ±cq, corresponding to the free solution.
We note the similarity between the Green functions of waves (equation
(2.29)) and vibrations (equation (2.62)), though the difference | x |
vs | t | is essential. It shows that the waves propagate in the future
in the whole space, while the vibrations oscillate at any position as a
consequence of waves propagating both from the past and the future.
The wave solution is causal, while the vibration solution is acausal.

Let us extend the variable x to −∞ and multiply equation (2.52) by
θ(x); the equation becomes

1

c2
∂2

∂t2
(θu)− ∂2

∂x2
(θu) = θS − δ(x)u′(t, 0)− δ′(x)u(t, 0) . (2.63)
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The solution of this equation is the d’Alembert solution

θ(x)u(t, x) = θ(x)12 [u(t− x/c, 0) + u(t+ x/c, 0)]+

+θ(x) c2
´ t+x/c

t−x/c dt
′u′(t′, 0)−

−θ(x) c2
´

dt′
´

0
dx′θ(x− x′ − c | t− t′ |)S(t′, x′) ,

(2.64)

where we recognize the functions A and B introduced above.

Let us assume u(t, 0) = sinωt, u′(t, 0) = 0, S(t, x) = 0, i.e. a har-
monic oscillation of the end x = 0 of a semi-infinite string; equation
(2.64) gives the solution

u(t, x) = sinωt cosωx/c , (2.65)

i.e. the oscillating excitation of the boundary extends to the whole
string; this is a stationary (standing) wave, arising from the superpo-
sition of two waves sin(ω(t ± x/c). We can see that one wave comes
from the future. The separation of the dependence on the variables t
and x is a vibration, i.e. a stationary (standing) wave, in contrast to
the propagating waves which are travelling waves.

Let us assume u(t, 0) = δ(t), u′(t, 0) = 0, S(t, x) = 0, i.e. a pulse on
the end. Equation (2.64) gives the solution

u(t, x) =
1

2
[δ(t− x/c) + δ(t+ x/c)] , (2.66)

which describes the propagation along the string of the pulse gen-
erated at the end of the string, one pulse coming from the future.
These are travelling waves. Actually, this is a propagating-wave prob-
lem, generated by u(t, 0) = δ(t); it is not appropriate to treat it as a
vibration problem, as shown by the unphysical solution we get. Sim-
ilarly, a pulse source generates a travelling wall- or pulse-wave. We
can see that vibrations are generated by the continuous presence of
waves at the surface; pulses generate travelling waves.8

Let us consider a finite string, extending from x = 0 to x = l. In
order to implement the boundary conditions we may extend the do-
main to −∞ < x < +∞ and multiply the function by θ(x)θ(l − x).
8B. F. Apostol, "On the Lamb problem: forced vibrations in a homogeneous and

isotropic elastic half-space", Arch. Appl. Mech. 90 2335 (2020).

22


